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Abstract

Background: Wucai (Brassica campestris L. ssp. chinensis var. rosularis Tsen) is a variant of nonheading Chinese
cabbage (Brassica campestris L.), which is one of the major vegetables in China. Cytoplasmic male sterility (CMS)
has been used for Wucai breeding in recent years. However, the underlying molecular mechanism of Wucai CMS
remains unclear. In this study, the phenotypic and cytological features of Wucai CMS were observed by anatomical
analysis, and a comparative transcriptome analysis was carried out to identify genes related to male sterility using
Illumina RNA sequencing technology (RNA-Seq).

Results: Microscopic observation demonstrated that tapetum development was abnormal in the CMS line,
which failed to produce fertile pollen. Bioinformatics analysis detected 4430 differentially expressed genes
(DEGs) between the fertile and sterile flower buds. Gene Ontology (GO) and Kyoto Encyclopedia of Genes
and Genomes (KEGG) pathway enrichment analyses were performed to better understand the functions of
these DEGs. Among the DEGs, 35 genes (53 DEGS) were implicated in anther and pollen development, and
11 genes were involved in pollen cell wall formation and modification; most of these showed downregulated
expression in sterile buds. In addition, several genes related to tapetum development (A6, AMS, MS1, MYB39,
and TSM1) and a few genes annotated to flowering (CO, AP3, VIN3, FLC, FT, and AGL) were detected and
confirmed by qRT-PCR as being expressed at the meiosis, tetrad, and uninucleate microspore stages, thus implying
possible roles in specifying or determining the fate and development of the tapetum, male gametophyte and stamen.
Moreover, the top four largest transcription factor families (MYB, bHLH, NAC and WRKY) were analyzed, and most showed
reduced expression in sterile buds. These differentially expressed transcription factors might result in abortion of pollen
development in Wucai.

Conclusion: The present comparative transcriptome analysis suggested that many key genes and transcription factors
involved in anther development show reduced gene expression patterns in the CMS line, which might contribute to
male sterility in Wucai. This study provides valuable information for a better understanding of CMS molecular mechanisms
and functional genome studies in Wucai.
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Background
Wucai (Brassica campestris L. ssp. chinensis var.
rosularis Tsen) is a variant of nonheading Chinese
cabbage (Brassica campestris L.), which is the most
important species in the Brassicaceae family [1]. As an
important autumn and winter vegetable crop, this crop
is cultured widely in most parts of China, where it origi-
nated, especially in the Yangtze-Huaihe River Basin, and
has become increasingly popular in other countries for
its beautiful shape and significant levels of vitamins and
minerals [2]. In recent years, cytoplasmic male sterility
(CMS) has been used in some cultivated breeds [3] to gen-
erate stronger plants and higher hybrid seed yield [4, 5].
Owing to an interaction between mitochondrial and

nuclear genes, the CMS phenotype fails to produce func-
tional anthers, pollen or male gametes [6]. Thus, under-
standing the delicate and complex processes of anther
and pollen development is a prerequisite for comprehen-
sion of this unique phenomenon in CMS plants [5].
However, anther and pollen development is a critical
phase in the plant life cycle, which contains a series of
correlated events involving a diverse range of genes in
complex regulatory networks [7–9]. Dysfunction of these
genes may lead to male sterility [10]. Although many of
these genes have been isolated and analyzed to have vital
roles in CMS, the regulatory network and the novel
genes underlying CMS occurrence are still largely
unknown [8, 10].
In recent decades, genetic research into CMS occur-

rence has included two main types, map-based cloning
and sequence-based transcriptome assays [7]. Using
AFLP and SSR techniques for gene mapping, Xu et al.
[11] identified the restorer gene BrRfp from the pol-like
CMS restorer line of heading Chinese cabbage (B. rapa).
Compared with the gene mapping method, the Illumina
sequencing (RNA-Seq) technique could offer several key
advantages over existing technologies [12]. This form of
transcriptional analysis allows for the determination of
genome-wide expression levels as well as identification
of new genes and SNPs, especially genes with very low
abundance [13–15]. Furthermore, the results of
RNA-Seq also show high levels of reproducibility for
both technical and biological replicates [16]. Therefore,
taking these advantages into account, RNA-Seq has been
used successfully in the pollen and anther development
of Brassica crops, such as B. napus [6, 9, 14, 17], B. rapa
[7, 18], B. oleracea [19–21], B. campestris [5], and B.
juncea [22]. However, to the best of our knowledge, the
genome-wide transcriptional profiles and related genes
of fertile and sterile flower buds from Wucai have not
yet been reported through RNA-Seq technology.
In our previous study, a newly sterile plant of Wucai

was generated by hybridization with nonheading Chinese
cabbage, and a stable sterility line was developed via

backcrossing for ten generations. In this present study,
the objective was to further understand the differences
in the transcriptome between the CMS line and its
maintainer line and to find some molecular clues to this
CMS system. Accordingly, mRNA was isolated from the
flower buds of fertile and sterile plants, respectively, and
then, genome-wide transcriptional profiling was per-
formed using the Illumina RNA-Seq platform. Based on
bioinformatics analysis, a large number of candidate
genes and transcription factors involved in anther and
pollen development were isolated, and various screened
candidate genes related to pollen development were fur-
ther analyzed by qRT-PCR. Our results may contribute
to an understanding of CMS molecular mechanisms and
provide useful information for further heterosis breeding
in Wucai.

Results
Phenotypic and cytological characterization
After ten generations of backcrossing, there was no
difference in morphological phenotype between the ster-
ile line 12-14A and its maintainer line 12-14B (Fig. 1a
and b), and the forms of the corolla and flower seemed
normal (Fig. 1c-f ). However, compared with those of the
fertile flower, shorter filaments and undeveloped
anthers were observed on the stamens of the sterile
flower (Fig. 1g-h).
To accurately characterize the cause of the pollen

abortion, semithin sections of the buds from the two
lines of Wucai were observed. As shown in Fig. 1i and
IM, there was no obvious difference in the meiosis
period between sterile and fertile anthers. However, at
the tetrad stage, the tapetal cells expanded, and the
microspore could not carry out meiotic division (Fig. 1j).
After this stage of anther development, the tapetal cells
vacuolated and filled in the sacs, and the microspores
degraded (Fig. 1k), which caused pollen abortion (Fig. 1l).
In contrast, a normal tapetum and fertile pollen grains
developed in the fertile anthers (Fig. 1m-p).

De novo assembly and sequence annotation
To further understand the molecular mechanisms of
CMS differences in Wucai, RNA-Seq was performed
using Illumina technology. After the raw data were
trimmed, a total of 52,936,673 clean reads for the fertile
samples and 52,606,810 for the sterile samples were
obtained, and the Q20 and Q30 were > 96.61 and >
92.53%, respectively (Table 1). In addition, the GC con-
tents were consistently approximately 45% for both ster-
ile and fertile samples (Table 1), suggesting that the
sequencing was highly accurate. All clean reads
(105,543,483) were assembled using the Trinity program
[23]. As the result, 117,332 contigs were obtained with a
mean length of 901 nt (Table 1). After clustering, 80,851

Chen et al. BMC Genomics          (2018) 19:908 Page 2 of 17



unigenes (> 200 bp) were generated; the average length
was 1054 nt, and the N50 was 1586 nt (Table 1). The
lengths of all unigenes were longer than 199 bp, and
86.95% of them ranged from 200 to 1999 bp (Additional
file 1: Table S1). The assembled unigenes were subjected
to search against the Nr, Swiss-Prot and COG databases,
and 66,143 (81.81%), 54,857 (67.85%) and 28,129
(34.79%) unigenes were aligned against these three pro-
tein databases, respectively (Additional file 2: Table S2).
The species distribution showed that that almost all of
the sequences matched sequences from the Brassicaceae
(Additional file 3: Figure S1).

Identification of differentially expressed genes
To gain better insight into the differences in gene
expression patterns, we identified differentially expressed
genes (DEGs) between the sterile and fertile lines. A
total of 4430 genes (including 147 novel genes) were
identified in the sterile and fertile comparison, including
980 genes upregulated and 3450 downregulated in sterile
buds (Fig. 2; Additional file 4: Table S3). Among these

DEGs, 1384 specifically expressed genes were observed
that were expressed in only the fertile (1044) or sterile
(340) samples. These results showed that the number of
downregulated DEGs was considerably higher than that
of upregulated DEGs. In addition, 147 novel genes were
identified that were not annotated to any database. The
biological functions of these novel genes remain to be
determined (Additional file 5: Table S4).

Functional annotation by Gene Ontology
To investigate the function of the DEGs, the genes that
showed significant differential expression were subjected
to analysis by Blast2GO software. As shown in
Additional file 6: Figure S2, 4430 DEGs were categorized
into 53 functional groups under three main classifica-
tions. Among these groups, ‘cellular process’ (2180;
49.21%) in biological process, ‘cell’ (2618; 59.10%) and
‘cell part’ (48,388; 87.59%) in cellular component, and
‘binding’ (1450; 32.73%) in molecular function were the
dominant categories. Conversely, three categories (‘cell
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Fig. 1 Morphological characteristics of flowers and microscopic observations of anthers from the sterile and fertile lines of Wucai. a and b, CMS
line 12-14A and its maintainer line 12-14B. c, e, g and d, f, h, Inflorescences, flowers, and petals and stamens from the sterile and fertile lines,
respectively. i-l, Transverse sections of sterile anthers; abnormal tapetum was formed, and the pollen sacs of sterile anthers did not produce
pollen, in the CMS line. m-p, Transverse sections of fertile anthers; normal tapetum and mature anthers developed in the maintainer line. AT,
abnormal tapetum; DPG, degenerated pollen grain; E, epidermis; En, endothecium; ML, middle layer; MSp, microspore; PG, pollen grain; T,
tapetum. Scale bars in a, b, c and d represent 1 cm; scale bars in e, f, g, h represent 0.5 cm; scale bars in I-P represent 100 μm
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killing’, ‘virion’ and ‘metallochaperone activity’) had only
a few unigenes.

Pathway mapping by Kyoto Encyclopedia of Genes and
Genomes
To understand the biological functions of DEGs that
might be active in Wucai, pathway annotation was
performed against the Kyoto Encyclopedia of Genes
and Genomes (KEGG) database. The results showed
that 2217 of 4430 DEGs were assigned to 119 KEGG
pathways (Additional file 7: Table S5). The 20 most
significantly enriched KEGG pathways are shown in
Fig. 3. The pathways with significantly more DEGs
were metabolic pathways (676, 15.26%), biosynthesis

of secondary metabolites (284, 6.41%), plant-pathogen
interaction (162, 3.61%), and starch and sucrose
metabolism (124, 2.80%). In starch and sucrose
metabolism, a total of 124 DEGs were screened, and
38 of these DEGs were expressed in only fertile buds,
while 71 DEGs were downregulated in sterile buds
(Additional file 8: Table S6). These pathway annota-
tions provide a basis for investigating gene functions
involved in male sterility in Wucai.

Genes related to anther and pollen development
Pollen development is a complex process that involves
many events and plays an important role in plant propa-
gation. In this study, all of the DEGs were annotated
against the processes of anther and pollen development
of A. thaliana. As shown in Table 2, 35 genes are
considered to regulate male gametophyte development
in Wucai. From A6 to ZAT5, 30 genes were downregu-
lated in sterile buds. In contrast, 5 other genes, BT2,
SCC12, TCMO, VAL2 and XPO1, were upregulated in
sterile buds. Among these genes, A6, AMS, ENL2, MS1,
MYB39, ORTH2, PLRX1 and TSM1 are also considered
to be involved in tapetum development. In addition, we
found several genes associated with cell wall formation
and modification, such as the Pectinesterase gene
(PME5), UDP-arabinose mutase gene (RGP1), and
Cinnamoyl-CoA reductase gene (CCR2), which might
participate in the processes leading to CMS in Wucai.

Differentially expressed transcription factor genes
In the anther and pollen development processes, tran-
scription factors are generally thought to be important
regulators. To identify differentially expressed transcrip-
tion factors, all of the DEGs were annotated. In this
study, 131 transcription factors (182 DEGs) were found,
including 128 down- and 54 upregulated DEGs
(Additional file 9: Table S7). Among these transcription
factors, 27 up- and 8 downregulated DEGs were specific
to fertile and sterile buds, respectively. In addition, 13
DEGs were associated with 8 WRKY transcription factor
genes, and WRKY19 (Unigene3849, CL2284.Contig2,
CL2120.Contig3) and WRKY32 (CL4008.Contig1) were
upregulated in only sterile buds. Fifteen DEGs were
identified with 10 NAC transcription factor genes, and 6
of them were highly expressed in sterile buds. In the
bHLH and MYB transcription factor families, a total of
43 DEGs were associated with 16 bHLH and 13 MYB
transcription factors, and 10 bHLHs (15 DEGs) and 8
MYBs (16 DEGs) were downregulated in sterile buds,
respectively (Fig. 4, Table 3). These differentially
expressed transcription factors might result in abortion
of pollen development in Wucai.

Table 1 Illumina sequencing data and results of de novo assembly

Sterile Fertile Total

Reads

Clean reads 52,606,810 52,936,673

Q20 (%) 96.61 97.29

Q30 (%) 92.53 94.27

GC content (%) 45.89 45.65

Contig

Total number 117,332

Total length (nt) 105,669,013

Mean length (nt) 901

N50 (nt) 1415

Unigene

Total number 80,851

Total length (nt) 85,236,698

Mean length (nt) 1054

N50 (nt) 1586

Distinct clusters 43,191

Distinct singletons 37,660
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Fig. 2 Number of DEGs between sterile and fertile buds. Red indicates
upregulated DEGs, and green indicates downregulated DEGs
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Real-time qPCR validation of gene expression patterns
To validate the results of RNA-Seq, 28 DEGs, includ-
ing 11 genes annotated to anther and pollen develop-
ment, 8 transcription factor genes, 8 flowering genes
and one gene with unknown function were subjected
to verification using qRT-PCR. The results of this
experiment are shown in Fig. 5. Among these genes,
19 genes were downregulated in sterile buds, includ-
ing 7 tapetum-specific genes (A6, AMS, ENL2, MS1,
MYB39, ORTH2 and TSM1), 3 pollen cell wall forma-
tion genes (PME5, ZAT5, RGP1), 4 transcription
factor genes (WRKY9, NAC91, MY104, BH089), 4
flowering genes (FLC, AGL18, AGL104–1 and
AGL104–2) and one gene with unknown function
(CL11374.Contig2). All of the 28 DEGs exhibited the
same tendency between the RNA-Seq analysis and
qRT-PCR results, which suggested that our transcrip-
tome analysis was accurate and reliable.
To further determine the expression pattern of key

genes in the anther and pollen development, 2 transcrip-
tion factors and 6 tapetum and pollen cell wall develop-
ment genes were selected from the above for qRT-PCR
assay (Fig. 6). Among these genes, the pollen cell wall
formation gene PME5 (Unigene37636) was highly and
specifically expressed in the fertile buds at the tetrad
stage. The five tapetum development genes and one
transcription factor (BH089) were highly expressed at
the meiosis or tetrad stage in the fertile buds, and all of
them shoed low abundance in sterile buds. The other
transcription factor, BH077, was highly expressed at

meiosis in sterile buds. These results further confirmed
the reliability of the RNA-Seq data.
In addition, 8 flowering genes were also examined in

this study (Fig. 6). Among these genes, CO, AP3 and FT
were highly expressed at the tetrad stage, and VIN3 was
highly expressed in the meiosis period in sterile buds.
FLC, AGL18, AGL104–1 and AGL104-2 were highly
expressed at the meiosis or tetrad stage in fertile buds.
The abnormal expression of these genes might influ-
ence the development of male gametophytes and
stamens, leading to male sterility (Fig. 7).

Discussion
In higher plants, male sterility is a common phenotypic
trait in which the abortion of stamens occurs and plants
fail to produce functional anthers, pollen or male gam-
etes under typical natural conditions [20, 24]. As the
male reproductive organ, stamens play an important role
in plant inheritance [5]. In this present study, morpho-
logical comparisons were performed between fertile and
sterile lines of Wucai (Fig. 1a-h), and there was no dif-
ference between them except the stamens, which had
shorter filaments and aborted anthers in the sterile
flowers (Fig. 1g-h). A cytological examination was fur-
ther carried out to evaluate the differences in pollen
development between the fertile and sterile lines, and we
observed that anther abortion occurred consistently in
the sterile line, in which the tapetum developed abnor-
mally and the microspore began to degrade after the
meiotic stage (Fig. 1i-l). These results were consistent

Fig. 3 Twenty most significantly enriched KEGG pathways
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with those of Liu et al. [7] and Zhou et al. [5] and sug-
gested that the abnormal development of the tapetal
cells and microspores led to pollen and anther abortion.
To better identify the genes associated with pollen abor-

tion in this CMS line of Wucai, a comprehensive analysis
of transcript profiles between fertile buds and sterile buds
was performed using RNA sequencing technology, which
could detect low abundance transcripts and provide new
insights into male sterility through global investigation of
gene expression changes [5, 25]. A total of 105,543,483
clean reads and 117,332 contigs were obtained based on
the RNA-Seq data, and 980 upregulated (1.21%) and 3450
downregulated (4.27%) DEGs out of 80,851 unigenes were
identified based on their gene expression levels (Fig. 2;
Table 1; Additional file 4: Table S3). These results indi-
cated that changes in the expression of a large number of
related genes could cause male sterility in Wucai, though
the development of anther and pollen is a complicated
process and involves numerous genes.
In the KEGG enrichment results, 4430 DEGs were

classified into 119 metabolic pathways (Fig. 3, Additional
file 7: Table S5), and these pathways might encompass
all the biological pathways in anther development [26].
Among these pathways, starch and sucrose metabolism
provides energy and carbon for anther development, and
starch and sucrose are accumulated as energy reserves
for pollen maturation [4, 27]. In our research, out of 124
DEGs involved in this pathway, 38 DEGs were expressed
in only fertile buds and 2 DEGs (Unigene23056 and

Unigene11909) were expressed in only sterile buds
(Additional file 8: Table S6). The specific expression of
these genes might lead to disturbances in the metabol-
ism of starch and sucrose and the processing of energy
reserves, which could suppress pollen development and
ultimately lead to male sterility [7, 28]. This finding was
consistent with those of previous works [4, 19, 29, 30].
In addition to the metabolic pathways, many key genes

have been identified for pollen and anther development
in Arabidopsis [31] and Brassica [9, 20, 32]. It is import-
ant to note that we identified 35 anther and pollen
development related genes (53 unigenes) that have
homologs in Arabidopsis and Brassica, and most of
them were downregulated and associated with the devel-
opment of the tapetum and pollen cell wall (Table 2).
Among these 53 unigenes, 9 DEGs (6 genes: ACA2,
AGD10, AGL18, PME5, TMK1 and ZAT5) were expressed
in only fertile buds (log2 Ratio(S/F) > 17), which might
offer new insights into the mechanisms of CMS regulation
in Wucai. ACA2 encodes a Calcium-transporting ATPase 2
(plasma membrane-type), which regulates the Ca2+-medi-
ated signaling pathway during pollen development [33, 34].
The nonexpression of this gene in sterile buds might
disrupt the Ca

2+

balance in the pollen mother cell. However,
interestingly, AGD10 might be involved in root develop-
ment as an ARF-GAP protein [35–37], and AGL18, encod-
ing a MADS-box protein, has been reported as a
flowering-inhibiting factor [38]. The functions of these
genes in pollen development have not yet been reported

WRKYNACMYB

A DC
log2  R

ation (S/F
)

log2  R
ation (S/F

)

log2  R
ation (S/F

)

log2  R
ation (S/F

)

bHLH

B

Fig. 4 Heat map analysis of bHLH (a), MYB (b), NAC (c) and WRKY (d) transcription factors. The expression levels shown are based on RPKM data.
The color key represents the value of log2(S/F). Red represents high expression, and blue represents low expression. Each row represents a DEG
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and need further investigation. The other three genes
(PME5, ZAT5, TMK1) and ACOX1, CCR2, GUN2, PGIP2,
RBG7, RGP1, TCMO, VAL2 were involved in pollen cell
wall formation, modification and organization (Table 2), in
which critical chemical changes could lead to pollen
abortion [5].
It has been reported that some constituents of the

pollen wall are secreted from tapetal cells [39, 40].
Abnormal (early or delayed) tapetal cell degeneration can
result in male sterility [5]. In conjunction with our cyto-
logical observations of Wucai buds (Fig. 1i-p), several

genes related to tapetum development were revealed
(Table 2). As a basic helix-loop-helix (bHLH) protein,
AMS is required for tapetal cell biosynthesis, postmeiotic
microspore and pollen wall formation, and tapetum pro-
grammed cell death (PCD) by directly regulating target
genes involved in these biological pathways [41–43]. MS1
encodes a transcription factor of the PHD finger family
and is specifically expressed in microsporocytes [44]. A6, a
tapetum-specific protein secreted by the tapetal cells, dis-
plays similarity to β-1,3-glucanases, which degrade callose
during pollen development [45]. TSM1 encodes a

Fig. 5 qRT-PCR verification of differentially expressed unigenes. S means sterile sample, and F means fertile sample. Relative expression levels
were calculated using Actin as an internal control
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cation-dependent CCoAOMT-like protein involved in
phenylpropanoid polyamine conjugate biosynthesis and
has a function in stamen/pollen development [46, 47].
Downregulated expression of these genes could result in
degeneration of the tapetum, eventually leading to
abortion.
The regulation of transcription is a fundamental

process in all living organisms [48]. Transcription factors
can regulate multiple related downstream genes, which
are essential components of the cellular machinery and
play key roles in plant growth and development [49]. In
the present study, 131 transcription factors (182 DEGs)
were found (Additional file 9: Table S7). Among these
transcription factors, the top four largest families
were bHLH (16), MYB (13), NAC (10), and WRKY (8)
(Table 3). The bHLH proteins, which bind as dimers
to specific DNA target sites, are a superfamily of
transcription factors, and several of them are critical
for tapetal PCD and pollen development [41]. MYB
transcription factors are also known to be required

for anther and aleurone layer development, callose
dissolution, and exine formation [19, 50, 51]. NAC
and WRKY transcription factors consist of a large
gene family involved in a wide range of biological
processes [48, 50], and some of them participate in
pollen development (WRKY2, WRKY27; GPC, NST1) [48,
52–54]. Research over the past several years has demon-
strated that changes in the expression of these transcrip-
tion factors often cause male sterility [5, 19].
In addition, FLOWERING LOCUS C (FLC), which

encodes a MADS-box transcription factor and functions
as a repressor of flowering [55], was noted in our com-
parative analysis (CL3897.Contig1; Additional file 9:
Table S7). It has been reported that overexpression of
this gene from B. campestris could affect fertility by the
GA pathway in Arabidopsis [56]. However, in our study,
we found that the FLC gene was downregulated in sterile
buds, and several identified genes involved in stamens
(AP3) [57] and the male gametophyte (AGL18 and
AGL104) [58, 59] (Fig. 6; Additional file 10: Table S8)

Fig. 6 Expression of anther and pollen development related genes at different stages using qRT-PCR. S means sterile sample, and F means fertile
sample. 1–3 indicate the pollen meiosis stage (bud sizes 0.5–1.5 mm), tetrad stage (1.5–3.0 mm) and uninucleate microspore stage (3.0–4.5 mm)
of anther and pollen development, respectively. Relative expression levels were calculated using Actin as an internal control
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were downstream targets of FLC (Fig. 7). Among these
genes, AGL18 and AGL104 showed low expression in
fertile buds (Fig. 6; Additional file 10: Table S8). We
speculated that the downregulation of FLC, which is
associated with male infertility, might influence the
expression of key genes in anther and pollen develop-
ment, along with other fertility related genes (Fig. 7).
This hypothesis must be further verified.
Taken together, the present investigation of the tran-

scriptome could increase our knowledge and under-
standing of the molecular mechanisms of male sterile in
Wucai and provide numerous candidate genes that can
be verified through transgenic technology in future.

Conclusions
In this study, a comparative transcriptome analysis of
sterile and fertile buds from Wucai was performed
through an Illumina sequencing approach, and the dif-
ferent biological processes and genes that regulated
anther and pollen development were analyzed using
comparative analysis. As a result, a total of 4430 DEGs,
174 novel genes, 35 anther and pollen development
related genes, and 47 transcription factors (the top four
largest families) were revealed. The RNA-Seq analysis
was further confirmed through qRT-PCR. Based on the
functional annotation and expression patterns, it was
concluded that the occurrence of male sterility is
probably related to the functional and metabolic

abnormalities of these candidate DEGs in Wucai. These
transcriptome data will be important to serve as a refer-
ence and provide insights for future elucidation of male
sterility in Wucai.

Materials and Methods
Plant materials
Buds from near-isogenic lines of Wucai, CMS line
12-14A and its maintainer line 12-14B (Fig. 1a and b),
were used as the plant materials in this study. Back-
crossed continuously for over ten generations, the male
sterile line 12-14A of Wucai was generated from a CMS
line of nonheading Chinese cabbage. The sterile line
12-14A and its maintainer line, 12-14B, were planted in
the vegetable breeding fields of Anhui Agricultural
University (Hefei, Anhui Province, China; longitude 117°
14′E, latitude 31°52’N) from October until April of the
following year.

Morphological and cytological observations
At the full-bloom stage, the flower structures of the
CMS and fertile lines were observed using a Canon
EOS550D digital camera (Canon, Japan), and the images
from petals and stamens were captured with an
Olympus SZX10 stereomicroscope (Olympus, Japan).
The sections of flower buds from the CMS and fertile
plants were obtained following the method described by
Peng et al. [60]. The semithin sections were observed

Fig. 7 The mechanism of FLC affects fertility in Wucai. Black arrows indicate promotion, and inverted T bars indicate repression. Dashed lines
indicate that further research is needed. Question marks indicate unknown genes. Red arrows indicate up- or downregulation. AGL18
(Unigene20308), AGAMOUS LIKE 18; AGL104 (CL3910.Contig1, CL3910.Contig2), AGAMOUS LIKE 104; AP3 (CL13421.Contig5), APETALA 3; CO
(Unigene36778) CONSTANS; FLC (CL3897.Contig1), Flowering Locus C; FT (CL2127.Contig2), Flowering Locus T; VIN3 (CL8770.Contig1), VERNALIZATION
3; TFs, transcription factors
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and photographed using an Olympus BX61 light micro-
scope (Olympus, Japan) equipped with a Mshot MD30
camera (Olympus, Japan).

RNA extraction and Illumina sequencing
In this experiment, the buds of the sterile or fertile lines
were collected from three different plants, respectively.
According to the methods of Huang et al. [25], total
RNA was isolated from the mixed bud samples using the
TRIzol Reagent Kit (Invitrogen, USA) and purified using
the Dynabeads® mRNA Purification Kit (Ambion, USA).
The isolated RNA samples were sent to 1GENE Tech-
nology Co., Ltd. (Hangzhou, China; http://www.1gene.-
com.cn/) for Illumina sequencing (Illumina MiSeq
platform) and unigene annotation. The raw transcrip-
tome data of six samples from three biological replicates
of sterile or fertile lines were deposited in the NCBI
Short Read Archive (SRA, accession number:
SRP145484).

De novo assembly and functional annotation analysis
The paired-end clean reads of each sample were de novo
assembled into contigs using Trinity (http://trinityrna-
seq.sourseforge.net), and the nonredundant unigenes
were further obtained with the TGI Clustering tools
[61]. Among these unigenes, there were several unigenes
with a high degree of similarity (more than 70%) in the
same cluster (starting with CL, followed by the gene
family’s number); the rest were singletons (starting with
Unigene), which had low similarity (less than 70%) or no
similarity and could not be clustered with each other.
Then, functional annotation of the unigenes was per-
formed using BLASTX alignment (E-value<1e-5) in the
nonredundant (nr), Swiss-Prot, and COG databases.
With the nr annotations, the Gene Ontology (GO) anno-
tations of the unigenes were obtained through the Blas-
t2GO program [62], and GO functional classification
was carried out with the WEGO software [63]. The
KEGG pathway annotation was performed using a
BLAST search against the KEGG database (KEGG,
http://www.genome.jp/kegg/).

Differentially expressed gene (DEG) identification
Reads per kilobase per million reads (RPKM) was
adopted to compare the differences in unigene expres-
sion between the sterile and fertile lines. The DEGs were
identified by a false discovery rate (FDR) ≤0.001 and an
absolute value of log2 ratio ≥ 1 (ratio = the fold change of
differential expression) [13]. The DEGs were used for
GO and KEGG enrichment analyses according to the
method described by An et al. [14] and Liu et al. [13].

Quantitative real-time PCR verification
RNA was isolated from different samples as described
above. The DNase-treated RNA (1 mg) was reverse tran-
scribed to cDNA using the PrimeScript™ RT Reagent Kit
(TaKaRa, Japan). Quantitative real-time PCR was then
performed with the SYBR® Premix Ex Taq™ II Kit
(TaKaRa, Japan). The specific primers designed based on
the selected DEG sequences are listed in Additional file
11: Table S9. PCR amplification was performed in the
Bio-Rad CFX96 instrument according to the manufac-
turer’s instructions. Data normalization was carried out
using the expression levels of Actin as the internal con-
trol. Three biological repeats for each sample and three
technical replicates for each gene were performed, and
the relative expression level was calculated as 2-ΔΔCt.
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