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Abstract
Background: Mutations in genes whose products modify chromatin structure have been
recognized as a cause of X-linked mental retardation (XLMR). These genes encode proteins that
regulate DNA methylation (MeCP2), modify histones (RSK2 and JARID1C), and remodel
nucleosomes through ATP hydrolysis (ATRX). Thus, genes encoding other chromatin modifying
proteins should also be considered as disease candidate genes. In this work, we have characterized
the SNF2L gene, encoding an ATP-dependent chromatin remodeling protein of the ISWI family, and
sequenced the gene in patients from 12 XLMR families linked to Xq25-26.

Methods: We used an in silico and RT-PCR approach to fully characterize specific SNF2L isoforms.
Mutation screening was performed in 12 patients from individual families with syndromic or non-
syndromic XLMR. We sequenced each of the 25 exons encompassing the entire coding region,
complete 5' and 3' untranslated regions, and consensus splice-sites.

Results: The SNF2L gene spans 77 kb and is encoded by 25 exons that undergo alternate splicing
to generate several distinct transcripts. Specific isoforms are generated through the alternate use
of exons 1 and 13, and by the use of alternate donor splice sites within exon 24. Alternate splicing
within exon 24 removes a NLS sequence and alters the subcellular distribution of the SNF2L
protein. We identified 3 single nucleotide polymorphisms but no mutations in our 12 patients.

Conclusion: Our results demonstrate that there are numerous splice variants of SNF2L that are
expressed in multiple cell types and which alter subcellular localization and function. SNF2L
mutations are not a cause of XLMR in our cohort of patients, although we cannot exclude the
possibility that regulatory mutations might exist. Nonetheless, SNF2L remains a candidate for
XLMR localized to Xq25-26, including the Shashi XLMR syndrome.
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Background
The isolation of genes underlying X-linked mental retar-
dation (XLMR) disorders has been hampered, in part, by
the broad phenotypic variability observed in patients that
restricts linkage analysis to large single families or
instances where a specific trait facilitates phenotypic split-
ting. More recently, the use of large scale genomic meth-
ods including comparative genome hybridization (CGH)
arrays and patient sequencing projects has increased the
identification rate of XLMR disease genes. Surprisingly,
each gene identified accounts for a small proportion of
cases and there remain many conditions for which a gene
has not been identified. Nonetheless, several trends have
emerged. These include the identification of XLMR genes
encoding proteins that modulate chromatin structure [1].
The cloning of the ATRX gene as the cause of the α-tha-
lassemia mental retardation (ATR-X) syndrome estab-
lished the paradigm for chromatin remodeling proteins in
neurodevelopmental disorders [2]. This gene, encoding a
SWI/SNF-like protein, is also mutated in other severe
XLMR syndromes lacking α-thalassemia and in patients
with mild-to-moderate XLMR [3]. Subsequently, the RSK2
gene encoding a histone kinase was identified as the caus-
ative gene for Coffin-Lowry syndrome and non-specific
XLMR [4,5], and the methyl-CpG-binding protein 2
(MeCP2) gene was identified as the causative gene for Rett
syndrome [6] and other non-specific male MR [7-9]. More
recently, the PHF6 (Borjeson-Forssman-Lehmann syn-
drome;[10]), ZNF41 [11], ZNF81 [12], and JARID1C [13]
genes have also been implicated in XLMR and have roles
in transcriptional regulation and/or chromatin remode-
ling. Taken together, these studies suggest that additional
chromatin interacting proteins whose genes reside on the
X chromosome should be considered as disease candi-
dates for both syndromal and non-specific XLMR disor-
ders.

The Drosophila ISWI gene was identified as a distinct
SWI/SNF subclass named the Imitation SWI (ISWI) family
[14]. Two human orthologs of Drosophila ISWI (dISWI)
have been described, SNF2H (SMARCA5) which maps to
4q31.1 and SNF2L (SMARCA1) which maps to Xq25-26
[15,16]. Moreover, analysis of the murine Snf2h and Snf2l
genes demonstrated that Snf2h was expressed in prolifer-
ating neuroblast layers whereas Snf2l expression was
enhanced in differentiating neuronal populations [17].
Indeed, purification of the SNF2L-containing human
NURF complex demonstrated that it regulated expression
of the engrailed genes, which are important in mid/hind-
brain development [18]. In addition, the latter study also
demonstrated that SNF2L could promote neuronal differ-
entiation when expressed ectopically in neuroblasts [18].
SNF2L was also found to be a component of a second
chromatin remodeling complex, called CERF that con-
tains the CECR2 protein, a transcription factor involved in

neurulation and a cause of exencephaly in mice when
mutated [19]. These studies suggest that SNF2L is an excel-
lent candidate gene for the cause of XLMR. In this study,
we have characterized multiple splice forms and exam-
ined 12 families with XLMR for mutations in SNF2L.

Methods
Reverse Transcription-PCR
For cell lines, total RNA was prepared from cell lines by
acid phenol extraction of cell lysates [20]. Poly A+ RNA for
reverse transcription was purified from total RNA using
the PolyATtract mRNA Isolation System (Promega,
Nepean, Ontario). Total RNA from human tissues and
specific brain regions were obtained commercially
(Applied Biosystems Canada, Streetsville, Ontario). Total
RNA (2 ug) or Poly A+ RNA (100 ng) was reverse tran-
scribed using Superscript RT (Invitrogen) and a combina-
tion of oligo dT and random hexamers. PCR reactions for
analysis of SNF2L splice variants were at 94°C for 30 sec-
onds, 53°C for 30 seconds and 72°C for 2 minutes for 35
cycles, followed by a final extension of 15 minutes at
72°C. For the 5' splice variants, the following primers
were used: 5'UTR SNF2L1 Fwd, 5' CAAACTTGCT-
GCTAAAGCGCC 3'; 5'UTR SNF2L2 Fwd, 5' GGAATTCAT-
GGAGCAGGACACTGC 3'; SNF2L5'splice variants Rev,
5'CACCAAGACAATTTTTAGTG 3'. For the NLS splice var-
iants: SNF2L NLS Fwd, 5' GGAGGTCATGGAGTATTC 3'
and SNF2L NLS Rev, 5'CAGTAGCTGACTCTGCTTT-
TCTTTTCTGTG 3'.

Patient Material
DNA samples from 12 individuals affected with XLMR
and previously mapped to a region encompassing the
SNF2L gene were used for direct sequencing analysis.
Samples from families F85-19 [21], F93-04, and F91-02
were provided by Drs. Ben Hamel and Hans van
Bokhoven (University Hospital Nijmegen, Nijmegen,
Netherlands). Samples K8045 [22], K8135 [23], K8320,
K8395, K8725, K8895 [24], and K8923 were generously
provided by Dr. Charles Schwartz (JC Self Research Insti-
tute, Greenwood Genetic Center, Greenwood South Caro-
lina). The non-syndromic XLMR sample 24981 was
provided by Dr. Judith Allanson (Children's Hospital of
Eastern Ontario, Ottawa Ontario). The Pettigrew syn-
drome DNA sample was prepared from a commercially
available EBV transformed lymphoblast cell line
(GM12523; Coriell Cell Repository, Camden, NJ).

Plasmid constructs
The SNF2L NLS splice variants were cloned into the
pcDNA3 expression plasmid (Invitrogen Canada Inc. Bur-
lington, ON), each with an amino terminal tag encoding
the FLAG epitope. Annealed primers encoding the FLAG
epitope were inserted in the KpnI and EcoRI sites of the
pcDNA3 plasmid. The 5' region encoding the amino ter-
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minus of the SNF2L2 splice variant (SNF2LB) was engi-
neered with an EcoRI restriction site for cloning in frame
with the FLAG epitope. The primers used were: FLAG-
sense EcoRI, 5'-CCCACCATGGATTACAAGGATGACGAC-
GATAAGG-3' and FLAG-antisense EcoRI, 5'-
AATTCCTTATCGTCGTCATCCTTGTAATCCATGGT-
GGGGTAC-3'. The remainder of each cDNA (+ NLS or -
NLS) was inserted in two additional cloning steps to con-
struct plasmids encoding full length SNF2L proteins with
and without a nuclear localization signal.

Cell transfections and immunofluorescence
293HEK cells were cultured in EMEM (Eagle's Minimal
Essential Medium, Wisent, St Bruno, Quebec) supple-
mented with 10% fetal bovine serum (FBS) in a humidi-
fied 95% air with 5% CO2 incubator at 37°C. One day
prior to transfection, cells were plated on glass coverslips
coated with poly D-lysine (100 µg/ml, Sigma, Oakville,
Ontario) in 6 well tissue culture plates at a density of
approximately 3 × 105 cells/well. Cells were transfected
with 5 µg DNA [pcDNA3 control, pcDNA3 FLAG-
SNF2L∆NLS, or pcDNA3 FLAG SNF2L] and the Lipo-
fectamine 2000 reagent (Life Technologies, Burlington,
Ontario) according to the manufacturer's protocol. After
48 hours, cells were fixed in cold ethanol/methanol (3:1)
prior to blocking with 10% FBS diluted in PBS. Coverslips
were incubated with diluted primary antibody (murine
anti-FLAG monoclonal clone M2, 2 µg/ml, Sigma,
Oakville, Ontario) for 1 hour at room temperature,
washed and then incubated for 1 hour at room tempera-
ture with FITC-conjugated donkey-anti-murine IgG sec-
ondary antibody (Sigma) diluted 1:100 in PBS. Cell nuclei
were counterstained with 1 µg/ml DAPI (Sigma) and
images were captured using a Zeiss Axioplan 2 microcope
outfitted with an AxioCam camera and AxioVision soft-
ware.

SNF2L Mutation Analysis
Genomic DNA from individuals affected with XLMR in
each of the 12 families analyzed was used to amplify each
exon of the SNF2L gene with forward and reverse primers
that annealed to flanking intron sequences, approxi-
mately 100 bp from each exon/intron boundary (primer
sequences available upon request). Genomic DNA from
an individual unaffected by XLMR was the control for all
PCR reactions. For each reaction, 100–200 ng DNA was
combined with 1 µM each of forward and reverse PCR
primers, 200 µM dNTPs, 2.5 mM MgCl2, 20 mM Tris-HCl
pH 8.4, 50 mM KCl, and 1 unit Taq DNA polymerase in a
volume of 100 µl. PCR reactions were incubated at 95°C
for 40 seconds, 57°C for 40 seconds and 72°C for 3 min-
utes for 30 cycles, followed by a final extension of 15 min-
utes at 72°C. DNA obtained from PCR reactions was
purified using the Qiaquick PCR Purification kit (Qiagen,
Mississauga, Onatario) and sequenced using Perkin Elmer

dye terminator and ABI automated sequencing. Sequences
were aligned and compared to sequences obtained from
the control DNA and sequence available in public data-
bases to identify mutations.

Results and Discussion
Spatial and temporal expression studies of the Snf2l gene
in mice and the purification of two human SNF2L-con-
taining complexes have both suggested that the SNF2L
protein may have an important role in neurodevelopment
and that the SNF2L gene is a strong XLMR candidate gene
[17-19]. In silico analysis demonstrated that the SNF2L
gene (NM_003069) is highly conserved between mouse
and human with a common intron/exon pattern contain-
ing 25 exons spanning ~77 kb along the X chromosome
within Xq25 (Figure 1A and data not shown). However,
the human cDNA and predicted protein sequences
showed several significant discrepancies to the mouse
Snf2l sequence (NM_053123) that required characteriza-
tion, prior to mutation studies [16,17]. Indeed, we previ-
ously reported the presence of a human SNF2L variant
(SNF2L+13) containing a non-conserved in-frame exon
within the SNF2 catalytic domain that abolishes chroma-
tin remodeling activity [25]. In addition, Okabe et al.
reported two human cDNA clones with disparate 5' ends
[16]. We will refer to these two clones as SNF2LA and
SNF2LB, respectively. SNF2LB aligns with the start of the
murine cDNA sequence and corresponds to a transcript
that would initiate within exon 1 of the human genomic
sequence (Figure 1B). The shorter SNF2LA isoform results
from transcription that initiates within exon 2. The corre-
sponding proteins differ in size at the NH2-terminus by 78
amino acids with SNF2LB corresponding to the published
murine sequence (Figure 1B). The SNF2LA isoform was
not present in mice suggesting that it may be unique to
humans. Using RT-PCR, we detected the corresponding
transcripts for both 5' variants in human fetal brain and
multiple human neuronal cell lines (Figure 1C).

In addition to the variation at the amino-terminus, the
human and mouse amino acid sequences also differed at
their carboxyl-terminus following Blast tool analysis. The
last seven amino acids of the human sequence were not
present in the mouse SNF2L protein sequence, but instead
were replaced by 23 unique residues (Figure 2A). RT-PCR
analysis demonstrated that both 3'-end variants could be
detected in a variety of human cell lines, tissues and spe-
cific brain regions with the NLS-containing isoform repre-
senting the predominant species (Figure 2B). Sequencing
demonstrated that the two transcripts are generated by
alternative splicing of exons 24 and 25. Inclusion of exons
24 and 25 result in a shorter peptide due to a stop codon
located at the start of exon 25. We called this variant
SNF2L∆NLS. Alternative use of splice sites within exons
24 and 25 removes 100 bp and generates a transcript that
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Genomic organization and 5' transcript variants of the human SNF2L geneFigure 1
Genomic organization and 5' transcript variants of the human SNF2L gene. A. Schematic diagram showing the 25 
exons (dark boxes; exon 13 is an open box) of the human SNF2L gene (top). Below is a schematic diagram of the SNF2L tran-
script showing the ORF (open box) and the location of the motifs that comprise the SNF2 domain (blue boxes) and the SANT 
domains (red boxes). B. The 5' variants SNF2LA and SNF2LB provide alternative initiation codons and encode two forms of 
SNF2L with different amino-termini. They are shown aligned to the mouse Snf2l sequence. The SNF2LB transcript encodes a 
protein with an amino-terminus similar in length and amino acid composition to the murine Snf2l protein. C. RT-PCR analysis 
showing that both transcript variants are present in human cell lines and fetal brain tissue examined. The helicase I/Ia domain 
served as control amplification. Lane 1, 293 cells; lane 2, SH-SY5Y cells; lane 3, NT2 cells; lane 4, hNT neurons; and lane 5, 
human fetal brain. M, molecular weight marker.
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hSNF2LB 51 EKGEKKKEKNVSSFQLKLAAKAPKSEKEMDPEYEEKMK-----ADRAKRF   95

mSNF2L     51 EKAEKKEKITFSISTQTCLLKLSKSEKEMDPEYEEKMVNMPLKAARAKRF 100

C

77 Kb

25 exons

SNF2 domain SANT domains

9.4 kb 17 kb

M    1      2   3     4     5

SNF2LA+B

SNF2LB

Helicase I/IA

1kb
800bp

1kb

2kb

200bp

100bp



BMC Medical Genetics 2008, 9:11 http://www.biomedcentral.com/1471-2350/9/11
contains an additional 23 amino acids similar to the
reported mouse protein (and herein called SNF2L). More
importantly, we used the PredictNLS program [26] to
determine that this alternatively spliced region contained
a putative NLS sequence. To verify the importance of the
NLS in vivo, we transiently transfected 293 HEK cells with
FLAG-epitope tagged SNF2L or SNF2L∆NLS and detected
the expressed protein by indirect immunofluorescence. As

shown in Figure 2C, SNF2L∆NLS localized exclusively in
the cytoplasm whereas SNF2L was present in the nucleus.

The SNF2L gene undergoes alternative splicing at multiple
sites to generate a wide number of different isoforms.
Some of these isoforms will affect the activity of the pro-
tein. For example, the inclusion of exon 13 abolishes the
chromatin remodeling activity [25], and the altered splic-

Alternative splicing of exons 24 and 25 generates nuclear and cytoplasmic isoforms of SNF2LFigure 2
Alternative splicing of exons 24 and 25 generates nuclear and cytoplasmic isoforms of SNF2L. Alternative splicing 
of the SNF2L gene at the 3' end generates a transcript containing either the full sequence of exons 24 and 25, which encodes a 
shorter form of SNF2L without a nuclear localization signal (SNF2L∆NLS), or a transcript lacking 100 bp that encodes for a 
larger protein isoform (SNF2L) with an NLS (underlined). B. RT-PCR analysis demonstrated that both 3' variants are present in 
most cells and tissues examined, while the NLS isoform is predominant. M, marker; -D, no DNA template; -RT, no reverse 
transcriptase. Lanes 1–5, human cell lines and fetal brain sample as follows: 1, 293-HEK cells; 2, SH-SY5Y cells; 3, NT2 cells; 4, 
hNT neurons; 5, human fetal brain. Lanes 6–13, human brain regions including: 6, amygdala; 7, basal ganglia; 8, caudate nucleus; 
9, cerebellum; 10, frontal cortex; 11, hippocampus; 12, pons; 13, thalamus. Lanes 14–20, human tissue samples including: 14, 
heart; 15, kidney; 16, liver; 17, ovary; 18, placenta; 19, skeletal muscle; and 20, testes. C. Indirect immunofluorescence imaging 
of 293 HEK cells transfected with FLAG-epitope tagged SNF2L∆NLS and SNF2L were stained with anti-flag antibody (green) or 
DAPI (blue). Note that SNF2L∆NLS encodes a protein that is localized exclusively in the cytoplasm while SNF2L is expressed 
only in the nucleus (arrows point to nuclei of transfected cells).
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ing within exons 24/25 removes the NLS resulting in cyto-
plasmic localization. In the latter case, the SNF2L∆NLS
variant was detected in most tissues examined, suggesting
that the cytoplasmic isoform of SNF2L may fulfill an alter-
native role to the chromatin remodeling function of the
nuclear isoforms. Alternatively, it could represent a SNF2L
dominant negative protein that sequesters other compo-
nents of the chromatin remodeling complex in the cyto-
plasm. As such, it will be important to further explore the
function of these novel SNF2L isoforms to determine their
specific roles, similar to work done with the SNF2L+13
variant. Indeed, with splicing occurring at the 5'-end of
the gene (isoforms SNF2LA and B), the 3'-end of the gene
(NLS or ∆NLS) and encompassing exon 13 (+exon 13 or -
exon 13) there are 8 possible isoforms of the SNF2L pro-
tein that can impinge on the function/activity of the pro-
tein.

We have demonstrated that expression of the murine
Snf2l gene increases during development in a manner that
is coincident with neuronal maturation and synapse for-
mation [17]. This expression profile is most prevalent in
the hippocampus, dentate gyrus and the cerebellum and
expression within these structures is maintained in the
adult mouse [17]. Given that the hippocampus and den-
tate gyrus have been implicated in learning and memory,
and that mutations in genes involved in chromatin
remodeling or modification cause mental retardation, it
prompted us to examine the human SNF2L gene as a can-
didate XLMR gene. DNA samples from 12 individuals
affected with XLMR and previously mapped to a region
encompassing the SNF2L gene were used for direct
sequencing analysis. We sequenced each of the 25 exons
and flanking intron sequences of the SNF2L gene and
identified 3 different single nucleotide polymorphisms
(SNPs), all located in untranslated sequences (Table 1).
Screening of 100 unaffected individuals demonstrated
that the SNP in the 5' UTR of exon 1 and the polymor-
phism in intron 13 (rs2274093) had frequencies of 13%
and 15% respectively, in our control population. Con-
versely, the SNP in intron 18 was not found in our control
DNA samples, but screening of the SNP database identi-
fied it as a polymorphism with a heterozygosity frequency
of 0.093 (rs3736692). Overall, the SNP database contains
195 entries for the SNF2L gene including 5 in the coding
region (exons 1, 10, 16, 17, and 20). The SNP within exon

20 is reported to have a heterozygosity value of 0.026 and
would result in an Ala to Gly substitution. While we did
not find this change in any of our families, future analysis
of this gene should be wary of this polymorphism.

Despite the absence of mutations in these families, SNF2L
remains a logical candidate for XLMR localized to Xq25-
26 because of (a) its similarity to ATRX, a SNF2-domain
containing protein mutated in several XLMR disorders;
(b) its high expression in the brain including areas impor-
tant for learning and development; and (c) its ability to
induce neuroblastoma cells to undergo differentiation
when ectopically expressed [17,18]. In addition, SNF2L
has been shown to regulate the engrailed genes, En-1 and
En-2, both of which are important for mid/hind-brain
development [27,28], the latter of which has been associ-
ated with autism in genetic linkage studies [29-31]. Given
these criteria and the small sample size available for muta-
tion analysis, other syndromes should be considered for
screening, including the Shashi XLMR syndrome [32,33]
and a family with syndromal XLMR and late-onset testic-
ular failure (Cillier syndrome) [34] that both map to
Xq26. In addition, there are 3 other syndromes (Wilson/
MRXS12, Gustavson, and CMTX4/Cowchock-Fishbeck)
and 8 MRX families (MRX 27, 35, 42, 62, 70, 71, 75, and
82) that map to this region that should also be considered
in future screening endeavors [35]. The generation of a
transgenic mouse ablated for the Snf2l gene should pro-
vide valuable phenotypic insight for its potential involve-
ment in specific XLMR disorders. Together, the analysis of
additional samples and the characterization of transgenic
mice should define whether the SNF2L gene is a cause of
mental retardation.

Conclusion
We have shown that there are multiple SNF2L isoforms
that result from alternative splicing of the gene. How these
different isoforms are spatially and temporally regulated
and defining their specific role during neural develop-
ment remains to be established. In our collection of 12
patients with XLMR linked to Xq25-26, we did not iden-
tify any mutations within the coding region. However, we
cannot exclude intronic mutations (outside of the consen-
sus splice sites) that would affect alternative splicing and
hence the expression levels of the different isoforms. Sim-
ilarly, we cannot exclude mutations in regulatory regions

Table 1: Mutation analysis of 12 families linked to Xq25 revealed 3 SNPs

Location of SNP SNP Family % of control sample 
with SNP (n = 100)

SNP Heterozygosity 
(SNP Database No.)

Exon 1 – 5'UTR 29 bp 5' of AUG CTTGTCCC CTTATCCC F93-04 13% ND
Intron 13 48 bp 5' of exon14 CAACAGTA CAATAGTA K8895 15% 0.359 (rs2274093)
Intron 18 74 bp 3' of exon18 CAGATTTAC CAGATTTTC 24981 0% 0.093 (rs3736692)
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in the 12 families screened for mutations in this gene.
Alternatively, our failure to identify mutations may arise
from (1) the small sample size which may have prevented
us from ascertaining a family with a mutation in this gene,
or (2) the possibility that mutations in SNF2L could cause
a more severe phenotype that may be lethal in males.
Indeed, SNF2L remains a candidate XLMR gene for Xq25-
26 linked XLMR families including the Shashi syndrome
as well as in sporadic mental retardation cases.
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