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Multiple sclerosis (MS) is a central nervous system (CNS) disorder, which is mediated by
an abnormal immune response coordinated by T and B cells resulting in areas of
inflammation, demyelination, and axonal loss. Disease-modifying treatments (DMTs) are
available to dampen the inflammatory aggression but are ineffective in many patients.
Autologous hematopoietic stem cell transplantation (HSCT) has been used as treatment in
patients with a highly active disease, achieving a long-term clinical remission in most. The
rationale of the intervention is to eradicate inflammatory autoreactive cells with lympho-
ablative regimens and restore immune tolerance. Immunological studies have
demonstrated that autologous HSCT induces a renewal of TCR repertoires, resurgence
of immune regulatory cells, and depletion of proinflammatory T cell subsets, suggesting a
“resetting” of immunological memory. Although our understanding of the clinical and
immunological effects of autologous HSCT has progressed, further work is required to
characterize the mechanisms that underlie treatment efficacy. Considering that memory B
cells are disease-promoting and stem-like T cells are multipotent progenitors involved in
self-regeneration of central and effector memory cells, investigating the reconstitution of B
cell compartment and stem and effector subsets of immunological memory following
org February 2022 | Volume 12 | Article 8139571
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autologous HSCT could elucidate those mechanisms. Since all subjects need to be
optimally protected from vaccine-preventable diseases (including COVID-19), there is a
need to ensure that vaccination in subjects undergoing HSCT is effective and safe.
Additionally, the study of vaccination in HSCT-treated subjects as a means of evaluating
immune responses could further distinguish broad immunosuppression from
immune resetting.
Keywords: hematopoietic stem cell (HSC) transplantation, disease-modifying therapies (DMT), immune
reconstitution, immunological memory, vaccination
INTRODUCTION

Multiple sclerosis (MS) is a chronic demyelinating disease of the
central nervous system (CNS) characterized by a dysregulation of
self-tolerance toward myelin and persistent activation of
autoreactive cells (1–3). Infiltration of peripheral self-reactive
cells in the CNS and bystander immune activation of microglia
and resident macrophages damages the myelin sheaths causing
demyelination, axonal transection, chronic inflammation, and
over time progressive neuronal damage. Infiltrating cells show a
memory and effector memory phenotype with pro-inflammatory
and cytotoxic features (4). Effective treatment strategies in MS
are mostly based on lympho-depletion or blockade of immune
cell recirculation, but the aim of disease remission is not met in
every patient; and long-term drug administration results in
exposure to risks including progressive mult i focal
leukoencephalopathy (PML), hypogammaglobulinemia, and
autoimmune thrombocytopenia as well as other secondary
autoimmune diseases (5). Autologous hematopoietic stem cell
transplantation (HSCT) has demonstrated long remission and
neurological improvement with acceptable safety for selected
patients with highly active, relapsing–remitting MS (RRMS), in
which it is currently considered a standard treatment according
to EBMT guidelines (6, 7). The rationale of HSCT is to remove
pathogenic cells with a myelo- or lymphoablative conditioning
regimen and allow immune reconstitution from myeloid or
lymphoid progenitor cells. Thymus-dependent T cell
regeneration and immune regulation mediated by T and
natural killer (NK) cells constitute the major identified
pathways influencing immune reconstitution after HSCT for
treatment of autoimmune diseases. The mechanism underlying
the long clinical remission post-HSCT remains unknown.
Immune memory persistence could be the cause of treatment
failure in MS especially in patients with high degree of
inflammation. Recent discoveries have pointed out that
memory stem cells (Tscm) with a hybrid phenotype of stem
cells and effector memory cells contribute to chronic
inflammation and tissue damage in autoimmune disorders. In
this article, we highlight current knowledge and provide a
perspective on studies with potential to advance our
understanding of the mechanisms of HSCT as therapy for
people with MS. We also discuss how protective immunity
following vaccination before and after autologous HSCT can
serve as a surrogate marker of immunological memory.
org 2
DISEASE-MODIFYING TREATMENTS
IN MS

Disease-modifying therapies (DMTs) for MS have significantly
expanded in the last 30 years, posing new challenges for
clinicians and patients. The majority of DMTs are used in
RRMS, and among second-line and immune-suppressive
therapies, we can distinguish between immune-sequestering
(natalizumab) and lympho-depleting treatments (rituximab/
ocrelizumab/ofatumumab, alemtuzumab, and cladribine).

Natalizumab (NAT) is a monoclonal antibody which binds
the VLA-4 integrin a4 chain (CD49d), thereby inhibiting
leukocyte migration into the CNS and gut parenchyma. NAT
efficacy for RRMS has been demonstrated by randomized clinical
trials (RCTs) (8, 9) and real-world data (10, 11). However, NAT
therapeutic success has been hampered by the risk of progressive
multifocal leukoencephalopathy (PML), a diffuse demyelinating
disease caused by polyomavirus reactivation referred to as John
Cunningham virus (JCV) (12). The risk of developing PML
ranges from 0.09 to 11.1 cases per 1,000 per year (12). While it
is reduced with NAT-extended interval dosing (13), concerns
persist in undertaking this treatment in JCV-positive patients.
Following treatment discontinuation (often due to PML risk),
disease reactivation/rebound is observed in up to 27.9% of
patients within 6 months and disability accumulation in 37%
of cases (14).

Rituximab (RTX), a chimeric mouse–human monoclonal
antibody, and ocrelizumab (OCR) and ofatumumab (OFA),
second-generation humanized monoclonal antibodies, are anti-
CD20-depleting therapies. Both induce the depletion of a broad
range of B cells, sparing plasmablasts and plasma cells, suggesting
an antibody-independent mechanism of action. Despite several
randomized clinical trials (RCTs) and real-world data
demonstrating RTX efficacy (15), only OCR and OFA have been
approved for RRMS based on the results of the OPERA I and II
studies (16, 17). Compared to IFNb-1a, OCR and OFA are
associated with a modestly higher risk of infections, mainly
respiratory infections, varicella-zoster, and herpes simplex.
Moreover, anti-CD20 monoclonal antibodies pose a high risk of
HBV-associated hepatitis, liver failure (18, 19), and an increased
risk of severity of SARS-CoV-2 infection (20). Despite B cell-
depleting therapies being administered as pulsed infusions every
1–6 months, the related B-cell immunosuppression must be
considered chronic, with consequences in terms of cumulative
February 2022 | Volume 12 | Article 813957
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adverse events. Therefore, long-term data are required to explore
any potential increased rate of malignancies, chronic
hypogammaglobulinemia, or infection.

Alemtuzumab (ALEM), a monoclonal antibody against the
CD52 surface antigen, induces rapid lymphocyte depletion. The
CARE-MS I and II trials demonstrated ALEM efficacy compared
with IFNb-1a in treatment-naïve RRMS patients and those who
had failed first-line therapies (21, 22). The extension studies, with
a 5-year follow-up (23, 24), have shown that 68.5% and 59.8% of
patients required only the two initial courses of ALEM to
maintain treatment efficacy, and >95% of patients received no
other DMTs. A high infection risk has been reported (67.3% in
CARE-MS I and 76.8% in CARE-MS II), as well as the
development of secondary autoimmune disorders which may
be related to the rapid B cell recovery in absence of T cell
immune regulation (25).

Cladribine (CdA), an oral DMT, is a purine analogue that,
when metabolized to its active form, is concentrated in
lymphocytes and monocytes while sparing other cells. The
phase III CLARITY study showed high efficacy in the treatment
of RRMS compared with placebo (26). In the extension study, no
additional benefit was observed with four consecutive annual
courses of treatments compared to two (26). Nevertheless, post-
marketing studies have downsized CdA effectiveness compared to
the highly efficacious therapies (27). Severe side effects including
risk of myelosuppression, opportunistic infections, nephrotoxicity,
and possible increased risk of malignancy were reported (5).
AUTOLOGOUS HSCT AS TREATMENT
FOR MS

Highlights on Outcomes After HSCT in
Progressive and Active Relapsing MS
The clinical experience of HSCT in MS started in 1995 and
involved European and North American centers (28). Initially,
patients considered suitable for the trials showed high disability,
advanced progressing disease, unresponsiveness to conventional
treatments, and, in some, disease activity in the year preceding
the enrolment, evaluated by clinical deterioration or/and
evidence of gadolinium (Gd)-enhanced disease lesions in
magnetic resonance imaging (MRI). Results from these studies
reported a remarkable reduction or complete abolition of disease
activity established by a decreased number of Gd-positive lesions
starting immediately after mobilization with cyclophosphamide
(Cy) and further declining in the months after conditioning
therapy (28–34). The effectiveness of HSCT in progressive MS
was estimated by measuring the evolution of disability measured
by the Expanded Disability Status Scale (EDSS) and showed a
failure of 40% and 52% at 3 and 6 years, respectively, with a
deterioration of neurological function (32, 35), while disease
progression-free survival at 15 years was 44% with active CNS
disease pre-transplant and 10% for those without (36). A
retrospective analysis of long-term (median follow-up of 6.6
years) HSCT outcomes in 281 patients (78% of them with
progressive MS) clearly showed that younger age, relapsing
Frontiers in Immunology | www.frontiersin.org 3
form of MS, fewer prior immunotherapies, and lower baseline
EDSS scores were factors associated with better outcomes.
Progressive MS (PMS) was associated with neurological
progression after transplant compared to relapsing forms of
disease (HR, 2.33; 95% CI, 1.27–4.28) (37). In a prospective
phase II clinical trial of HSCT for treatment refractory MS
including patients with RRMS (57%) and with secondary
progressive MS (SPMS) (43%), the event-free survival (EFS),
defined as freedom from MS relapses, was 60% (70% for RRMS),
without evidence of relapse, disability progression, or new MRI
lesions, after a median follow-up of 36 months (38). Conclusions
can be made that patients with RRMS respond more favorably to
HSCT than SPMS even when patients with SPMS have an
“active MRI.”

In some studies, HSCT was used to treat patients with a
diagnosis of “malignant” RRMS, characterized by short duration
of disease and recurrent and severe relapses (39–45) with a clear
suppression or stabilization of the disease course. Subsequent
studies increasingly or exclusively treated with HSCT patients
with relapsing–remitting MS (RRMS). One single-center study
reported that HSCT in subjects in the early course of RRMS,
which failed at least 6 months of interferon-b; induced a
significant EDSS improvement, at 6 and 12 months and 2 and 4
years, 100% of progression-free survival and 76% of relapse-free
survival (45). Those results indicated that HSCT in patients with
active disease removes inflammation and generates a long-term
remission, improving neurological condition, potentially stopping
or delaying neurodegenerative processes. In a phase 2 trial termed
autologous HSCT with high-dose immunosuppressive therapy
(HDIT) performed in RRMS (HALT-MS), EFS, absence of new
MRI lesions, and neurological worsening in treated participants
approached 70% after a median 62-month follow-up (41). The
individual components of the composite outcome showed 91.3%
of EDSS progression-free survival, 86.9% of clinical relapse-free
survival, and 86.3% of MRI event-free survival (41).

Studies with long-term follow-up demonstrated a durable
remission, and stabilization of a clinical course is sustained long
beyond the immunosuppressive effect of chemotherapy,
confirming a better outcome in patients with relapsing forms
of MS (37, 46).

Despite the efficacy ofHSCT inMS, it remains associated with a
treatment-relatedmortality risk ranging fromnone in some clinical
trials and reports (41, 47, 48) to around 0.2% (49, 50), 1.4% (51),
2.5%(52) in larger series up to4%inone trial ofpatients treatedwith
a high intensitymyeloablative regimen (46). Overall, there has been
reduction in transplant-relatedmortality (TRM) over time (51, 53),
probably related to better patient selection and choice of
conditioning regimen, which has permitted acceptance within the
neurological community. Even with successful treatment, short-
and longer-term adverse events are recognized, including infection,
herpes virus reactivation (Epstein–Barr virus, cytomegalovirus)
(48), secondary autoimmunity (up to 10%), endocrinopathy, and
late cancers (54, 55). However, in the last decade, the safety of the
procedure has shown a marked improvement, thanks to a growing
experience in selecting the most appropriate patients to transplant,
and advances in conditioning and support regimens. According to
recent EBMT (56) data, rates of TRM have been falling to around
February 2022 | Volume 12 | Article 813957
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1%orbelow, in recent years. Thedemographics andoutcomes from
studies of HSCT in MS have been recently reviewed (57).

HSCT Versus DMT
There are only two available RCTs comparing HSCT to current
DMTs inMS, both with methodological limitations. The ASTIMS
study compared myeloablative HSCT to mitoxantrone (MTX) in
patients with RRMS (33%) or PMS (67%) (58). Regardless of
disease subtype, the HSCT group demonstrated a significant
reduction in new T2 lesions at 4 years, complete suppression of
new Gd+ lesions (versus 56% of MTX patients), and significantly
reduced annualized relapse rate (0.19 vs. 0.6 for MTX). However,
HSCT did not demonstrate EDSS stabilization or improvement:
this might be related to the high proportion of progressive
patients, known to respond less favorably (59). The MIST study
was an open-label trial of 110 RRMS patients, randomized 1:1 to
receive non-lymphoablative HSCT or an FDA-approved DMT,
based on the treating neurologist’s judgment (47). At 5 years,
disease progression was remarkably suppressed in the HSCT arm
(9.71% versus 75.3%) with similar impressive reductions in
relapses (15.4% versus 85.2%). No evidence of disease activity
(NEDA), defined as no progression, no relapses, and no new or
enlarging lesions on magnetic resonance imaging, was seen in
78.5% of HSCT patients versus 2.97% in the DMT arm. Patients
in the DMT group who experienced progression despite 1 year of
treatment were crossed over (n = 31) to HSCT, and significant
comparable outcomes to the patients initially randomized to
HSCT were seen in EDSS scores and mean T2-weighted lesion
volume on MRI. The MIST study has several limitations (1):
incomplete follow-up data in the DMT arm, due to treatment
crossover, (2) ALEM was excluded from use in the DMT group
because of drug-related persistent lymphopenia and autoimmune
disorders. OCR, OFA, and CdA were not licensed at the time the
study was opened to recruitment. Clinical outcomes from
ASTIMS and MIST studies are summarized in Table 1. While
waiting for a direct comparison between the efficacy of HSCT and
that of approved highly effective DMTs, some information can be
Frontiers in Immunology | www.frontiersin.org 4
cautiously derived by considering the degree of NEDA achieved
in clinical trials of HSCT compared with that of other approved
DMTs. Comparisons between different RCTs must be made with
caution considering different population characteristics and
follow-up schedules. A cross-sectional analysis reveals that the
proportion of patients for whom NEDA was achieved at 2 years
was 7%–16% among those who received placebo, 13%–27%
among patients who received IFNb-1a, and 22%–48% among
patients who received other active drugs (dimethyl fumarate,
fingolimod, NAT, ALEM, OCR); among patients who underwent
HSCT, the NEDA proportion was considerably higher, at 70%–
92% (60). In a retrospective, single-center, real-world study
comparing the efficacy and safety of HSCT vs. ALEM in
aggressive RRMS patients, HSCT seems to be superior to
ALEM in inducing complete disease control (NEDA 75%
versus 56%; p = 0.023) and in promoting short-term disability
improvement (61). Available evidence does not allow the
identification of patients who would benefit from early
aggressive therapy versus an escalation approach. Despite
highly effective DMTs providing significant control of disease
activity, they carry the risk of serious adverse events. Immune-
suppressive DMTs are associated with an increased risk of mild to
moderate infections and with reactivation of latent pathogens.
The risk of herpesvirus and tuberculous-related diseases is
increased with immunosuppressive therapies; similarly, hepatitis
B virus (HBV) reactivation is a risk with anti-CD20 DMTs.
Studies of Immune Reconstitution
Following Autologous HSCT in MS
Since 2000, detailed immunological studies have started to
examine the immune effects and potential mechanisms of
action of autologous HSCT for treatment of autoimmune
disease. Focusing on contributions from studies in treated MS
patients, we first review here some key results on studies of
adaptive and innate immunity. We next identify some important
questions and outline future studies that could address them.
TABLE 1 | Selected clinical outcomes from the two randomized controlled trials of HSCT vs. DMT.

ASTIMSa MIST studyb

HSCT Mitoxantrone HSCT DMT

Magnetic resonance imaging New T2-weighted lesions^ Mean change in T2-weighted lesion volume^
0% 56% -32% +34%

Relapses Annualized relapse rate^ New relapses^
0.19 0.6 15% 85%

Clinical progression Increase in EDSS* 1-point increase in EDSS score^
57% 48% 29% 75%

Limitations Inclusion of patients with PMS (67%) Limited follow-up data in DMT arm, due to treatment crossover
Missed inclusion of currently used highly effective DMTs in the control arm
February 2022
aMancardi GL, Sormani MP, Di Gioia M, Vuolo L, Gualandi F, Amato MP, et al. Autologous haematopoietic stem cell transplantation with an intermediate intensity conditioning regimen in
multiple sclerosis: the Italian multi-centre experience. Mult Scler. 2012;18(6):835-42.9. bBurt RK, Balabanov R, Burman J, Sharrack B, Snowden JA, Oliveira MC, et al. Effect of
Nonmyeloablative Hematopoietic Stem Cell Transplantation vs. Continued Disease-Modifying Therapy on Disease Progression in Patients with Relapsing-Remitting Multiple Sclerosis:
A Randomized Clinical Trial. Jama. 2019;321(2):165-74.
DMT, disease-modifying treatment; HSCT, Autologous hematopoietic stem cell transplantation; PMS, progressive MS; EDSS, Expanded Disability Status Scale.
Symbol * = no statistical difference, ^ = statistical difference.
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Adaptive Immunity
T Cells
In one of the early studies, Muraro et al. showed that CD3+ T cell
levels were reported to have recovered at 6 months after high-
intensity myelo- and immunoablative HSCT with different
kinetics of immune reconstitution of CD4+ and CD8+ T cells
(62); CD4+ T cells recovered gradually compared to CD8+ T
cells, and the CD4/CD8 ratios decreased at 6 months and
reached the baseline levels at 1 year (62). The longitudinal
analysis of the frequency of T cell subpopulations after HSCT
showed a phenotypic renewal of the T helper cell compartment.
In the CD4+ compartment, memory (M) T cells (CD45RA-

CD45RO+CD27+) predominate at the baseline and are replaced
by naïve T cells (CD45RA+CD45RO-CD27+) at 2 years after
therapy with a 76% reduction of TM/TN ratios (62). The de novo
generated CD4+ T cells in the peripheral blood (PB) display
features of thymic origin, such as increased co-expression levels
of CD31 or T-cell receptor excision circles (TREC). counts and a
strong significant correlation of frequency of CD4-naïve T cells
and CD4 RTE T cells at the 1- and 2-year follow-up. Analysis of a
single T cell receptor (TCR) repertoire at the single clone level by
sequencing of TCRb transcripts of sorted PB CD4 T cells
demonstrated increased repertoire diversity compared to the
pre-HSCT (62). The dominant preexistent TCR clones were
completely depleted after the conditioning regimens and
replaced by clones with a new repertoire (63). Contrary to the
CD4 compartment, the CD8+ pool showed an incomplete
renewal of clonal specificities with the persistence of
preexisting clones (62). The proportion of subpopulations did
not change compared to the baseline. The only difference was on
effector memory terminally differentiated CD8 T cells that
expressed senescence phenotype CD28-CD57+CD95/
FAS+CD45RA+CD45RO+CD27- (62). High-throughput deep
TCRb chain sequencing on CD8 T cell clones before and after
HSCT showed that the CD8 compartment post-HSCT was
predominantly constituted by a selective expansion of
dominant preexistent TCR clones (63).

Long-term TCR repertoire reconstitution was examined in
matched CSF and PB CD4 and CD8 T cell clones before and up
to 4 years after HSCT (64). The reconstituted repertoire in CSF
included a majority of new T cell clonotypes generated from
hematopoietic stem cells (HSC) and a smaller population of
clones generated from memory T cells in PB preexisting before
the therapy and resistant to immune ablation (64). The
persistence of those clones in patients with a sustained
remission of inflammatory disease activity led to the
conclusion that they are not self-reactive pathogenic mediators
or are not able to induce disease activity in the new conditions.

An immunophenotyping study conducted by CyTOF mass
cytometry and performed on cryopreserved PBMCs from
patients with MS treated with HDIT/HSCT (HALT-MS)
showed a redistribution of T cell subsets. The analysis showed
an increased proportion of effector memory (CD45RA-CCR7-)
and late effector (CD45RA+CCR7-) subtypes associated with
reduction of naïve and CM at 2 months and a return of subsets at
baseline levels at 1 and 2 years post-HSCT (65). The immune
Frontiers in Immunology | www.frontiersin.org 5
reconstitution was compared in patients that had long remission
of disease to those that had relapses to define biomarkers
associated with disease activity. The 5-year positive outcome
from HSCT was related to higher absolute cell counts of memory
and effector memory CD4 and CD8 T cells in PB at the baseline,
and it was suggested as a biomarker (65). These results support
that an immune resetting of the memory phenotype in the T cell
compartment is relevant for the resolution of inflammation.

The immune reconstitution of T cells after non-myeloablative
HSCT reported a decrement of total lymphocyte count up to the
first year after treatment (66). CD4 T cells within the total T cell
population remained reduced for the entire 2-year follow-up
whereas non-significant differences were detected in the CD8 T
cell pool (66). Significant changes in immunophenotyping were
observed only in the CD8 compartment. Expansion of memory
cells was reported at 6 months and 1–2 years posttreatment with
decrement of naïve cells at the same time points (66).

Myelin Antigen-Specific T Cells
CD4 and CD8 T cell response (proliferation and cytokine
production) to multiple myelin epitopes including whole
myelin basic protein (MBP), myelin oligodendrocyte
glycoprotein (MOG), and peptide pools derived from MBP
and myelin proteolipid protein (PLP) remerged in the PB after
high-intensity HSCT despite the ablation of T cell response to the
memory antigen tetanus toxoid (TT) (67). Furthermore, the
reconstituted MBP-reactive T cells 12 months post-HSCT
showed the same cytokine profiles compared to MBP-reactive
T cells at baseline, with a greater capacity to secrete pro-
inflammatory Th1 than Th2 cytokines (67).

Effector Memory
Mucosal-associated invariant T (MAIT) cells constitute a subset of
unconventional T cells at the junction of innate and adaptive
immune systems (68, 69). Human MAIT cells, 2 innate-like
lymphocytes, express the semi-invariant TCR (TCR: iVa7.2-
Ja33) and are selected by the Major histocompatibility complex
(MHC)-related protein 1, MR1 on hematopoietic cells (70). In the
adult, MAIT cells represent 10% of mature CD8+ or CD4-CD8-

(DN) T cells. This population plays an important role against
bacterial, yeast, and viral infections (69, 71) recognizing antigens
(Ags) released from microbial riboflavin (vitamin B2) synthesis
(72). In human, MAIT cells were defined as CD161hiIL-
18Ra+Va7.2+gd-CD3+ lymphocytes with effector memory
phenotype CD45RA-CD45RO+CD62LloCD122dimCD127hi

CD95hi (73), expression of the innate transcription factor
promyelocytic leukemia zinc finger (PLZF), RAR-related orphan
receptor gamma (RORgt), and intermediate levels of T-Box
transcription factor TBX21 (T-bet) (74). This subset of
lymphocytes expresses heterogeneous levels of NK receptors and
chemokines (CCR6, CXCR6, CXCR4, and CCR9) that consent the
migration to peripheral tissue especially intestine and liver (73).
MAIT cells secrete high levels of granzyme B, TNFa, and IFNg
upon CD3 and CD28 stimulation and high levels of IL-17 after
PMA–ionomycin stimulation (73). MR1-Ag-loaded tetramers
have been used for the specific identification of subsets of
February 2022 | Volume 12 | Article 813957
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MAITs (75). MAIT cells were detected in white matter and
perivascular infiltrates of postmortem MS brain tissues and were
radically depleted after non-myeloablative HSCT and remained
nearly undetectable in the PB for the whole follow-up period of 2
years (66). MAIT cells are defined as the major producer of IL-17
in the CD8 compartment, and their ablation after HSCT
implicated the attenuation of Th17 and Th1-Th17 cells (67). In
addition, pro-inflammatory MAIT cells were depleted in patients
with MS at 3, 6, and 12 months post-HSCT (38). Flow cytometry
analysis of PB mononuclear cells (PBMC) isolated in pre- and
post-HSCT and stimulated under Th17-polarizing conditions for
6 days demonstrated a lower frequency of Th17 (IFNg-IL-17+) and
Th1-17 (IFNg+IL-17+) after immune reconstitution (67). Similar
results were observed in CD8 T cell responses. IL-17-producing
CD8 T (Tc17) responses (IFNg-IL17+ CD8+ T cells) were lower
than the baseline, whereas no difference was reported for type 1
CD8 T cell (Tc1) responses (IFNg+IL17- CD8+ T cells) (67).
Accordingly, reduced levels of RoRg-T (Th17 transcriptional
factor) and an unchanged expression of T-bet (Th1
transcriptional factor) were detected in activated peripheral
blood mononuclear cells (PBMC) in post-HSCT compared to
the baseline (67). Those results were also confirmed by analysis of
culture supernatants by ELISA. Lower levels of secretion of IL-17A
were reported after-HSCT and associated with reduced levels of
Th17-polarizing cytokines IL-1b and IL-6 and unchanged levels of
TGFb and IL-23 (67).

Decrement of Th1-17 T cells was confirmed in a further
investigation (65). Examination of T helper cells by chemokine
expression on CD4 memory T cells (65) showed that
CXCR3+CCR6-Th1 effector memory cells increased at 6
months and began to decrease at 2 years without reaching the
baseline values. Contrary to CXCR3-CCR6+Th17 effector
memory cells that maintained the same levels during the
follow-up, CXCR3+CCR6+ Th1-17 effector memory cells
lowered to the baseline at month 6 and year 2. Polyfunctional
(co-expressing TNFa and IL-2) IFNg low- and high-producing
CD8 T cells were examined over time. IFNg low–producing cells
increased at month 2 and returned to the baseline at years 1 and
2 compared to IFNg high-producing CD8 T cells that remained
the same at all the time points examined. Expression of
programmed cell death protein-1 (PD-1) was observed to
increase on CD4 and CD8 T cell populations at month 2 and
to return to baseline levels at 1 and 2 years. The IFNg low- and
high-producing CD8 T cells showed a remarkable increased co-
expression of activation markers CD57, CD38, and HLA-DR at
month 2 which returned to baseline levels at years 1 and 2 (65).

Regulatory T Cells
Regulatory CD4 T cells including CD39+-expressing cells
( CD 4 +CD2 5 h i CD 1 2 7 - CD 3 9 + ) ( 3 8 ) a n d F o x p 3 +

(CD4+CD25hiCD127-Foxp3+) (66) and CD8+CD57+ T cells
increased after HSCT and non-myeloablative treatment (62,
65–67, 76). Memory CD4 T regs (CD25+CD127low/-CD45RA-)
increased significantly at month 6 to return to baseline levels at 2
years post-HDIT/HSCT (65). CD8+ CD57+T cells constituted a
great proportion of the CD8 T cell pool after HSCT with
immunoregulatory function related to the ability to suppress
Frontiers in Immunology | www.frontiersin.org 6
CD4 T cell proliferation in cell coculture (66). Increases of
cytotoxic T-lymphocyte antigen 4 (CTLA-4) on CD4
regulatory T cells and programmed cell death protein 1 (PD-1)
on CD19 and CD8+CD57+cells were associated with positive
outcomes post-HSCT. PD-1 signaling and regulatory T cells were
described as biological mechanisms restoring immune tolerance
post-HSCT in HALT-MS (76).

B Cells
Total B cells reduced modestly at 2 months and increased from
the baseline level at 1 and 2 years post-HDIT/HSCT (65). Naive
B cells constituted the predominant subset within the circulating
B cel ls at 1 and 2 years post-transplantat ion. An
immunophenotyping study by flow cytometry was conducted
on PBMCs isolated from 28 patients enrolled for AHSCT with
HDIT/HSCT before and after therapy in a follow-up of 72
months (76). CD19+ B cell counts increased at 18 and 24
months post-HSCT, mainly in patients responsive to HSCT
(76). Most of them are naïve cells and expressed PD-1 (65, 76).

Oligoclonal IgG Bands
(OCBs) in the CSF are a biomarker of intrathecal B and plasma cell
activation in patients with MS. In one study, CSF analysis of 4
patients pre and after HSCT revealed that OCBs reduced in the CSF
at a rate consistent with reduced ongoing IgG synthesis rates (77).
Other studies that reported OCBs remained largely unchanged (30,
34, 35, 78). Persistence but reduction of OCBs in the CSF was
observed at 2 years of the 4-year patient follow-up with a reduction
of CSF IgG levels (41). Long-term studies showed that OCB are
decreased or disappeared. After HSCT, the IgG and IgM indices
decreased and OCB were lower (79). A Swedish study with a 10-
year follow-up after HSCT demonstrated that 60% of patients lost
CSF OCB and only one patient (10%) had IgG above the normal
levels and had relapse (80).

Innate Immunity
NK Cells
The immune reconstitution of natural killer (NK) cells in the PB
of patients with MS after receiving HSCT was investigated in 3
studies as reported (38, 66, 81). In all the studies, CD56 NK cells
expanded by month 2. The frequencies of immunoregulatory
CD56hi NK cells (CD3-CD16-CD56hi) increased significantly by
3 months and remained high in a follow-up of 12 months post-
HSCT (38). NK cells increased at 2 months and began returning
to the baseline level by month 3 after HSCT (81). Frequencies of
both the CD56dim and CD56bright NK cell subsets rose between
month 3 and month 6 post-HSCT and remained elevated until
month 18 and significantly higher at 12–18 months post-HSCT
(81). The ratio NK bright cells (CD56bright/CD56 dim) was 0.1 at
the baseline, 0.6 from months 3 and 6, and dropped to baseline
levels by 24 months. The rapid immune reconstitution of NK
cells was associated with incomplete ablation or presence of NK
cells in the graft. Patients with a greater increase in NK cells
showed the greatest reductions in Th17 responses associated
with NK-mediated immune suppression (81).

Studies of immune reconstitution after myelo and non-
myeloablative HSCT have reported 1) decrement of
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TABLE 2 | Phenotype of human B, T, and natural killer (NK) cell subsets in the periphery.

Lymphocyte
subpopulations

Phenotype Perturbation in MS Month 6
post-
HSCT

Year 1
post-
HSCT

Year 2
post-
HSCT

T cell subsets (CD3+)
CD4-naïve T cells CD4+CCR7+CD45RA+ b↓ ≅ ≅
CD4+ central memory (CD4+ TCM) CD4+CCR7+CD45RA- Detected in lesions, CSF ↓ ≅ ≅
Th1 central memory (Th1CM) CD4+CCR7+CD45RA-CCR6-CXCR3+ Detected in lesions, CSF ≅ ≅ ≅
Th17 central memory (Th17CM) CD4+CCR7+CD45RA-CCR6+CXCR3- Detected in lesions, CSF ↓↓ ↓↓ ≅
Th1Th17 central memory (Th1Th17CM) CD4+CCR7+CD45RA-CCR6+CXCR3+ Detected in lesions, CSF ↓↓ ↓↓ ≅
CD4+ effector memory T cell (CD4+ TEM) CD4+CCR7-CD45RA- Detected in lesions, CSF ↑↑ ≅ ≅
Th1 effector memory (Th1EM) CD4+CCR7-CD45RA-CCR6-CXCR3+ Detected in lesions, CSF ≅ ≅ ≅
Th17 effector memory (Th17EM) CD4+CCR7-CD45RA-CCR6+CXCR3- Detected in lesions, CSF ↓↓ ↓↓ ↓↓
Th1Th17 effector memory (Th1Th17EM) CD4+CCR7-CD45RA-CCR6+CXCR3+ Detected in lesions, CSF ↓↓ ↓↓ ↓↓
Terminal differentiated effector memory
CD4+ T cell (TEMRA)

CD4+CCR7-CD45RA+ Detected in lesions, CSF c↑ d≅ ≅

Regulatory CD4+T cells CD4+CD25hiCD127-FOXP3+/
CD4+CD25hiCD127-CD39+

Detected in lesions, CSF ↑↑↑ ↑↑ ≅

CD8+-naïve T cell CD8+CCR7+CD45RA+ ↓ ≅ ≅
CD8+ central memory T cell (CD8+ TCM) CD8+CCR7+CD45RA- Detected in lesions, CSF ↓ ≅ ≅
CD8+ effector memory T cell (CD8+ TEM) CD8+CCR7-CD45RA- Detected in lesions, CSF ↑↑ ≅ ≅
Cytolytic CD8+ effector T cells (Tc1)
secrete IFN-g

Detected in lesions, CSF ≅ ≅ ≅

Cytolytic CD8+ effector T cells (Tc17)
secrete IL-17

Detected in lesions, CSF ↓ ↓ ↓

Cytolytic CD8+ T cells (Tc17-1) secrete
IFNg and IL-17

Detected in lesions, CSF ↓ ↓ ↓

MAIT cells CD8+CD161hiTCRVa7.2+IL-
18R+CD45RA-CD127hiCD95hi

Detected in lesions, CSF ↓↓↓↓ ↓↓↓↓ ↓↓↓↓

Terminal-differentiated effector memory
CD8+ T cell (TEMRA)

CD8+CCR7-CD45RA+ Detected in lesions, CSF ↑ ≅ ≅

B-cell subsets
Transitional B cells IgDlo/-IgM+CD10hiCD24hiCD38hi Dysfunctional e? ? ?
Naïve B cell subsets IgD+CD27+ ↓ ↑↑ ↑↑

CD45RB-CD27-CD38-CD305+IgD+CD73-

CD45RB-CD27-CD38-IgM+CD73+

Naïve B10 cell subsets ? ? ?
CD19+CD24hiCD27+ Abnormal
CD19+CD27+ ↓↓
CD19+CD38hi

Switched memory B cells (Bmems) IgD-CD27+ ↓ ↓ ↓
CD19+CD20hiCD45RB-CD27-CD95-

CD21-CD38-CD73-CD4loIgGhiCD185-

CD184-PD-1+CD11c+T-bet+

↑↑

CD45RB+CD27+CD73+IgG+/IgA+ -Antigen presenting cells capacity (self-antigens)?
promoting autoreactive cell responses,

-Increased release of GM-CSF,IL-6,TNFa and
lymphotoxin-a upon BCR and CD40

engagement,
-Bmems present RASPGRP2-derived epitopes
that are targeted on Neuron by CD4 T cells,

-Increased of Bmems in the CNS that contribute
to generation of ectopic lymphoid structures

(ELS).

CD45RB+CD27+CD73-IgA+CD9+CD22-

Long-lived Bmems CD45RB-CD27+/-IgG+/IgA+ CD73+/-

CD183+/-

Effector Bmems CD95+IgG+/IgA+

Antibacterial specificity CD27-IgA+

Aged or exhausted Bmems CD27-IgG3+/IgG2+

Late memory B cells IgD-CD27- ↑ ↓ ↓
Plasma cell subsets -Contribute to large amount of high-affinity

antibodies, high levels of immunoglobulin IgG and
IgM in the cerebrospinal liquid,

≅ ≅ ≅
Short-lived plasma cells CD19+CD38+CD27hiIgG/IgA+IgM+

Long-lived plasma cells CD19+CD38+CD27hiCD184+IgG/
IgA+IgM+

Regulatory plasma cells CD19+CD138+

NK subsets
Regulatory NK cells CD3-CD56hi Dysregulated or impaired ↑↑ ↑↑ ≅
Cytotoxic NK cells CD3-CD56dim Dysregulated or impaired ↑↑ ↑↑ ≅
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cAarrow ↑= increase, barrow ↓= decrease, d≈ = approximaly equal, e?= unknown.
Subsets of lymphocytes that are described as “pathogenic” in MS and kinetics of immune reconstitution post-HSCT compared to the baseline (pre-treatment) in MS.
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inflammatory subsets Th17 and Th17-1; 2) increment of
regulatory populations represented by regulatory CD4 T cells,
CD8+CD57+ T cells, and CD56hiNK cells; 3) renewal of the TCR
repertoire in CD4 T cells associated with thymic output; and 4)
resetting of the B cell compartment with an enrichment of naïve
B cells. The kinetics of immune reconstitution after HSCT were
reported as shown in Table 2 while the relevant biological
processes in the immune reconstitution in patients with MS
post-HSCT are recapitulated as shown in Figure 1.

New Questions and Perspective
on Future Studies
Stem Memory Cells
Self-reactive memory B and T cells have a crucial role in the
pathogenesis of MS as reported in clinical–pathological and
functional studies (82–86). The knowledge of molecular
mechanisms that regulate or produce immunological
memory could be essential for the development of immune
therapeutic intervention in MS. Long-lived memory cells are
generated from adaptive immunity and guarantee a long-
lasting protection against microbes and tumors. However,
immunological memory can favor chronic inflammation and
contribute to the development and maintenance of immune-
mediated diseases. Among memory T cell subsets, stem
memory T cells (Tscm) have the capacity of self-renewal and
multipotency. Tscm differentiate in vitro from naïve T cells by
triggering Wnt-b-catenin signaling during T cell priming (87,
88). Tscm constitute a small proportion of circulating CD4 and
CD8 T cells (>2%–3%) with naïve-like phenotypes (CD45RA+,
CCR7+, CD62L+, CD27+, CD28+, and IL-7Ra+) and memory
markers (CD95+, CXCR3+, IL-2Rb+, CD58+, and CD11a+).
Tscm showed either memory and naïve T cell properties,
including a low level of TCR rearrangement excision circles
(TREC), ability to acquire rapidly effector function in response
to antigens and differentiation in memory subtypes,
dependence on IL-15 and IL-7 for homeostatic turnover,
asymmetric proliferation typical of multipotent cells, homing
to lymph node and tumor, and viral antigen specificities (89).
Compared to naïve T cells, Tscm are maintained by extensive
proliferation and display a higher level of telomerase activity
that gives them the HSC features (90). Moreover, Tscm
lymphocytes can differentiate directly from naive precursors
infused within the graft (91), and the extent of Tscm
generation correlates with IL-7 serum levels. In agreement
with recent findings, Tscm could constitute the precursors and
the reservoir of autoreactive clones causing autoimmune
disorders. Th17 cells, described as pathogenic in chronic
autoimmunity (92), have been highlighted to persist longer
and expand more efficiently than Th1-derived cells in vivo
endowed of the molecular program of survival and self-
renewal. Long-term CD8 T cell responses to yellow virus are
detectable over 25 years after vaccination and show a naïve-like
phenotype CD45RA+ CCR7+ with a characteristic of memory
cells (93, 94). Therefore, the relevance of Tscm in the
differentiation of long-term memory T cells was obtained
monitoring over several years T lymphocytes, genetically
Frontiers in Immunology | www.frontiersin.org 8
modified to express thymidine kinase (TK) suicide gene (95,
96). Tscm have been investigated in immune-mediated
disorders. In type I diabetes (TID), beta-cell-specific T cells
persist for long periods generating an antigenic response to
pancreatic islet transplant recipients. The mechanisms that
preserve effector and memory features in beta-cell-specific
CD8 T cells through the life of type I diabetic patients have
been investigated (97). Single cell ATAQ-seq showed the
coexistence of naïve and effector–associated epigenetic
programs in tetramer positive beta-cell-specific CD8 T cells
isolated from patients with type I diabetes (97). This hybrid
condition supports the hypothesis that a long-lived population
of cells that retain effector potential may preserve a sustained
self-reactive state. Moreover, beta cell-specific CD8 T cells
isolated and stimulated for 14 days maintain multipotency-
associated epigenetic programming after undergoing extensive
antigen-dependent proliferation (97). CD161hi CD8+ Tscm
cells have antiviral specificities and regenerate the antiviral
memory pool after chemotherapy displaying futures of
memory stem cells (98, 99). CD4+ Tscm cells in systemic
lupus erythematosus (SLE) patients showed a gene profile
facilitating T follicular helper (Tfh) cell differentiation and
antibody production (100). Tfh has been described
dysfunctional in SLE and to help B cells in the generation of
germinal centers and production of high-affinity and isotype-
switched antibodies (101). Moreover, levels of CD4 Tscm
increase and correlate with disease activity in patients with
rheumatoid arthritis (RA). Receiving a pro-survival signaling
from TNFR2, CD4 Tscm cells undergo oligoclonal TCR
repertoire expansion that constitutes a reservoir of
autoreactive cells (102). The ability of Tscm to differentiate
in Tfh and participate to high-affinity and isotype-switched
antibodies confers to this T cell subset a potential pathogenic
role in MS. Differentiation and self-renewal of memory stem
cells in the healthy immune system and in autoimmune
diseases are illustrated in Figure 2. The contribution of B
cells to the pathogenesis of MS has been recently reviewed in
depth and has highlighted the need for further investigation of
B immune reconstitution (85).

Secondary Autoimmunity
Development of a new (secondary) autoimmune disease in
patients with a preexisting (primary) autoimmune condition
has been reported after treatment with autologous HSCT at
rates ranging from 2% to 14% (103). The rates of secondary
autoimmune diseases, termed henceforth 2ndADs, following
treatment with ALEM are higher, requiring special
monitoring in patients with MS and cautioning against the
use of ALEM as lymphodepleting treatment in HSCT regimes.
The occurrence, risk factors, and immunological mechanisms
of 2ndADs after treatment with HSCT have been the specific
focus of a recent publication in which the authors suggest that
an imbalance of effector and regulatory T and B cells, or
delayed reconstitution of the latter, may underlie the
occurrence of the adverse event (103). This notion further
supports the rationale of studies of immune reconstitution
February 2022 | Volume 12 | Article 813957
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FIGURE 1 | Immune reconstitution in MS after HSCT. Thymus-dependent T cell regeneration and immune regulation mediated by T and natural killer (NK) cells
constitute the major identified pathways influencing immune reconstitution in patients with MS after HSCT. Thymus-derived CD4 T cells show a new, diverse
repertoire and deletion of preexisting CD4 clones. CD8 T cells show an incomplete renewal of TCR repertoire suggesting expansion of residual or regenerated virus-
specific clones. Increase of regulatory CD4+FOXP3+, CD8+CD57+T cells, and NK cells and eradication of pro-inflammatory Th17 and Th17-1 cells (MAIT) are
observed after HSCT. NK cells induce necrotic cell death in Th17 and Th17-1 cells by the NKG2D pathway, while CD8+CD57+ cells suppress CD4+ T cell
proliferation. Anergy is reported on CD8+ T cells that express high levels of CD57, a marker of senescence, and inhibitory effects are exerted by the immune
checkpoint inhibitor PD-1. HSC, hematopoietic stem cells; CLP, common lymphocyte progenitor; NK regs, regulatory natural killer CD3-CD56hi. Figure created with
BioRender.com.
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after HSCT, part icular ly including the kinet ics of
reconstitution of regulatory and effector cells and examining
the correlation with any 2ndADs.

Vaccination Following HSCT
HSCT recipients often lose immunity to vaccine-preventable
diseases following transplantation and are therefore considered
“never vaccinated” (104, 105). In patients who have received an
autologous HSCT, pathogen-specific immune reconstitution in
the absence of vaccination can be poor even several years post-
transplant, with 98.2%, 100%, and 34.5% showing titers below
protective thresholds for against diphtheria, Streptococcus
pneumoniae , and measles virus, respectively (106).
International and EBMT guidelines therefore recommend
commencement of a routine vaccination program at 3–6
months after HSCT (6, 107). Vaccine responses can, however,
be suboptimal in the first year post-HSCT, with minimal
Frontiers in Immunology | www.frontiersin.org 10
immunogenicity to influenza vaccines seen during the first 6
months (108). Similarly, emerging data suggest that responses to
SARS-CoV-2 mRNA vaccines are lower during the first 12
months post-HSCT (109). However, preliminary reports in
HSCT recipients suggest around 60% positivity (110) rate for
SARS-CoV-2 antibodies post-vaccination, and the presence of a
memory T cell response (111) elicited by a second dose
of vaccine.

Post-HSCT vaccination offers opportunity to explore whether
beneficial pathogen-specific immunity can be induced while
maintaining the broad post-transplant immune tolerance
associated with favorable outcomes in MS. It is possible that
the degree of tolerance present may be associated with the
magnitude of response to specific vaccines, especially during
the first few months after transplant. Nevertheless, post-HSCT
vaccine responses may be superior to those seen in patients who
have received certain DMTs who have an ongoing
FIGURE 2 | Stem memory cells in healthy and autoimmune disease. Stem memory cells constitute a subset of T cells with self-renewal and multipotent capacity.
Generated from naïve cells, stem memory cells develop into memory subsets including central memory and effector memory. Stem memory cells express a naïve-like
phenotype (CD45RA+, CCR7+, CD62L+, CD27+, CD28+, and IL7Ra+) and memory markers (CD95+, CXCR3+, IL-2Rb+, CD58+, and CD11a+), which vary during
further differentiation. While essential to immunological memory in healthy immune system, memory stem cells also represent a reservoir of autoreactive clones in
autoimmune disease. For example, in type I diabetes (TDI) self-reactive b-cell-specific CD8 T cells maintain a memory stem cell phenotype that favors a persistent
production of pathogenic clones. In systemic lupus erythematosus, memory stem cells differentiate easily into T follicular helper cells (Tfh) that contribute to B cell
differentiation and antibody production. In multiple sclerosis, stem memory cells recognizing, hypothetically, myelin antigens could represent a supply of pro-
inflammatory and cytotoxic cells targeting myelin and damaging neurons. Figure created with BioRender.com.
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immunosuppressive state. Although there is currently limited
evidence for relapse of autoimmune conditions post-HSCT due
to vaccination-induced disruption of immune tolerance, it is
important to establish the safety of vaccine programs in patients
with MS who have undergone HSCT, particularly with more
novel vaccine technologies.

Vaccination and DMT
Immune response to vaccinations could be hampered by
immune-suppressive treatments. Vaccine humoral immune
responses were reduced in patients treated with NAT and
significantly impaired by anti-CD20 monoclonal antibody
therapies. The timing of vaccination played an important role
in those treated with ALEM (112). The vaccine-induced long-
term immunologic memory against pathogens relies both on
humoral and on cellular immune responses. Despite patients
treated with anti-CD20 antibodies showing significantly reduced
humoral response to SARS-CoV-2 mRNA vaccination, as
compared to untreated patients (113), they generated robust
CD4 and CD8 T cell responses suggesting that vaccinating B cell-
deficient patients are still likely to provide some measure of
immunity to SARS-CoV-2 (114).
CONCLUSIONS

Treatment with autologous HSCT for patients with aggressive
RRMS has been demonstrated to be highly effective (37, 115)
with a significant reduction of treatment related mortality over
time (currently < 1%). The American Society of Bone Marrow
Transplantation (ASBMT) and the European Bone Marrow
Transplantation (EBMT) Autoimmune Diseases Working
Party (ADWP) have endorsed HSCT as a “standard of care”
treatment for DMT-resistant poor-prognosis inflammatory MS
(7, 116). Infection risk related to chronic or cyclic immune
suppression from DMTs is initially low but accumulates over
time with long term, while in HSCT the risk is early after
transplantation with patients benefiting from a lack of long-
lasting immune suppression.

Results from studies of immune reconstitution post-HSCT
showed a change in immune profile suggesting a shift toward
tolerance, characterized by depletion of pro-inflammatory TH1/
17 cells, senescence of terminally differentiated effector memory
cells, increase of naïve cells with new TCR repertoire, and
regulatory profile in early stage. Despite the knowledge of the
T cell compartment, little information is available for B cell
immune reconstitution.

Tscm cells represent an early stage of memory cells with
propriety of self-renewal and effector cells. Their susceptibility to
generate chronic inflammation and autoimmune disease has
spotlighted the necessity to investigate this population in MS.
Studies focused on defining the differentiation pathway,
transcriptome profiles, and characterization of molecules
associated with stem and effector-like function before and after
HSCT could help to understand the mechanisms of action of the
procedure and potentially elucidate the reason for the less
Frontiers in Immunology | www.frontiersin.org 11
common occurrences of disease persistence or reactivation,
and 2ndADs.
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