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Abstract: This study investigated whether biogas reactor performance, including microbial
community development, in response to a change in substrate composition is influenced by initial
inoculum source. For the study, reactors previously operated with the same grass–manure mixture
for more than 120 days and started with two different inocula were used. These reactors initially
showed great differences depending on inoculum source, but eventually showed similar performance
and overall microbial community structure. At the start of the present experiment, the substrate was
complemented with milled feed wheat, added all at once or divided into two portions. The starting
hypothesis was that process performance depends on initial inoculum source and microbial diversity,
and thus that reactor performance is influenced by the feeding regime. In response to the substrate
change, all reactors showed increases and decreases in volumetric and specific methane production,
respectively. However, specific methane yield and development of the microbial community showed
differences related to the initial inoculum source, confirming the hypothesis. However, the different
feeding regimes had only minor effects on process performance and overall community structure,
but still induced differences in the cellulose-degrading community and in cellulose degradation.

Keywords: anaerobic digestion; co-digestion; continuous stirred-tank reactor (CSTR); bio-methane
potential (BMP)-test; next-generation amplicon sequencing; terminal restriction fragment length
polymorphism (T-RFLP); qPCR; glycoside hydrolase families 5 and 48

1. Introduction

Biogas, produced via anaerobic digestion, represents a valuable renewable energy resource that
can replace part of the fossil fuel-based energy used today, resulting in climate and economic benefits [1].
Many types of organic materials can be used for biogas production, but agricultural residues (manure
and crop residues, such as stalks, straw, husks, cobs, grass, etc.) are of particular interest due to high
abundance and thus high gas potential [2]. However, the high content of lignocellulose and nutrient
imbalances often limit the degradation efficiency of agricultural residues [3]. An additional limitation
with manure is high water content, making it difficult to achieve high organic loads and volumetric
gas production [4]. Some of the obstacles with these types of materials can be overcome by various
pre-treatment methods, making the material more accessible to microbial and enzymatic attack [5],
or by co-digestion with materials that provide complementary nutrients [6]. For manure-based biogas
plants, co-digestion also offers possibilities to increase the organic load. By combining manure with a
high-water content with a more energy-dense material, such as crop/crop residues, the organic load
can be increased without significantly decreasing the hydraulic retention time (HRT) [4,6,7].
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A prerequisite to achieving efficient biogas production is an active microbial community in
balance [8]. Parameters shown to impact the community include operating parameters, such as
temperature, organic loading rate (OLR), substrate composition, and feeding regime [9–11].
Many studies have looked for correlations between microbial composition and reactor function, but most
have not found consistent relationships [12,13]. Some studies suggest positive correlations between
diversity and function [14,15], but a correlation between low diversity and high function has also
been reported [16]. Still, positive correlations are often seen in connection with a specific type of
substrate/environment. For example, for the function of processes operating with protein-rich materials
and consequently high ammonia concentrations, the importance of syntrophic acetate-oxidizing
bacteria has been highlighted [17]. For the degradation of lipids, positive correlations with the level
of Syntrophomonas have been shown [18]. For cellulose degradation, positive correlations with the
level of Clostridium cellulolyticum have been observed [12]. Feeding regime has also been shown to
influence function, diversity, and community structure [9,19–23], with some studies showing positive
correlations between more frequent feeding regime and higher microbial diversity [19,21,23], however,
not necessarily resulting in better reactor function [9,22–24].

The aim of the present study was to increase the understanding of the relationship
between community structure and performance and efficiency of a biogas process operating with
lignocellulose-rich substrates. More specifically, the aim was to investigate the importance of original
inoculum source, used during start-up, when adding a cosubstrate to biogas processes operated with
the same substrate and showing similarity in both performance and overall microbial composition.
The hypothesis is that the reactors will respond differently to the change in substrate depending on the
microbial community present in the initial inoculum.

To test the hypothesis, reactors operated in a previous study were used in the present experimental
work [15]. These reactors were initially started with different inocula characterized by differences in
community structure and diversity, and fed a mixture of cow manure and silage grass. The reactors
initially showed significant differences in degradation efficiency and methane yield but over time,
after operation for more than 3 HRT, the processes became similar regarding both performance and
overall community structure and diversity, as analyzed by targeting 16S rRNA gene [15]. However,
specific analysis of the potential cellulose-degrading community, targeting the genes encoding cel 5 and
48 glycosidases, revealed that the reactors still differed in this regard at the end of the experiment [15].
In the present study, these reactors were complemented with milled feed wheat (MFW) as an additional
cosubstrate. It was selected as a cosubstrate because its high total solids (TS) concentration allowed
the organic load to be increased without significantly altering the HRT. The MFW was either added all
at once, together with the grass-manure mixture, or divided into two portions, in order to evaluate
also the effect of feeding regime. The reactors were operated for more than 3 HRT and their overall
performance regarding methane yield stability and changes in microbial community structure were
investigated. Both the total microbial community and potential cellulose degrading bacteria were
analyzed. Degradation of the substrates and of pure cellulose was also investigated in batch cultures
started with inoculum from the reactors at the beginning and end of the experimental period.

2. Materials and Methods

2.1. Laboratory-Scale Semi-Continuous Anaerobic Reactors

Two laboratory-scale continuous stirred-tank reactor (CSTR) processes in duplicate reactors
were initially started with inoculum from two different full-scale biogas processes (codes GB, GC)
in Sweden [15]. Operating information on the full-scale plants can be found in our previous
publications [12,15]. Based on the inoculum origin, the reactors were named GB1 and GB2, and
GC1 and GC2. In the 120 days before the start of the present experiment (day 0), the reactors were fed
with the same substrate, a grass-manure mixture (Table 1) [15], for six days a week (once a day), with
an average daily load of 2.6 g volatile solids (VS)/L and 40-day HRT. After 42 days of operation in
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the present study, MFW (Table 1) was added to all four reactors with average daily load gradually
increasing from 0.6 to 1.7 g VS/L (6 days a week, from day 42 to 70) (Figure 1), resulting in a total
average daily load of 4.3 g VS/L and a HRT of 37 days. From day 70, the reactors were fed with the
full load of MFW (1.7 g VS/L day) in different feeding regimes: reactors GB1 and GC1 were fed all
MFW at the same time as the grass-manure mixture, while GB2 and GC2 were fed the MFW in two
portions, with half the amount fed 2 h after adding the grass-manure mixture and the remaining half
after another 2 h. In total, the reactors were operated for 231 days, corresponding to 4.5 HRT at a full
load of MFW. All reactors were operated at mesophilic (37 ◦C) temperature, a stirring speed of 90 rpm,
and a HRT of 37 days. Samples of liquid (15 mL) were taken at day 0, 77, 106, 147, and 231 and frozen
at −20 ◦C for later analysis of the microbial community structure.

Table 1. Composition of the grass-manure mix and milled feed wheat (MFW) substrates. Values (%)
based on wet weight.

VS Crude Protein Starch Crude Fat Crude Fiber Ash

Manure-grass
mixture 10.2 2.1 0.4 4.9 26.2 9.0

MFW 84.0 16.0 28.0 5.0 6.5 3.5

2.2. Anaerobic Batch Test

The methane potential of the substrate was analyzed by a bio-methane potential (BMP) test [15],
performed on two time points. On the first time point (test I), digestate samples from the duplicate
reactors, before MFW addition, were pooled and used as inoculum (GB0_0 and GC0_0). On the
second time point (test II), inocula were taken from all the laboratory-scale reactors after 231 days of
operation, corresponding to an operating period of 4.5 HRT at full MFW load, and used in separate
tests (GB1_231, GB2_231, GC1_231, and GC2_231). The grass-manure mixture, MFW, and cellulose
(control group) were evaluated on both time points, i.e., with all inocula. Before starting the tests,
all inocula were kept at 37 ◦C for seven days to decrease biogas production from the endogenous
material. At the start of the BMP test, inoculum and substrate were mixed in a serum bottle (309 mL)
under flushing with nitrogen gas (N2). The amount of inoculum and substrate was 12 g and 3 g VS/L,
respectively, i.e., the inoculum to substrate ratio was 4:1 [25,26]. Tap water was added to the bottles to
reach a final liquid volume of 193 mL. Each substrate was evaluated in triplicate bottles. Additionally,
to monitor background gas production from inoculum alone, three bottles were initiated by adding
the same amount of inoculum and water to reach the same final liquid volume, but with no substrate.
All bottles were incubated on a rotary shaker at 37 ◦C and 130 rpm. Gas production was quantified
by pressure measurements, and the methane content was analyzed by sampling (2 mL) followed
by analysis by gas chromatography (GC) [27]. After each sampling, the pressure in the bottles was
released. The biogas and methane values were standardized to normal atmospheric pressure (273.15 K,
1 bar). The accumulated amount of methane was plotted over time, and the value obtained after
leveling off was considered the specific methane production (ml CH4/g VS). The efficiency of methane
production in each reactor was further evaluated by transferring the time (days) spent to reach 50%,
80%, and 100% of the final methane potential.

2.3. Residual Methane Emissions Measurement

The residual methane potential of the digestate was measured twice, on the same time points as
the BMP tests, by incubating 50 mL digestate from the four laboratory-scale reactors, i.e., digestate
from day 0 and day 231, at 37 ◦C for approximately 52 days, when the methane production leveled off.
Sampling and analysis of methane production during the incubation were performed according to the
method described above.
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2.4. Analytical Methods

2 mL gas samples were withdrawn weekly from each reactor to determine the methane content
by gas chromatography according to a previously described method [27]. At the same time, 15 mL
liquid samples (digestate) were taken to determine pH [28] and volatile fatty acid (VFA) content by
high-performance liquid chromatography (HPLC) [27]. The pH was determined directly after sampling.
Liquid samples (400 mL) were also taken on two-time points and sent to a commercial analytical
laboratory (Agrilab, Uppsala, Sweden) for determination of the concentration of total nitrogen and
ammonium-nitrogen according to standard ISO methods 13878:1998 and 11732:2005, respectively.
Total carbon was measured according to standard ISO 10694 and total phosphorus, total sulfur, and
total potassium according to Swedish standard SS 28311. Composition of the MFW was determined by
Nord Mills Co. and that of the grass-manure mixture by the laboratory at the Department of Animal
Nutrition and Management (Swedish University of Agricultural Sciences, Uppsala, Sweden). Starch
content was determined by an enzymatic method according to Åman and Hesselman (1984). Crude
protein content was analyzed according to the Nordic Committee on Food Analysis (1976) method
for nitrogen determination in food and feed (Kjeldahl, No 6, 3rd Edn), using a 2520 Digestor, Kjeltec
8400 Analyzer unit, and 8460 sample unit (FOSS Analytical A/S Hilleröd, Denmark). Crude fat was
determined according to the Official Journal of the European Communities method for determination
of crude oils and fat (Commission Directive 98/64/EC, 1998), using a Hydrotec 8000 and Soxtec 8000
extraction unit (FOSS Analytical A/S Hilleröd, Denmark). Weight of total solids and volatile solids
in the inocula and substrate samples was measured according to international standard methods
published by the American Public Health Association (1998).

2.5. DNA Extraction and Microbial Community Analysis

For DNA extraction, liquid samples (15 mL) from the semi-continuous processes were taken at the
time for starting the present study (inocula, 0 day) and after 77, 106, 147, and 231 days (around 1, 2, 3,
and 5 HRT, respectively) of operation with the MFW and the grass–manure mixture. Aliquots of 200 mg
in triplicate were used to extract total genomic DNA, as described previously [15]. The degenerate
primer sets 515’F and 805R were used to amplify the 16S rRNA genes of both archaea and bacteria
to build amplicon libraries for next-generation amplicon sequencing [29]. The PCR products were
purified by using AMPure XP (Beckman Coulter, Inc. Brea, CA, USA) and eluted with 20 µL EB
buffer, and quantified by using Qubit (Invitrogen, Thermo Fisher Science, Waltham, MA, USA).
The concentrations of the final PCR product were adjusted to 5 nM with EB buffer and 2 µL of each final
adjusted PCR product were pooled together. The next-generation amplicon sequencing was performed
at SciLifeLab in Uppsala, Sweden, using MiSeq system. The raw DNA sequencing data obtained were
submitted to the National Center for Biotechnology Information database (NCBI) under accession
number: from SRR5808389 to SRR5808384, and analyzed through the open-source bioinformatics
pipeline: Quantitative Insights into Microbial Ecology (QIIME) with loaded module bioinfo-tools,
QIIME/1.8.0/1.9.1, SeqPrep and Cutadapt [17]. Specifically, the adaptor and primer sequences were
trimmed using the following criteria: (1) Trim base from the 3′ end which had a quality below 10.
(2) Remove read if it contained N base, was longer than 300 bp, or did not contain primer sequences.
The trimmed paired end reads were further processed in QIIME/1.8.0/1.9.1 [30]. Join_paired_ends.py
was used for joining paired end reads with minimum overlap 150 bp bases, using the SeqPrep method
(https://github.com/jstjohn/SeqPrep). The joined reads were used for splitting into libraries with
no barcode errors allowed, and only one consecutive low-quality base call was allowed per read.
Any read that with Phred quality scores below 20 were removed. Then, the operational taxonomic
units (OTUs) were assigned by using the open reference OTU pick strategy [31]. The criteria for OTU
clustering was set to a threshold of 97% similarity and performed with Uclust against Greengenes core
set (gg_13_8) [32]. The most abundant sequence in each OTU was selected as a representative sequence
and further aligned against the Greengenes core set using PyNAST software [33]. The chimeric
sequences were discarded using ChimeraSlayer [34]. Taxonomy was assigned to each OTU using the

https://github.com/jstjohn/SeqPrep
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Ribosomal Database Project (RDP) classifier with a minimum confidence threshold of 80% [35]. Then,
OTUs that at least be observed in three samples and contained at least 0.0025% of total reads were
retained and used to build the final OTU table. Alpha diversity (Chao1, Shannon and Simpson index
and richness) and Beta diversity (unweighted UniFrac distance matrix) analysis were performed using
QIIME/1.8.0/1.9.1 [30].

According to the result from sequencing, three methanogenic groups: Methanobacteriales,
Methanomicrobiales, and Methanosarcinaceae were quantified by quantitative polymerase chain
reaction (qPCR) using the primer sets MBT, MMB, and Msc, respectively [27]. The qPCR protocol and
analysis were performed as described previously [27]. The potential cellulose-degrading bacterial
community in the substrate and in the digestate after 154 days of operation was analyzed by terminal
restriction fragment length polymorphism (T-RFLP) targeting the genes of glycoside hydrolase
families 5 and 48, according to the procedure described previously [12]. The length patterns of
the fragments obtained were compared with the sequences of clone libraries established in our earlier
publications [12,36].

3. Results and Discussion

3.1. BMP Test

In the first BMP test (test I), the final methane potential of all substrates tested reached a mean
value of 357 ± 45 mL CH4/g VS and showed no significant difference between the different substrates
or the different inocula (pairwise t-test, p > 0.05) (Table 2). These values were at the same level as
observed before for similar substrates, e.g., cow manure, grass, and cellulose [4,12]. The values in the
second test were in the same range, but some differences could be seen. The average BMP value for
cellulose and MFW reached 291 ± 46 and 300 ± 38 mL CH4/g VS, respectively, with a slightly higher
value for cellulose in GB1_231 compared with GB2_231 (Table 2 and Figure S1). For the grass–manure
mixture the final methane potential in the second BMP test (test II) using inoculum from the GB
reactors was significantly lower as compared with test I; 252 ± 29 (GB1_231) and 289 ± 11 (GB2_231)
compared to 329 ± 27 mL CH4/g VS (GB0_0) (pairwise t-test < 0.01). For GC, however, the values for
MFW remained more similar to those in test I; 327 ± 46 (GC1_231) and 375 ± 73 (GC2_231) compared
to 382 ± 71 mL CH4/g VS (GC0_0) (Table 2). Moreover, the average BMP value obtained for the
grass–manure mixture in GC1_231 and GC2_231 (353 ± 62 mL CH4/g VS) was significantly higher
than in GB1_231 and GB2_231 (270 ± 28 mL CH4/g VS) (student t-test, p < 0.02), suggesting the
importance of initial inoculum source.

The time to reach the final methane potential was in the first test (I) between 28–52 days, with the
longest time for the grass manure mixture. This suggests that the manure grass substrate will not be
fully degraded in the semi-continue process having 30 days retention time. Moreover, significantly
longer times were needed to reach the final potential, as well as 50% and 80% of this potential, for all
the substrates, in the second (II) compared with the first (I) test (student t-test, p < 0.01) (Table 2). Still,
higher degradation efficiency for cellulose was seen in GB1_231 compared with GB2_231, which might
indicate a small effect of the different feeding approaches for this process (Table 2 and Figure S1).
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Table 2. Final methane potential (mL CH4/g VS) and time taken to reach 100%, 80%, and 50% of this potential with cellulose, grass–manure mixture, and milled feed
wheat (MFW) substrates for the two different inocula (GB, GC) in the biomethane potential (BMP) test. The methane values were standardized to normal atmospheric
pressure (273.15 K, 1 bar).

Cellulose Grass-manure mixture MFW

Days to Reach % of
Final Potential

Final
Potential

Days to Reach % of
Final Potential

Final
Potential

Days to Reach % of
Final Potential

Final
Potential

Test Inoculum 100% 80% 50% 100% 80% 50% 100% 80% 50%

I
GB0_0 28 14 9 261 ± 33 52 16 5 329 ± 27 28 14 4 282 ± 24
GC0_0 28 14 9 281 ± 17 52 17 7 382 ± 71 28 13 5 307 ± 53

II

GB1_231 119 56 21 350 ± 43 47 17 9 252 ± 29 65 27 15 278 ± 13
GB2_231 119 61 35 270 ± 72 119 55 8 289 ± 11 119 54 19 322 ± 51
GC1_231 119 61 35 308 ± 4 119 45 17 327 ± 46 119 54 25 333 ± 43
GC2_231 119 61 38 274 ± 30 119 37 15 379 ± 73 119 39 25 307 ± 14
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3.2. CSTR Processes

This experiment was started with four reactors previously operated in another study [15],
where they were initially started with two different inocula and were shown to have very different
performance in the initial phase of operation, but similar performance by the end. In the present
study, the reactors showed similar initial performance after complementing the grass–manure mixture
with MFW. Irrespective of the feeding regime, co-digestion with MFW increased the total methane
production compared with the grass–manure mixture alone in all four semi-continuous processes.
In the initial phase, the level increased gradually from 3818 ± 158 to 5317 ± 304 mL CH4/day (average
value for day 0–42 and day 56–112, respectively) and then increased rapidly and reached a peak of
6669 ± 439 mL CH4/day on day 140. Thereafter, total methane production decreased gradually and
stabilized at 5362 ± 205 mL CH4/day (day 182–231), i.e., after 3 HRT of operation with a full load of
MFW (Figure 1). This final value represented an increase of around 29% over the initial level before
addition of the MFW, as also observed in our previous study [15].
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Figure 1. Primary Y-axis: total average methane (CH4) production (mL/day) in four continuous
laboratory-scale biogas reactors originally started with two different types of inoculum (GB, GC) and
codigested with substrates of grass–manure and milled feed wheat (MFW) in two feeding regimes, full
load (GB1, GC1) and split load (GB2, GC2) at 37 ◦C. The methane values were standardized to normal
atmospheric pressure (273.15 K, 1 bar). Secondary Y-axis: the total OLR (g VS of the substrates per L
reactor volume per day).

As expected, increasing the load by addition of MFW resulted in a significant increase in
volumetric gas production, thus giving more efficient use of available digester volume. Several
previous studies have shown a similar positive effect of codigesting energy-dense materials with
manure [4,6,7,37]. However, an increase in OLR also resulted in foaming (day 112) and increased VFA
levels, suggesting some instability in the processes (Table S1). Still, this foaming was only temporary
and lasted for approximately two weeks, after which the problem stopped. Shortly after (on day 140)
a peak was observed in the CH4 production (Figure 1, Figure S2; 312 ± 16 mL CH4/g VS). This peak
might be explained by nutrients accumulating and being converted to CH4 by microorganisms when
the foam disappeared.

Even though an increase in total methane yield was obtained, both specific methane production
(SMP, defined as the normalized volume of CH4 produced per g VS of the substrate) and degree of
degradation (VS reduction) decreased in response to MFW addition (Figure S2). The SMP level in all
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digesters was on average 296 ± 16 mL CH4/g VS before addition of MFW (day 0–42) and 249 ± 18 mL
CH4/g VS after addition (day 182–231). This decrease was not expected as the BMP values for the
grass–manure mixture and the MFW were similar and thus the SMP should theoretically not decrease
(Table 2). Still, the results were also supported by the BMP tests, illustrating decreased degradation
efficiency in test II compared to test I (Table 2). Moreover, the corresponding VS reduction before and
after MFW addition was 74.1 ± 3.4% and 63.7 ± 3.5%, respectively. Thus, combined these results
suggest that the increase in load by addition of MFW resulted in less efficient degradation than when
the grass–manure mixture was used as the sole substrate.

Differences in feeding regime did not result in any statistically significant differences in volumetric
or specific methane yield. However, there were some minor differences related to process performance,
e.g., VFA accumulation. Accumulation of VFA started around day 112 in all reactors, when the OLR
reached 4.3 g VS/L day (Table S1). The total level fluctuated somewhat but was highest at day 224
(1.6–4.6 g/L). Accumulation of VFA is linked to less efficient biogas production and typically occurs
when there is an imbalance between different microbial degradation steps. A high propionate to acetate
ratio can be taken as an early indicator of a risk of process failure [38]. In this study, the propionate to
acetate ratio showed some differences depending on the feeding regime, with GB1 and GC1 showing
slightly higher values than GB2 and GC2 after day 203 (Table S1). The VFA accumulation was also
associated with the foaming event, but in that case, no differences related to the feeding regime were
observed. Foaming can be triggered by many parameters such as the production of surface-active
substances, abrupt degassing, viscosity, alkalinity, insufficient mixing, and accumulation of VFAs [39].
In our previous study, the reactors had been operated with the grass–manure mixture for a long time
without any VFA accumulation or foaming [15]. Thus, the instability in the present study was clearly
caused by the introduction of MFW as a substrate. In comparison with manure, the MFW had higher
levels of protein and starch (Table 1). When protein is degraded ammonium-nitrogen is released.
In this study, the ammonium-nitrogen concentration increased from 1.05 ± 0.5 to 2.6 ± 0.12 g/L as a
result of MFW addition (average of all reactors, from day 0 to 224). Ammonium is in equilibrium with
ammonia, a well-known inhibitor of biogas processes (specifically by inhibiting methanogens) [40],
and this could possibly have caused the VFA accumulation followed by foaming. However, taking
into account the pH (7.6–7.7) and temperature (37 ◦C), the level of free ammonia was calculated and
found to be at most only around 0.16 g/L. This level was still low and below levels previously shown
to cause inhibition [41]. Thus, a more likely explanation for the foaming was the introduction of starch
by the MFV addition, which is typically converted rapidly to VFAs [39]. Previous studies investigating
the effect of feeding regime on reactor performance have reported somewhat contradictory results
and no consistent influence on key process parameters such as gas yield, degree of degradation,
and VFA levels [9,19,21–24]. For example, no clear effect of the feeding regimes (feed every 2 days
compared with daily) was seen on VFA, ammonia level and methane yield [19], while higher levels of
VFA have been reported when feeding every 2 days compared with every 2 h [9] and every 6 h [21].
This inconsistency in results regarding the effect of feeding regime can be explained by differences in
type of substrate, OLR, and feeding frequencies, with 2–48 h between feedings. Still, Mulat et al. (2016)
and Ziels et al. (2018) obtained slightly higher methane yield (14 and 20%, respectively) with a less
frequent feeding regime [9,22].

In conclusion, only small differences were observed between reactors with differences in feeding
regimes in the present study. However, there were differences between the GB and GC reactors, with
significantly higher specific methane production for GC reactors in the period after day 182 (student
t-test p < 0.01) (Figure S2). This suggests that reactor performance was influenced by the original
inoculum used for the start-up of the reactors in our previous study, where GB reactors produced
significantly less methane than GC reactors in the start-up phase (within 1 HRT) [15]. The poor
performance of GB reactors in our previous study was attributed to a higher ammonium-nitrogen
level in the inoculum used for the start-up of these reactors [15]. In the present study the
ammonium-nitrogen level increased, but to the same level in all reactors (GB: from 1.1 to 2.5 g/L,
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GC: from 1.0 to 2.5 g/L). Thus, a more likely explanation for the differing results obtained for GB
and GC reactors is differences in the microbial community rather than the ammonia level per se,
as discussed below.

3.3. Residual Methane Potential

For a production plant, the volumetric yield is highly important and thus continuously logged,
while the specific yield (SMP) less often is considered. Thus, a decrease in degradation efficiency caused
by a new cosubstrate, as shown in this study, can be somewhat hidden. Unfortunately, decreased
degradation efficiency might increase the risk of methane emissions during storage of the digestate,
as shown in several other studies [4,37,42]. To evaluate this risk, the residual methane production
(RMP) was measured by incubation of digestate taken from all reactors before and after MFW addition
(day 0 and day 231, respectively). The evaluation showed similar values for all reactors before MFW
addition, i.e., 71 ± 5 mL CH4/g VS, on average for reactors GB0_0 and GC0_0 (pairwise t-test, p > 0.5)
(Figure S3). However, after operation with MFW, the RMP was significantly higher showing on average
134 ± 12 mL CH4/g VS (pairwise t-test, p < 0.01), but with no significant differences between the
reactors (Figure S3). Thus, MFW addition clearly increased the risk of methane emissions during
storage, which was consistent with the decrease in the degree of degradation seen in the reactors and
in the BMP tests.

3.4. Microbial Communities

3.4.1. Diversity Indices

After quality trim and chimera check, 3,311,869 sequences (from 15,874 to 116,439 per sample)
were retained. The triplicate samples were merged in silico and then subsampled based on the detected
lowest sequences of the sample (41,100 sequences per sample). The number of observed OTUs across
samples obtained from the rarefaction curve varied from 958 to 1666, with the lowest values for the GC
reactors at the end of the experiment. At the start of the experiment, there was no significant difference
in Chao1, Shannon, and Simpson indices of the observed OTUs between all four reactors (Table 3).
However, the indices varied over time (Table 3) and the values appeared to fluctuate consistently
with methane production and VFA levels in all four semi-continuous reactors (Table 3). Addition
of MFW appeared to cause an overall decrease in diversity compared with operation with only the
grass–manure mixture and this decrease was independent of the feeding regime.

Table 3. Summary of observed OTUs, Chao1, Shannon, and Simpson index values.

Sample Chao1 Observed OTUs Shannon Simpson

GB1_0 1571 1302 6.178 0.950
GB2_0 1619 1439 6.473 0.953

GB1_77 1410 1159 5.291 0.898
GB2_77 1485 1260 6.054 0.938
GB1_106 1673 1364 5.749 0.921
GB2_106 1773 1435 6.254 0.946
GB1_147 1477 1232 6.181 0.943
GB2_147 1544 1291 5.982 0.935
GB1_231 1453 1104 5.410 0.887
GB2_231 1449 1085 5.365 0.893
GC1_0 1813 1664 7.210 0.959
GC2_0 1872 1666 7.119 0.963
GC1_77 1592 1299 5.583 0.891
GC2_77 1650 1386 5.979 0.910

GC1_106 1718 1529 7.073 0.970
GC2_106 1744 1509 6.748 0.955
GC1_147 1775 1448 6.681 0.962
GC2_147 1675 1439 7.202 0.972
GC1_231 1414 989 5.431 0.872
GC2_231 1444 958 5.054 0.831
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Several previous studies have shown a correlation between high methane production and high
diversity of microbial community, especially when the process was operated with complex substrates
or in fluctuating process conditions, suggesting that a more diverse microbial community allows
activation of multiple metabolic pathways and consequently high methane production [14,15,43].
However, under constant conditions, a specialized community can be expected to be more efficient [21].
In the present study, the GC reactors showed significantly higher methane production than GB reactors
at the end of the experiment, displayed the greatest decrease in OTUs richness and in the Simpson and
Shannon indices.

Previous studies have also shown that microbial community diversity can be affected by different
feeding regimes. Digesters fed with lower frequency (every 2 days compared with daily or every
2 h) have been shown to form a more diverse microbial community [9,19]. In line with this, GB1 and
GC1, receiving the MFW all at once, showed a slightly higher average number of observed OTUs and
Shannon index, respectively, than GB2 and GC2, but this difference was not statistically significant
(Table 3).

3.4.2. Phylogenetic Analysis

The microbial community composition, analyzed by an unweighted UniFrac principal coordinate
analysis (PCoA), was similar at the beginning of the experiment. However, the community changed
over time and at the end (day 231) a separation was seen between GC and GB reactors, suggesting the
importance of the original inoculum (Figure 2). For the different feeding regimes, however, no clear
separation between GB1, GB2 and GC1, GC2 was observed (Figure 2).
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Irrespective of MFW addition, the phyla Bacteroidetes (67.4± 12.7%) and Firmicutes (24.4± 9.7%)
dominated in all processes and at all-time points, followed by the phylum Actinobacteria (2.2 ± 1.8%)
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(Figure S4). The phyla Tenericutes, Verrucomicrobia, Synergistetes, WWE1, and Proteobacteria were
also detected in all reactors, but in relatively low abundance (<1%) (Figure S4). This dominance of the
phyla Bacteroidetes and Firmicutes has been seen in various anaerobic digesters in many previous
studies [15,44,45]. Members of these two phyla can utilize a broad range of organic compounds and
are involved in the hydrolysis, fermentation, and acetogenesis steps of anaerobic digestion [2,46].

While no significant differences were seen on phylum level, MFW addition, independent of
feeding regime, resulted in a similar shift in the overall microbial community pattern in all reactors at
lower taxonomic level. The most pronounced change was an increase in the relative abundance of the
genus Paludibacter (family Paludibacteraceae, order Bacteroidales, phylum Bacteroidetes) from <0.1%
(day 0) to an average of 49.9 ± 7.5% (day 231) (Figure 3). This increase was seen in all reactors but was
more pronounced in GC1 and GC2 (on average 12.7% higher than in GB1 and GB2). This difference
was most likely the cause of the separation in the PCoA analysis at the last time point (i.e., day 231)
(Figure 2). The genus Paludibacter was also found in the grass–manure mixture and in the original
inocula for GB and GC, as described in our previous study [15], but here only at very low relative
abundance (<0.1%). The genus Paludibacter is strictly anaerobic and can utilize various sugars such as
arabinose, xylose, cellobiose, fructose, galactose, glucose, mannose, maltose, melibiose, glycogen, and
soluble starch while producing acetate and propionate as major fermentation end-products [47]. Thus,
in this study, the high level of starch in MFW probably enhanced the growth of this genus. Members
of this genus have been found at various relative abundances in other anaerobic digesters and also
in other anaerobic environments, such as cow manure, wetlands, sludge from alkali-hydrolyzed rice
straw, and plant residues in irrigated rice-field soil [47–52]. The genus Paludibacter was recently also
suggested as a potential cellulose degrader [51,53].
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Figure 3. Relative abundance of bacterial 16S rRNA gene at genus level in the CSTR reactors (GB1,
GB2, GC1, and GC2), arranged by time (day 0, 77, 106, 147, and 231 of operation) and the substrate
sample (GS0_0). Relative abundance <1% were filtered out. The genus names were represented as the
first letter of the closest classified taxonomical level plus the taxonomic name.
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With the increase in Paludibacter, the average relative abundance of an uncultured rumen
bacterium clone BF311 (belonging to unclassified order Bacteroidales) gradually decreased in all
reactors after the addition of MFW, from 20.0 ± 10.4% (day 77) to 0.9 ± 0.2% (day 231), but with
no significant difference between reactors (Figure 3). This uncultured rumen bacterium clone BF311
(GenBank: EU850525.1) is one partial sequence of 16S ribosomal RNA genes from a series of clones
made by Satitmanwiwat et al. (2008, Thailand) (https://www.ncbi.nlm.nih.gov/nuccore/197940871).
However, it was mistakenly assigned as genus BF311 in the Greengene database and thus wrongly cited
by other studies [54–56]. Still, BF311 has been reported in cattle rumen and horse feces samples [54,55].
However, to our knowledge no previous publication other than ours has found BF311 in biogas
digesters. In our previous study, the relative abundance increased differently in GB and GC reactors,
from 0.5% to 15.1% and from 2.5% to 5.2%, respectively, when operated with the same grass–manure
mixture as used in the present study for over 3 HRT (i.e., 154 days) [15]. BF311 has been suggested
to play an important role in lignocellulose degradation in rumen environments [55,56]. In this study,
BF311 was possibly outcompeted by representatives from the genus Paludibacter.

Class Clostridia (phylum Firmicutes) also slightly decreased in response to MFW addition in all
reactors, from average levels of 17.2± 4.2% to 10.6± 1.9%. However, the levels increased again around
day 146 (to on average 26.0± 8.0%), i.e., in the period of VFA accumulation and slight reactor instability.
During reactor recovery, the levels again decreased, but to different levels in the different reactors,
ranging from 18.5% in GB reactors to 9.6% in GC. These changes in the class Clostridia were mainly
caused by two unclassified families and the genus Caldicoprobacter (family Caldicoprobacteraceae)
(Figure 3). Members of this genus can utilize various sugars, but also xylan and pyruvate, and produce
acetate, lactate, and hydrogen as end-products [57,58]. The genus Caldicoprobacter has also been
found to be enriched in anaerobic digesters fed lignocellulosic biomass under both mesophilic and
thermophilic conditions [59,60]. Moreover, it has been shown to dominate in an anaerobic digester
with high total ammonium-nitrogen (5 to 25 g/L) and, as in this study, high VFA levels (>4 g/L) [61].

Moreover, a slight increase in the genus Clostridium (family Clostridiaceae, phylum Firmicutes)
from 1.6 ± 0.2% (day 0) to 6.9 ± 2.6% (day 231) (Figure 3), irrespective of the total changes in the level
of Class Clostridia, was observed after MFW addition in all reactors. This genus contains organisms
active both during fermentation and anaerobic oxidation that can utilize proteins and carbohydrates,
and their corresponding monomers, while producing different fatty acids as end-products of their
metabolism [62–64]. This increase is probably directly related to MFW addition and the observed
increased in VFA level at the same time point [65]. A slight increase in relative abundance of the
phylum Actinobacteria (mostly contributed by the family Coriobacteriaceae), from 1.2 ± 0.6% to
3.1 ± 2.1%, was also seen at the time of VFA accumulation and foaming (day 146). This phylum
contains many acid-producing bacteria and has previously been found to increase in the deteriorative
phase of an anaerobic process [44]. The family Coriobacteriaceae has been shown to dominate in
an anaerobic digester operating with wastewater sludge and is suggested to convert lignocellulose
hydrolysates into lactic acid and acetic acid [66,67].

Among the Archaea, the phyla Euryarchaeota and Crenarchaeota dominated (Figure S4).
However, as seen in several other studies of biogas digesters [15,68,69], the total relative abundance of
Archaea was very low, in this study less than 0.3% across all samples (Figure S4). Thus based on the
sequencing results it was difficult to reveal detailed information about the methanogenic community.
Still, order Methanobacteriales, Methanomicrobiales, and Methanosarcinales, with the dominance of
order Methanobacteriales and Methanosarcinales, was detected in all four reactors before (day 0) and
after (day 231) the MFW addition (Figure S5). These three methanogenic groups are commonly found
in various anaerobic digesters [8,27], and members within these orders can all utilize hydrogen [8].
Members of Methanosarcinales can in addition utilize methanol and acetate for methane formation [8].
qPCR analysis furthermore revealed that all four reactors had a similar average gene abundance of
these three methanogenic groups at the beginning (day 0) but at the end of the experiment (day 231) a
significantly lower abundance, compared to the starting point, was seen for all groups (student t-test,

https://www.ncbi.nlm.nih.gov/nuccore/197940871
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p < 0.01) (Figure S6). However, a difference was observed in the reactors as a higher abundance of all
three methanogenic groups was seen in GC compared to GB reactors (Figure S6), which could also
contribute the separation of GB and GC at the day 231 in the PCoA plot (Figure 2). Possibly the higher
abundance of methanogens in reactor GC could also explain the slightly higher methane production in
these reactors. However, no clear difference could be observed for the different feeding regimes.

The different feeding regime showed no clear effect on the overall microbial community in this
study. Similar results were obtained in a previous study during operation of CSTRs fed with glucose
(once and twice a day and every 2 days) [23]. In contrast, a slight increase in microbial community
richness was observed in a study using a starch-rich synthetic substrate fed every two days compared
with daily feedings [19]. This is consistent with findings in the present study of higher richness in
GB1 and GC1 compared with GB2 and GB2. Similarly, previous studies evaluating different feeding
regimes have found effects of certain microbial groups. For example, during co-digestion of manure
and oleate, the community fraction of the genus Syntrophomonas was higher when the oleate was fed
every 2 days compared with every 6 h [22]. However, the interactions between feeding regime, digester
performance (including methane production and process parameters), and microbial community
remain somewhat unclear, as various feeding regimes have been shown to cause changes in microbial
dynamics without affecting digester performance and vice versa [9,19,21,70].

3.4.3. T-RFLP

In our previous study, the T-RFLP profiles for glycoside hydrolase families 5 (cel5) and 48 (cel48)
genes differed between the original inocula used to start the GB and GC reactors [15]. After 3 HRT of
operation with the grass–manure mixture, the various T-RFLP profiles became more similar and
the community in both GB and GC reactors and the cel5 and cel 48 profile were dominated by
T-RFs 74, 222, 228bp, and T-RF 328bp, respectively, according to clone libraries represented by
Clostridium cellulovorans (WP_010075948, 60.7% identity), Prevotella buccae (WP_004346180, 55.1%
identity), Bacteroides uniformis (WP_061411411, 67.5%, identity), and Herbinix sp. SD1D (WP_058258585,
89.7% identity), respectively [15].

In the present study, the addition of MFW as a cosubstrate changed both the cel5 and cel48
communities, not significantly in composition but somewhat more in relative abundance (Figure 4).
For the cel5 community, T-RF 222bp became slightly more abundant across all reactor samples by
the end of the experiment (from 48.8 ± 11.6% to 56.8 ± 21.9%), while T-RF 228bp decreased from
15.9 ± 7.2% to 1.2 ± 1.4%. T-RF 74bp showed no significant trend in response to MFW addition
(Figure 4a). For the cel 48 community, T-RF 328bp increased in all reactor samples, from 67.5 ± 4.6%
to 80.1 ± 13.7% (Figure 4b). The four bacteria representing these dominant T-RFs have been found
in various anaerobic environments and show potential lignocellulolytic capacity [71–74]. Prevotella
buccae, Bacteroides uniformis, and Herbinix sp. SD1D have also been shown able to utilize starch [75–77],
most likely explaining the enrichment induced by MFW addition in the present study.

A different pattern in the T-RFLP profile was also seen in response to the feeding regime, with
T-RF 216bp (4.6 ± 2.1%, cel5, not identified) and T-RF 321bp (16.7 ± 6.6%, cel48) mainly detected in
samples where all MFW and the grass–manure mixture were fed simultaneously (Figure 4). T-RF 321bp
has previously been shown to correspond to a clone most closely related to Clostridium thermocellum
(ACT46162), with 75% identity [12]. This bacterium is reported to be a highly potent cellulose degrader
and to be enriched in anaerobic digesters fed lignocellulose-rich materials [12,15,78]. Moreover,
a species of this bacterium is reported to be capable of producing an extracellular amylase when grown
on starch [79]. The higher abundance of this bacterium possibly explains the higher degradation
efficiency of cellulose seen in GB1 and GC1 compared with GB2 and GC2 in BMP test II.
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Figure 4. T-RFLP profile representing the community of glycoside hydrolase gene family 5 (cel5) (a)
and 48 (cel48) (b) in the reactor samples (GB1, GB2, GC1, and GC2), arranged by time (day 0, 147,
and 231) and the substrate sample (GS0_0).

4. Conclusions

Addition of MFW to four semi-continuous processes that had been operated with a grass-manure
mixture for ~200 days, and showed similar performance and microbial community structure, resulted
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in a significant increase in volumetric methane production and a concomitant decrease in specific
methane production and substrate degradation efficiency. The magnitude of the decrease varied
between the processes and appeared to relate to the initial inoculum used for startup. This may
have been caused by differences in the microbial community prevailing in the initial inoculum,
suggesting that the original inoculum can profoundly influence biogas production performance in
the long term and affect microbial responses to process operation changes, which confirmed our
hypothesis. Applying different feeding regimes for MFW addition had no clear influence on methane
production or overall microbial community structure, but had an impact on the development of the
cellulose-degrading community. Adding the MFW load all at once rather than in two portions at 2-h
intervals gave slightly higher cellulose conversion activity (as indicated by BMP tests), possibly caused
by a higher abundance of Clostridium thermocellum.

Supplementary Materials: The following are available online at http://www.mdpi.com/2076-2607/6/3/80/s1,
Figure S1: Accumulated methane (CH4) production (mL/g VS) using digestate taken from the end of the CSTR
test (GB1_231 and GB2_231), operating with cellulose as substrate, Figure S2: Specific average methane (CH4)
production (mL/g VS day) of four continuous laboratory-scale biogas reactors originally started with two different
types of inoculum (GB and GC) and codigested with substrates of grass–manure and milled feed wheat (MFW) in
two feeding approaches at 37 ◦C, Figure S3: Residual methane (CH4) production (mL/g VS) of digestate taken
from all reactors before (GB0_0 and GC0_0) and after (GB1_231, GB2_231, GC1_231, and GC2_231) addition of
milled feed wheat (MFW), Figure S4: Relative abundance of bacterial 16S rRNA gene at phylum level in the CSTR
samples (GB1, GB2, GC1, and GC2), arranged by time (day 0, 77, 106, 147, and 231) and the substrate sample
(GS0_0), Figure S5: Relative abundance of Archaea 16S rRNA gene based on next-generation amplicon sequencing
at order level in the CSTR samples (GB1, GB2, GC1, and GC2), arranged by time (day 0 and 231), Figure S6:
Average log gene abundance per mL sample obtained in qPCR analysis of the main methanogenic populations in
the CSTR samples (GB1, GB2, GC1, and GC2), arranged by time (day 0 and 231), Table S1: Total changes over time
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