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ABSTRACT: Sequence-specific recognition of DNA by small organic molecules
offers a potentially effective approach for the external regulation of gene expression
and is an important goal in cell biochemistry. Rational design of compounds from
established modules can potentially yield compounds that bind strongly and
selectively with specific DNA sequences. An initial approach is to start with common
A·T bp recognition molecules and build in G·C recognition units. Here we report on
the DNA interaction of a synthetic compound that specifically binds to a G·C bp in
the minor groove of DNA by using an azabenzimidazole moiety. The detailed
interactions were evaluated with biosensor-surface plasmon resonance (SPR),
isothermal calorimetric (ITC), and mass spectrometry (ESI-MS) methods. The
compound, DB2277, binds with single G·C bp containing sequences with sub-
nanomolar potency and displays slow dissociation kinetics and high selectivity. A
detailed thermodynamic and kinetic study at different experimental salt concen-
trations and temperatures shows that the binding free energy is salt concentration
dependent but essentially temperature independent under our experimental conditions, and binding enthalpy is temperature
dependent but salt concentration independent. The results show that in the proper compound structural context novel
heterocyclic cations can be designed to strongly recognize complex DNA sequences.

Heterocyclic diamidine minor groove binders have been
successful in therapeutic targeting of DNA structures in

various types of cells and particularly parasitic microorgan-
isms.1−11 Selective targeting cellular DNA has been shown with
compounds that have intrinsic fluorescence in cells2,12−14 and
which have been used in human clinical trials.1,11−17 Given the
limited number of new antiparasitic drugs, the success of
amidines against those diseases is attractive for continued
compound development.5,7,10,13,17−20

In considering methods to increase heterocyclic diamidine
success in selective targeting of cellular DNAs, we have focused
on two A·T sequences separated by a single G·C base pair (bp).
In the sequence of kinetoplast DNA, for example, a large
number of A·T bp sites of 3 to 4 bp or larger, are commonly
separated by one or two G·C bps.2,5,21−23 These sequence
motifs suggest that including new heterocycles with H-bond
accepting units at the appropriate position in the diamidine
derivatives could provide G·C bp recognition capability in the
AT sequence context. In addition, the increased sequence
recognition capability could provide a very productive approach
to enhance the design of new minor groove targeting drugs
against a range of diseases.13 A similar and complementary
approach has been very successful with design of mixed
sequence recognizing polyamides.24−30 These compounds,
however, have not been as successful in animal studies and
have not gone into human trials. Our rationally designed

compounds, with mixed DNA sequence recognition capability,
would mark a much needed breakthrough in expanding the
DNA targeting field.
Unfortunately, our understanding of G·C bp recognition by

small molecule minor groove binders is very limited, and this
lack severely restricts the use of the DNA minor groove for new
drug design and development. For the design of mixed binding
site compounds, incorporation of modules with H-bond
accepting groups for G·C bps is essential. As an initial design,
compounds with azabenzimidazole H-bond acceptors in quite
different types of structures have been prepared (Figure 1).31

We have been able to achieve G·C bp selective binding in this
new series and the ability to bind selectively to a G·C bp was
found to be quite compound structure and DNA sequence
dependent. This result shows that, although there is still much
that we do not know about mixed bp recognition in the DNA
minor groove, the new series with G·C recognition offers a
critically needed new lead. Such compounds are essential for
the development of diamidine derivative pairing rules for a
novel DNA minor groove binding language. To address the
basis for the new recognition module, we report a detailed
thermodynamic and kinetic study at different salt concen-
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trations and temperatures. The results reveal the molecular
interaction details between mixed A·T/G·C DNA sequences
and heterocyclic azabenzimidazole diamidine molecules. The
binding free energies have been determined from biosensor
surface plasmon resonance (SPR), while binding enthalpies and
heat capacities are from isothermal calorimetric titration (ITC).
Compound Design for G·C Base Pair Recognition. The

benzimidazole-based diamidine, DB1476 (Figure 1),32 is a very
strong A·T specific minor groove binder with poor G·C
sequence recognition. An initial test to determine whether
DB1476 could be converted to a G·C recognition compound
with a benzimidazole to an azabenzimidazole conversion
yielded DB2285. DB2285 showed a large reduction in A·T
binding with a slight enhancement of G·C binding strength
such that it had a slight G·C selectivity.27 With this encouraging
result we considered various compound design features to
enhance the G·C selectivity. Based on our previous results with
alkyl−aryl compounds,33 we felt that some flexibility in the

system might enhance G·C bp recognition in DB2285. This is
possible since specific H-bonding with the G-NH2 group is
critically dependent on the correct distance and angle for a
strong interaction. With our limited knowledge of the
requirements in minor groove binders, in general for G·C
recognition, a number of modifications of DB2285 were
prepared and their interactions with different DNA sequences
have been evaluated. By introducing mono −CH2O− or
−OCH2− substituted flexible isomers, DB2275 and DB2277
were prepared along with the disubstituted compound,
DB2272. Several analogues of these compounds were also
prepared (Figure 1) with the goal of finding the requirements
for strong and specific G·C recognition in this series. This
compound set illustrates the need for exploring wide chemical
and structural space in a series of compounds when searching
for G·C bp specific recognition. In the entire series, only
DB2277, and not, for example, the isomer DB2275 gave strong
G·C bp specific binding.31 The strongest binding of DB2277

Figure 1. Structure of compounds and DNA sequences used in this study. For SPR experiments, 5′-biotin labeled DNA sequences are used.
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was found with A-tract flanking sequences of the type, AnGTn.
To help understand the molecular basis for this result, detailed
binding studies were conducted for these compounds and an A-
tract mixed sequence, and the results are presented along with a
discussion of why we think the ability to recognize a G·C bp is
quite different and structure-dependent in this series of
derivatives.

■ MATERIALS AND METHODS
DNA Oligonucleotides. For the ITC experiments, the

hairpin DNA oligomers used were AAGTT [5′-CCAAGTTG-
CTCTCAACTTGG-3′], AAAGTTT [5′-CCAAAGTTTG-

CTCTCAAACTTTGG-3′], and AAATTT [5′-CCAA-
ATTTGCCTCTGCAAATTTGG-3′], with the hairpin loop
sequences underlined. Lyophilized DNA oligomers were
purchased from Integrated DNA Technologies, Inc. (IDT,
Coralville, IA) with HPLC purification. Doubly distilled water
was added to the solid DNAs to bring the concentration to
approximately 1.0 mM, based on the reported amount of DNA
from IDT. The molar concentrations of these hairpin DNAs
were then determined using a Cary 300 UV−vis spectropho-
tometer (Varian, Walnut Creek, CA) at 260 nm based on the
molar extinction coefficients (ε260) calculated by the nearest-
neighbor method.

Table 1. Biosensor-SPR Equilibrium Dissociation Constants (KD, nM) of DB2277 and Analogues with Pure A·T and Mixed
DNA Sequencesa

aThe listed binding affinities are an average of two independent experiments carried out with two different sensor chips and the values are
reproducible within 10% experimental errors. The experiments were conducted in Tris-HCl buffer (50 mM Tris-HCl, 100 mM NaCl, 1 mM EDTA,
pH 7.4) at 25 °C.
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Isothermal Titration Calorimetry (ITC). ITC experiments
were performed using a MicroCal VP-ITC (MicroCal Inc.,
Northampton, MA) interfaced with a computer equipped with
VP-2000 software for instrument control and Origin 7.0 for
data analysis. The sample cell was filled with 10 μM hairpin
DNA in 50 mM Tris-HCl buffer (50 mM Tris-HCl pH 7.4
having 1 mM EDTA, and 50−600 mM NaCl concentration),
and 29 injections of 10 μL of the compound solution were
performed incrementally at 20−45 °C. A delay of 300 s was
used between each injection to ensure the equilibration of the
baseline. The heat for each injection was obtained by
integration of the peak area as a function of time. The heats
of dilution, determined by injecting the compound into the
sample cell containing only buffer, were subtracted from those
in compound/DNA titrations to present the corrected binding
induced enthalpy changes. Because all the ligands bind quite
strongly to the sequences in this work, the heat/mol of added
compound is essentially constant in the initial titration region
where all added compound is bound to DNA. The ΔHb can be
determined by a linear fit as shown in Figures 5 and 6. A range
of compound concentrations and temperatures were used in
these experiments to optimize conditions for data collection.
Biosensor Surface Plasmon Resonance (SPR). SPR

measurements were performed with four-channel Biacore T200
optical biosensor systems (GE Healthcare, Inc., Piscataway,
NJ). A streptavidin-derivatized (SA) sensor chip was prepared
for use by conditioning with a series of 60 s injections of 1 M
NaCl in 50 mM NaOH (activation buffer) followed by
extensive washing with HBS buffer [10 mM HEPES, 150
mM NaCl, 3 mM EDTA, and 0.05% P20 (pH 7.4)].
Biotinylated DNA samples [AAATTT, AAAGTTT,
AAAGCTTT, and AAAITTT hairpins] (25−50 nM) were
prepared in HBS buffer and immobilized on the flow cell
surface by noncovalent capture as previously described.34,35

Flow cell 1 was left blank as a reference, while flow cells 2−4
were immobilized with DNA by manual injection of DNA stock
solutions (flow rate of 1 μL/min) until the desired amount of
DNA response units (RU) was obtained (320−330 RU).
Ligand solutions were prepared with degassed and filtered 50
mM Tris-HCl buffer (at pH 7.42) by serial dilutions from a
concentrated stock solution. Typically, a series of different
ligand concentrations (from 1 nM to 1 μM) were injected over
the DNA sensor chip at a flow rate of 100 μL/min until a
constant steady-state response was obtained (3 min), and this
was followed by buffer flow for ligand dissociation (10−20
min). After each cycle, the sensor chip surface was regenerated
with a 10 mM glycine solution at pH 2.5 for 30 s followed by
multiple buffer injections to yield a stable baseline for the
following cycles. RUobs was plotted as a function of free ligand
concentration (Cfree), and the equilibrium binding constants
(KA) were determined either with a one-site binding model (K2
= 0) or with a two-site model, where r represents the moles of
bound compound per mole of DNA hairpin duplex and K1 and
K2 are macroscopic binding constants.

= + + +r K C K K C K C K K C( 2 )/(1 )1 free 1 2 free
2

1 free 1 2 free
2

(1)

RUmax in the equation was used as a fitting parameter, and the
obtained value was compared to the predicted maximal
response per bound ligand to independently evaluate the
stoichiometry.35 Kinetic analyses were performed by globally
fitting the binding results for the entire concentration series

using a standard 1:1 kinetic model with integrated mass
transport-limited binding parameters as described previously.33

Mass Spectrometry. Mass spectrometry (MS) analyses
were performed on a Waters Q-TOF spectrometer (Waters
Corporate, Milford, MA) equipped with an electrospray
ionization source (ESI) in negative ion mode. Samples of
compound/DNA (1:1 and 2:1 ratios) were prepared in 100
mM ammonium acetate with 5% v/v methanol at pH 7.4 and
introduced into the ion source through direct infusion at 5 μL/
min flow rate. The instrument parameters were as follows:
capillary voltage of 2200 V, sample cone voltage of 30 V,
extraction cone voltage of 2.5 V, desolvation temperature of 70
°C, and source temperature of 100 °C. Nitrogen was used as
nebulizing and drying gas. Spectra were collected for the mass/
charge region of 300−3000 for 10 min, and the last 2 min of
the scan were used for analyses. Analyses and interpretation of
the deconvoluted spectra were performed using MassLynx 4.1
software.

■ RESULTS
Biosensor-SPR: Binding Affinity and Kinetics. The

biosensor-SPR method provides an excellent way to
quantitatively evaluate the interaction of a set of synthetic
small molecules with immobilized biomolecules.33−36 This
technique provides sensitive real time progress of interaction
rates as well as the equilibrium binding affinities of
biomolecular interactions. In our previous study31 we observed
that azabenzimidazole substituted diamidines (Figure 1) prefer
to bind to an A-tract sequence rather than to the wider minor
groove of alternating A·T (e.g., ATAGTAT) sequences. Hence,
in this work, detailed SPR experiments were conducted with
immobilized DNA hairpin duplex sequences containing either a
pure A-tract sequence (AAATTT) or mixed DNA sequences
containing a pure A-tract flanking sequence with one or two G·
C bp, such as AAAGTTT and AAAGCTTT (Figure 1).
As previously reported DB1476,32 a benzimidazole core

diamidine, is a strong binder with the pure A·T sequence,
AAATTT [KD = 0.4 nM (Table 1)]. DB2285, the
azabenzimidazole substituted analogue of DB1476, gave a
175-fold reduction in binding affinity to AAATTT (KD = 70
nM) relative to DB1476, and it binds with almost the same
affinity with mixed sequences that have a G·C bp (AAAGTTT,
KD = 63 nM). While DB2285 has improved G·C specificity, it is
clearly not well optimized for mixed sequence recognition. In
an effort to enhance the DNA minor groove binding affinity
and selectivity, an −OCH2− group was inserted as a linker
between the azabenzimadole and phenyl group to obtain
DB2277. A striking result is the strong interaction of DB2277
with AAAGTTT and particularly noteworthy is the very slow
dissociation of the complex (Figure 2). Even with a quite long
experimental dissociation time (∼20 min), total dissociation of
DB2277 from the complex is not complete. Global kinetics
fitting yielded a single binding site and an approximate KD of
0.3 nM for DB2277 with AAAGTTT. DB2277 shows very
different affinity toward the narrower minor groove of pure A·T
sequences with 80-fold (KD = 24 nM) weaker binding with
AAATTT than with the single G·C bp sequence. The
sensorgram of AAATTT shows an off-rate that is much faster
and complete dissociation from the complex occurs within the
first few minutes of the dissociation phase (Figure 2C). With
the wider minor groove sequence AAAGCTTT, DB2277 shows
200-fold weaker binding affinity under the same experimental
conditions. When “G” (AAAGTTT) is substituted by “I”
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(inosine) (AAAITTT) at the minor groove binding site, the
binding affinity decreases by 30-fold (KD = 10 nM) as would be
expected for disruption of hydrogen bonding between the
azabenzimidazole and G-NH2 (Figure 2B). These results
suggest that the binding aptitude of DB2277 depends on the
structure, width and chemistry of the minor groove of duplex
DNA and for this reason this molecule has excellent sequence
selectivity.
The para to meta positional change of the amidine on the

phenyl group in DB2277, DB2289, results in a 150-fold
decrease in binding affinity with the single G·C bp sequence,
and only a 5-fold sequence selectivity is observed. The
differences in binding affinity and sequence selectivity for
these two compounds, which differ only at the amidine group,
are very striking. DB2275, the structural isomer of DB2277,
binds with AAAGTTT as a much weaker monomer (KD = 185
nM) and has lower binding affinities with all of the DNA
sequences (Table 1 and Supporting Information Figure S1).
Two analogues of DB2275, DB2286 and DB2287, show similar
results. DB2272 has the −OCH2− and −CH2O− linkers at
both sides, and it recognizes the single G·C bp sequence about
100-fold more weakly than DB2277 (KD = 35 nM). The
combined SPR results of all the compounds clearly highlight
both the difficulties and significant successes in the develop-
ment of new ligands specific for G·C bp containing sequences.

The Effects of Salt Concentration on DB2277 Binding
to AAAGTTT. The SPR binding results indicate that DB2277
has an optimized size and curvature for strong and selective
recognition of a single G·C bp in an A-tract sequence. To
understand these significant findings in more detail, it is
essential to evaluate the thermodynamics of this compound

Figure 2. Representative SPR sensorgrams for DB2277 in the
presence of (A) AAAGTTT, (B) AAAITTT, and (C) AAATTT
hairpin DNAs. (D) Comparison of steady-state binding plots for
AAATTT and AAAGCTTT with DB2277. The data are fitted to a
steady state binding function using a 1:1 model to determine
equilibrium binding constants. In (A) and (B), the solid black lines are
best fit values for global kinetic fitting of the results with a single site
function.

Figure 3. (A−D) SPR sensorgrams (color) and global kinetic fits (black overlays) for DB2277 with the AAAGTTT DNA sequence at different salt
concentrations. (E) Salt dependence of KA for DB2277 binding as determined by SPR. The KA values were obtained by both global kinetic and
steady state fits at the two higher salt concentrations. (F) Plot of ΔGb°, ΔHb, and TΔSb versus salt concentrations for DB2277 with the AAAGTTT
sequence at 25 °C.
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with the single G·C bp sequence. To compare the effects of salt
concentration on binding of DB2277 with the single G·C bp
sequence, SPR experiments were carried out at 25 °C from 50
to 600 mM NaCl concentrations (Figure 3). The equilibrium
binding constants obtained by both global kinetic fits and
steady state fits are in excellent agreement and are collected in
Table 2 and Supporting Information Figure S2A. According to
the counterion condensation theory,37−40 the logarithm of the
equilibrium binding constants KA (=1/KD) (from global kinetic
fits) should be a linear function of the logarithm of salt
concentration as shown in Figure 3E. The KA values decrease
significantly as the salt concentration increases as is typical for
DNA−cation complexes.40 The slopes of the linear fits are ∼1.5
which is reasonable for a dication on DNA complex
formation.40 The number of phosphate contacts (Z) between
DB2277 and hairpin duplex DNA can be obtained by slope/Ψ
(Ψ = fraction of phosphate shielded by condensed counterions
and is 0.88 for double stranded B-DNA),41,42 and this gives a Z
of 1.70 ± 0.2. Thus, there are about two phosphate contacts
between DB2277 and DNA which is a very realistic value for
this dicationic molecule.
The Effects of Temperature on the DNA Binding

Affinity of DB2277. SPR experiments of DB2277 and
AAAGTTT were also conducted at different temperatures at
200 mM salt concentration (Supporting Information Figures
S2A and S3), and it is visually apparent from the sensorgrams
that the temperature has a significant effect on the on/off rate
of ligand binding (Table 3). However, temperature changes
have a small effect on the ΔGb° (Figure 4 and Table 3) as has
frequently been seen with DNA complexes near 25 °C.40

Isothermal Titration Calorimetry (ITC) of Complex
formation. ITC experiments were conducted to develop a
detailed understanding of the energetic basis for the strong and
weak binding of DB2277 and DB2275 with the AAAGTTT site
DNA. ITC provides a direct determination of the enthalpy,
ΔHb, and allows calculation of the entropy of binding, ΔSb. In
the experiments reported here, excess DNA is used in the
calorimeter cell such that all added compound is fully bound to
DNA and ΔHb can be directly obtained from the average
binding heat per mol without any specific model for fitting.
Subtracting the integrated peak areas for ligand/buffer titration
from the ligand/DNA titration allows a direct determination of
ΔHb (Table 3). Figure 5 shows a titration of DB2277 into
AAAGTTT and AAGTT with the buffer blank correction and
the ΔHb values are −4.2 ± 0.3 and −5.4 ± 0.1 kcal/mol,
respectively, at 25 °C at 100 mM salt concentration. The same
experimental conditions with DB2275, however, give a less
exothermic enthalpy change (−1.9 ± 0.1 kcal/mol). Thus,
changing the linker position at DB2275, to give DB2277, results
in a significant strong and selective exothermic enthalpy that
accounts for highly favorable ΔGb° for DB2277. On the basis of
SPR binding free energy value, ΔGb° = −RT ln K (R = 1.987
and T = 298 K), and from the ITC enthalpy value the TΔSb
was calculated from TΔSb = ΔGb° + ΔHb. The binding TΔSb is
highly favorable for the DB2277-DNA complex (8.8 kcal/mol).
However, the DB2275−AAAGTTT complex shows a reduction
in TΔSb (7.2 kcal/mol).

Determination of the Heat Capacity of the DB2277−
AAAGTTT Complex. The ITC experiments of DB2277 with
AAAGTTT were also carried out at different temperatures
(20−45 °C) with constant 200 mM NaCl concentration
(Figure 6) and the titration profile clearly indicated that
enthalpy of binding strongly depends on the experimental

Table 2. Kinetics and Steady-State Analysis of DB2277 with the AAAGTTT Sequence at Different Salt Concentrations in 50
mM Tris-HCl, 1 mM EDTA Buffer, pH 7.4 at 25 °Ca

KD (nM)

[NaCl] mM kinetic fit steady state ΔGb° (kcal/mol) ΔHb (kcal/mol) TΔSb (kcal/mol)

50d 0.2 ± 0.4 −13.2d −4.7 ± 0.2 8.5
100 0.3 ± 0.2 0.2 ± 0.1 −13.0b −4.2 ± 0.3 8.8
200 2.1 ± 0.6 4.3 ± 0.8 −11.8b −4.3 ± 0.1 7.5
400 8.8 ± 0.9 9.5 ± 2.0 −11.0c −4.1 ± 0.2 6.9
600 12.8 ± 2.0 13.2 ± 1.0 −10.7c −3.7 ± 0.4 7.0

aKinetic analysis was performed by global fitting with a 1:1 binding model. bData obtained from kinetic fit values. cData obtained from steady-state
fit values; ΔHb was determined in ITC experiments; TΔSb = −ΔGb° + ΔHb.

dResults are calculated from extrapolation of log KA vs log [NaCl/mM]
(Figure 3E).

Table 3. Kinetics and Thermodynamic Results for DB2277
with the AAAGTTT Sequence at Different Experimental
Temperatures at 50 mM Tris-HCl, 200 mM NaCl, 1 mM
EDTA Buffer at pH 7.4a

KD (nM)

T
(°C) kinetic fit

steady
state

ΔGb°
(kcal/mol)

ΔHb
(kcal/mol)

TΔSb
(kcal/mol)

20 0.8 ± 0.4 0.5 ± 0.3 −12.4b −3.1 ± 0.2 9.3
25 2.1 ± 0.6 4.3 ± 0.8 −11.8b −4.3 ± 0.1 7.5
35 4.2 ± 1.3 6.1 ± 0.7 −11.6c −5.1 ± 0.1 6.5
45 5.0 ± 0.8 8.2 ± 2.0 −11.8c −7.5 ± 0.2 4.3

aKinetic analysis was performed by global fitting with a 1:1 binding
model. bData obtained from kinetic fit values. cData obtained from
steady-state fit values; ΔHb was determined in ITC experiments; TΔSb
= −ΔGb° + ΔHb

Figure 4. Thermodynamic results, from Table 3 for binding of
DB2277 to the AAAGTTT site at different temperatures.
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temperature (Table 3). The heat capacity (ΔCp) of DB2277
was calculated from the slope of the linear fit of ΔHb versus
temperature plot (Figure 6D) and the linear fit yields a ΔCp of
−172 ± 5 cal M−1 K−1.
Effects of Salt Concentrations on Ligand-DNA Binding

Enthalpy. To evaluate the relationship between experimental
salt concentrations and the binding enthalpy and entropy, ITC
experiments were carried out at several salt concentrations and
Figure S4 shows the titration profile of DB2277 with
AAAGTTT. The results show that salt concentration has a
much smaller effect on ΔHb than on ΔGb° (Figure 3 and Table
2).
Mass Spectrometry: Stoichiometry, and Relative

Affinity. Electrospray ionization mass spectrometry (ESI-MS)
experiments allow the resolution of complex mixtures and
determination of stoichiometries and qualitative affinity for
complexes that are present simultaneously in an injected
sample.43,44 Figure 7 shows mass spectral comparisons of
selected ligand−DNA complexes. DB2277 shows a very high
intensity (1:1) peak for both the AAAGTTT and AAGTT
sequences. However, DB2277 shows a (1:1) complex peak also

for AAATTT, but up to (2:1) (results not shown) compound
to DNA ratios of the original DNA peak is present, which is not
observed for single G·C bp containing sequences. These results
provide excellent support for the strong monomer binding of
DB2277 with single G·C containing sequences.

■ DISCUSSION
The sequence selective recognition of G·C containing mixed
base pair DNA sequences, which are widely found in many
critical biological sequences, by rationally designed small
molecules is one of the most challenging areas of research in
molecular recognition. DB2277 is the first designed, non-
polyamide minor groove binder that can selectively bind to a
mixed A·T and G·C bps DNA sequence.31 Initial results
showed that DB2277 has excellent sequence selectivity and
strong binding affinity with sequences such as AAAGTTT. This
important finding shows that rational design of compounds to
recognize mixed bp sequences is quite feasible. To better
understand this unique DNA−compound complex, more
detailed biophysical and thermodynamic analyses were
conducted. Although there are many studies of A·T specific

Figure 5. ITC data for the titration of (A) DB2277-AAAGTTT, (B) DB2277-AAGTT, and (C) DB2275-AAAGTTT. Injections of 10 μL aliquots of
50 μM ligand into 10 μM hairpin duplex DNA at 25 °C in 50 mM Tris-HCl, 100 mM NaCl, 1 mM EDTA buffer, pH 7.4. The ITC raw data, located
in the top panel, is the power output per injection as a function of time. The bottom panel is the peak integration of the data that shows the heat
produced per injection as a function of the hairpin/ligand molar ratio.

Figure 6. (A−C) ITC data for the titration of DB2277 and AAAGTTT DNA at different experimental temperatures. (D) Plot of ΔHb versus
temperature for DB2277 with AAAGTTT DNA, and the linear fit yields a ΔCp of −172 ± 5 cal M−1 K−1.
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minor groove binding, our knowledge of minor groove binders
with mixed A·T/G·C bp sequences is mostly limited to
polyamides.45 Detailed studies of the salt and temperature
dependent thermodynamics of DB2277 binding can help fill a
missing piece of fundamental information about compounds
that target the minor groove of DNA. DB2277 is a paradigm for
design of a new class of sequence specific DNA binding agents.
DB1476 is a control benzimidazole-diamidine compound

with strong A·T selective minor-groove binding. This type of
recognition is understandable given its shape match to the
minor groove and its strong hydrogen bond donating ability
with A·T bp through the benzimidazole and amidine moieties.
Changing the benzimidazole to an azabenzimidazole core in
DB2285 resulted in a decrease in A·T sequence specific binding
by a factor of 175. Given the structural similarities between
benzimidazole and the aza analogue, structural differences
cannot explain the large decrease. The aza −N, however, can
hydrogen bond with water when the compound is not bound,
but the water and H-bonds are lost on binding. The aza
interaction with an A·T bp is not favorable and all of these
features result in a large binding decrease. At the same time the
binding affinity with a single G·C bp containing sequence
remains the same or slightly higher than DB1476, which is a
very key observation toward the aim of selective mixed DNA
sequence recognition. The azabenzimidazole group thus binds
well to a G·C bp with adjacent A·T bps but it binds poorly in a
pure A·T sequence. DB2285, however, is clearly not an

optimum shape to target mixed sequences and we initiated
synthetic efforts to prepare an optimized compound.
A significant breakthrough in DNA binding affinity and

selectivity was observed on incorporation of a single −OCH2−
linker between the azabenzimidazole and phenyl in DB2285 to
give DB2277 (Figure 1). The flexibility, curvature of the
compound, and the minor groove shape of G·C bp containing
sequences allow close proximity between the azabenzimidazole-
N (Ar-N) and G-NH2. DB2277 binds with AAAGTTT and
AAGTT sequences as a monomer in the sub-nanomolar KD
(0.3 nM) range and, very importantly, gives 80 fold selectivity
over the narrower minor groove of pure A·T sequences. On
changing the nucleobase from G to I, the curvature and the
width of the minor groove remain almost the same46 but the
absence of the G-NH2 group, which plays a very important role
in the drug−DNA hydrogen bond interaction,45 causes a 30-
fold drop in binding affinity for the DB2277−AAAITTT
complex. Reduction in binding affinity of this complex clearly
supports a model with the Ar-N of DB2277 taking part in
strong H-bonding with the G-NH2 group in sequences such as
AAAGTTT.
It is quite informative that a structural isomer of DB2277,

DB2275, shows very poor DNA binding ability. Placing
−CH2O− and −OCH2− linkers at both positions in DB2272
also results in a loss (∼100-fold) in complex stability. The
optimized geometry results of these molecules (Supporting
Information Figure S5) (B3LYP/6-31G* level) revealed
important features about their conformation which can help

Figure 7. Mass spectra of DB2277 with various hairpin DNA sequences. Samples containing (1:1) (10 μM of each oligonucleotide) compound to
DNA ratio at 150 mM ammonium acetate/5% methanol (v/v) buffer at pH 6.8.
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explain the different DNA binding affinity. By introducing the
−OCH2− flexible linker between the phenylamidine and the
azabenzimidazole, DB2277, the proper curvature and shape of
the compound for the minor groove recognition is obtained.
The flexibility of DB2277 helps to orient the azabenzimidazole
moiety close to the G-NH2 group to allow a hydrogen bond
between the Ar−N of the compound and G-NH2 (Figure 8).

The adjacent −O− and aza −N− may also enhance the
interaction with the G-NH2. The optimized geometry of
DB2275 shows that insertion of a −CH2O− linker at the 2-
position of the azabenzimidazole core causes a low energy out-
of-plane geometry of the phenylamidine group (Supporting
Information Figure S5) This conformation lowers the DNA
binding ability due to the energy cost of converting DB2275 to
a more planar conformation to fit the minor groove width. In
DB2272, the presence of both the −OCH2− and −CH2O−
linkers at two sites of the azabenzimidazole moiety adopted the
mixed conformation of DB2277 and DB2275 which explains
the in-between DNA binding affinity of the molecule.
Therefore, in DB2277, we have optimized the flexibility, linker
position, and the curvature for selective recognition of single G·
C bp containing mixed DNA sequences. Moving one terminal
amidine to a meta position (DB2289) results in a dramatic
decrease in binding affinity and sequence selectivity, and this
indicates that not only the shape of the main scaffold but also
the position, molecular curvature, and the distances between
two positively charged amidine groups play crucial roles in
ligand−DNA interaction.
A very rapid association and very slow dissociation has been

observed from SPR experiments for DB2277-AAAGTTT
complex formation. The rapid association is in agreement
with a well optimized geometry of DB2277 for a slightly wider
minor groove of a single G·C bp containing sequence. The on
rate in SPR for the second order reaction of DB2277 with DNA
at 6 nM, a concentration significantly above the KD, for
example, has an apparent half-life of 32 s while the half-life for
the first order dissociation reaction is more than 230 s. This
gives exceptionally strong binding with a KD of approximately
0.3 nM.

The binding affinity between small molecules and DNA
depends on changes in enthalpy and entropy during the
binding processes. Previously, we have determined detailed
thermodynamic results mainly for heterocyclic dications which
selectively bind A·T sequences.47 All of these molecules give
binding enthalpies ΔHb = ∼−5 kcal/mol or less and a
significant entropy component at 25 °C with an AATT
sequence which has a narrow, A-tract type, minor groove
geometry.47

The full thermodynamic data for binding of DB2277 and a
mixed A·T/G·C bp containing sequence, AAAGTTT, are
summarized in Figure 4 and Tables 2 and 3. The negative
enthalpy indicates a favorable contribution to complex
formation for DB2277 with AAAGTTT. The very slow
dissociation and negative enthalpy change for the DB2277−
AAAGTTT complex agree with strong hydrogen bond
formation between the Ar-N and G-NH2. The calculated high
TΔSb value (8.8 kcal/mol) indicates displacement of structured
bound water molecules from the minor groove of duplex DNA
during the DB2277−AAAGTTT complex formation. This is
expected for the A-tract regions flanking the G·C bp.40 The
complex thus has very favorable enthalpy and entropy
components in binding.
Due to the dicationic nature of DB2277, the effects of

electrostatic contribution or ionic strength of the medium play
a crucial role on DNA−ligand complex formation. It is clear
from the shapes of the binding curves and the fitting of the SPR
results (Supporting Information Figure S1) that DB2277 has
varying on and off rates when changing the salt concentration.
The rate of association decreases and rate of dissociation
increases with increasing the salt concentration. A linear
dependence has been observed between the logarithm of the
binding constant and the logarithm of salt concentrations
(Figure 3E) and it shows that the binding affinity decreases
with an increase in the ionic strength or salt concentration, as
expected.40 The enthalpy of complex formation, which is
primarily the result of interactions like hydrogen bond
formation and van der Waals interactions, is essentially
independent of salt concentration, again as expected. On the
other hand, the electrostatic component of binding, which is
mainly responsible for entropic change of the complex
formation, changes significantly on changing the experimental
salt concentration. The Gibbs free energy, the difference of sum
of the binding enthalpy and the entropy (TΔSb), also changes
with salt concentrations.
Changes in the experimental temperatures from 20 to 45 °C

result in the binding enthalpy becoming more negative which
indicates a more favorable contribution to complex formation
as expected from the water loss in A-tract regions. On the
contrary, the binding entropy becomes less positive with
increasing temperature. With increasing temperature the highly
ordered tight bound water molecules become more mobile
which gives less entropy changes after these are displaced by
DB2277 from the minor groove. A negative ΔCp of −172 cal
M−1 K−1 has been calculated from the slope of ΔHb vs
temperature plot and is in agreement with results for other
similar minor groove binding dications of a similar size.40

However, the Gibbs free energy depends on the difference of
the sum of the binding enthalpy and the entropy of complex
formation and changes very little with temperatures.
In summary, a library of azabenzimidazole substituted

molecules, based on the parent pure A·T specific ligand
DB1476, has been designed with the goal of recognizing mixed

Figure 8. Schematic model of the A·T/G·C containing mixed DNA
sequence (AAAGTTT) and azabenzimidazole diamidine (DB2277)
interaction.
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DNA sequences with A·T and G·C bp. The combined
experimental data established how a sequence specific minor
groove binding ligand can be obtained with an azabenzimida-
zole core and the correct shape. DB2277 represents a major
breakthrough in this process. The interactions, which give a
high association and slow dissociation rate constant with an
AAAGTTT sequence, make DB2277 a strong sequence specific
ligand. On the other hand, the binding decreases after
replacement of G by I in the minor groove of the DNA
sequence and is a clear indication of a strong H-bond
interaction between G-NH2 and the central azabenzimidazole
moiety. The detailed thermodynamic and kinetic analyses
reveal that, like other DNA minor groove binding organic small
molecules, the binding enthalpy, entropy, and free energy of the
DB2277−AAAGTTT complex highly depend on the exper-
imental salt concentrations and the temperatures. Importantly
this study opens a new horizon of DNA recognition by
rationally designed organic small molecules. To get more
detailed DNA−ligand structural information extensive 2D
NMR studies for DB2277, and single G·C bp containing
DNA sequences are ongoing in our laboratory and will be
reported in due course. Encouraged by the excellent affinity and
sequence specificity of DB2277, our research is focusing on the
design of other classes of ligands which will bind more complex
sequences with high specificity.
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