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Abstract: With a novel Freeze Foaming method, it is possible to manufacture porous cellular
components whose structure and composition also enables them for application as artificial bones,
among others. To tune the foam properties to our needs, we have to understand the principles of
the foaming process and how the relevant process parameters and the foam’s structure are linked.
Using in situ analysis methods, like X-ray microcomputed tomography (µCT), the foam structure
and its development can be observed and correlated to its properties. For this purpose, a device
was designed at the Institute of Lightweight Engineering and Polymer Technology (ILK). Due to
varying suspension temperature and the rate of pressure decrease it was possible to analyze the
foam’s developmental stages for the first time. After successfully identifying the mechanism of foam
creation and cell structure formation, process routes for tailored foams can be developed in future.

Keywords: Freeze Foaming; in situ computed tomography; non-destructive testing; bioceramics

1. Introduction

The two conventional processes for manufacturing ceramic cellular foam structures are the replica,
as well as the space holder method [1,2]. These methods use organic scaffolds, which have to be burnt
out. A novel manufacturing route for ceramic foam structures, called Freeze Foaming, that avoids the
use of organic additives, has been developed by the Fraunhofer Institute for Ceramic Technologies and
Systems (IKTS) [3,4]. The cell structure of a sample manufactured using Freeze Foaming is defined by a
pressure-induced and pressure-controlled foaming process, followed by subsequent freeze drying, of a
ceramic suspension in a vacuum. There are two different foaming agents—as ambient pressure drops,
a reduced boiling point leads to the evaporation of water out of the aqueous suspension. The other one
is air that is introduced during the manufacturing of the suspension. While the pressure is reduced
(and the foam expands), the suspension’s temperature follows the line of equilibrium in the phase
diagram of water to the triple point. Since the pressure is reduced further, the temperature falls
beneath the equilibrium temperature in the triple point of our suspension, which causes our created
structure to be instantly frozen, and dries via sublimation. This freezing step can result in cryogenic
structures similar to typical freeze cast structures [5,6] and accounts for the microporosity of foamed
structures. Possible applications of foams and porous parts made using Freeze Foaming encompass a
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wide spectrum, including biomedical uses, like artificial bones [7–9] as well as carrier materials for
catalytic converters [10], biosensors and drugs, or thermal [11] and acoustic insulators [12]. Freeze
Foaming enables the processing of biocompatible materials while offering the unique possibility of
creating foams exhibiting a multimodal pore-size distribution and interconnectivity. These factors offer
good conditions for the cultivation of organic cells. Previous work [3,4,7,13] has shown a particular
suitability for an application in artificial bones due to their special structural properties.

As the foaming is influenced by a complex interaction of several process and material parameters,
further research into the foam formation during Freeze Foaming is needed. A reproducible manufacturing
of tailored foams with a specified structure is not possible as of now. To adjust the properties according to
applications, and develop process and quality guidelines, it is important to further examine the influence
of relevant process parameters on the foam’s structure. With the presented work, the authors aim at
finding a solution to a tunable shaping method, which enables the manufacturing of highly controllable
pore structures to be used, e.g., as bone-mimicking scaffolds for an ever-older population [14].

To that end, an in situ µCT extension for an existing scanner was developed, which allows the
analysis of different steps of the very foaming process during the manufacturing. Conventionally,
examining changes in a sample using X-ray computed tomography is done by scanning before and
after a change in state or structure [15,16]. The conventional method does not enable observation of the
foam development of Freeze Foams. In material research focusing on damage and degradation analysis,
significant improvements were made in the last years, due to progressive in situ techniques [15,17,18].

In the investigations from [19], the sintering process of ceramics could be analyzed with the use
of CT. It was sufficient to analyze the process every 30 min to get a statement about the sintering
theories. Further investigations in the field of in situ analyses are described in [20]. In so-called in situ
X-ray nanotomography systems, pixel sizes of 100 nm are achieved in 20 s, with the use of a focus
size of 50 nm. The sintering stages of metals and ceramics were also analyzed. In the investigations
presented here for the analysis of the formation process of Freeze Foams, such a resolution is not
necessary. In the investigations from [21], the hydration of gypsum plaster setting was investigated
with in situ X-ray tomography. The scan duration was 200 s. However, the entire structure formation
of the Freeze Foaming process (i.e., foaming and freezing) takes only about 60 s. Therefore, a novel
CT setup had to be developed, firstly, in order to visualize the foaming process per se and, secondly,
to introduce measures making tomographic image acquisition possible. The process had to be designed
in such a way that it could be stopped at certain process steps and fixed for the CT imaging. This entire
experimental setup—a new controllable laboratory freeze dryer in a computer tomography scanner—is
one of the fundamental novelties of this work. In the first phase, a process-optimized testing device
was developed [22]. It is suitable for 2-dimensional examinations using X-ray radiography (for
real-time observation of the foaming progress), as well as three-dimensional scans to evaluate structural
phenomena. Using the now-reproducible manufacturing of a model suspension [23], detailed results
of in situ foam structure analysis are presented.

2. Materials and Methods

The ceramic suspensions used in this work are composed of water and dispersion agent (Dolapix
CE 64, Co. Zschimmer & Schwarz Mohsdorf GmbH & Co. KG, Burgstädt, Germany), added
hydroxyapatite powder (Sigma-Aldrich now Merck KGaA, Darmstadt, Germany; BET = 70.01 m2/g,
d50 = 2.64 µm), binder (polyvinyl alcohol), and rheological modifier (Tafigel PUR40, Co. Münzing
Chemie GmbH, Heilbronn, Germany) [23]. The choice of suspension and composition was derived
from preliminary tests on the basis of different suspensions which, after Freeze Foaming, resulted in
reproducible foam structures [23]. The detailed manufacturing process of the suspension is described
in [24]. For the investigations of this contribution and with regard to its possible influence on the
foaming process and structure formation, three ceramic suspensions with different temperatures were
used (5, 23, and 40 ◦C).
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An in situ device, to be used inside a v|tome|x L450 (General Electric, Cincinnati, OH, USA),
was developed during the first phase of research [22]. It allows the material to be subjected to
phenomenological analysis, and for detection and characterization of pores during the foaming
process. To examine developmental steps during the formation of the foam’s structure, the device
has to be leak-proof under vacuum (Figure 1). Using different foaming molds, the device can be
used for either X-ray radiography (2D) or gaining spatial information (µCT, 3D) about the foam’s
structure. The resolution was set to 22 µm/vx using an acceleration voltage of 100 kV, and a beam
current of 300 µA. To fix the foaming suspension for the time of the CT scan (720 projections with
250 ms exposure time each, 3 min total measurement time), the foaming is stopped using a pressure
control system with dedicated software, developed in-house, and an adjustable bypass. The pressure
is kept at a constant level for the duration of the CT, in order to stabilize the structure. The vacuum
chamber itself is rotationally symmetrical, and made of low-absorbing polymer to ensure optimal
image quality. The choice of polymethylmethacrylate (PMMA) for the chamber prevented stabilizing
the foam by means of externally freezing, as the material’s thermal conductivity is very low.
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Figure 1. In situ µCT device: CAD model (a) and mounting situation (b).

In previous examinations [22], the pressure reduction rate’s influence on the foam structure—and
especially the orientation of pores—has been shown. Due to the concave nature of the bottom of the
mold, foaming led to a high number of samples exhibiting large pores near the bottom, which distorted
the results of the foam analysis. Therefore, a new mold with a flat bottom was designed (Figure 2).
Furthermore, water vapor emitted from the suspension decreased the pressure reduction rate in the
lower pressure range of 25 mbar and below (near equilibrium of water vapor at 20 ◦C). The reduced
pressure drop led to a higher amount of coalescence effects in the finished foam structure. To accelerate
the pressure reduction, a cold trap has been used. For this purpose, a cylinder made from aluminum,
with channels, was manufactured. It was cooled down with liquid nitrogen and placed on top of the
mold (Figure 2, right picture). The water vapor condenses on its surface, which significantly reduces
the time to fall below the triple point.



Materials 2018, 11, 2478 4 of 12
Materials 2018, 11, x FOR PEER REVIEW  4 of 13 

 

 

Figure 2. Improvements to the experiment. 

Besides the process analysis compression tests, in situ µCT scans under compressive load were 

also conducted on the conducted foams. In situ compressive scans were performed using a Finetec 

FCTS 160 IS (Garbsen, Germany) with an acceleration voltage of 50 kV and a beam current of 250 µA. 

The resolution was around 11 µm/vx, and the exposure time 625 ms. Mechanical testing of prepared 

cylindrical samples took place using an universal testing machine Zwick 1475 (Ulm, Germany). A 

preload of 2 N and a traverse speed of 2 mm/min were chosen. 

3. Results 

3.1. Radiographical Evaluation of the Freeze Foaming Process 

By acquiring two 2D pictures per second (500 ms exposure time) a real-time observation and 

analysis of the foaming process is possible. Due to the superposition of structural phenomena, the 

thickness of the sample was reduced to 5 mm for radiographically evaluations. To qualify the changes 

between the steps, manual tracking is conducted by overlaying each picture with a grid, and 

following the movement of distinct points in the sample. The resulting coordinates can be converted 

to changes in actual values for the size or height of the foam, and can be correlated with the pressure 

at the moment of picture acquisition. This method of evaluation was applied for three different 

sample temperatures and a pressure reduction rate of 50 and 10 mbar/s, respectively. As an example, 

the plotted results for 10 mbar/s are shown in Figure 3, as experiments at different pressure reduction 

rates behave similarly. 

 

Figure 3. Percentage growth as a function of pressure for 5, 23, and 40 °C, at 10 mbar/s. 

Independent of the initial suspension temperature, foaming starts between 450 and 550 mbar. 

However, the growth, as well as the pressure at which the foaming stops, are highly influenceable by 

the initial temperature. A lower temperature leads to an inhibited foaming, which results in a lower 

Modification: 

frozen aluminium

cylinder

previously

foam structure after 

modification

0

50

100

150

200

250

300

0 100 200 300 400 500 600

p
e
r
c
e
n

ta
g

e
s

g
r
o
w

th

pressure in mbar

start

5  C

23  C

40  C

end

Figure 2. Improvements to the experiment.

Besides the process analysis compression tests, in situ µCT scans under compressive load were
also conducted on the conducted foams. In situ compressive scans were performed using a Finetec
FCTS 160 IS (Garbsen, Germany) with an acceleration voltage of 50 kV and a beam current of 250 µA.
The resolution was around 11 µm/vx, and the exposure time 625 ms. Mechanical testing of prepared
cylindrical samples took place using an universal testing machine Zwick 1475 (Ulm, Germany).
A preload of 2 N and a traverse speed of 2 mm/min were chosen.

3. Results

3.1. Radiographical Evaluation of the Freeze Foaming Process

By acquiring two 2D pictures per second (500 ms exposure time) a real-time observation and
analysis of the foaming process is possible. Due to the superposition of structural phenomena, the
thickness of the sample was reduced to 5 mm for radiographically evaluations. To qualify the changes
between the steps, manual tracking is conducted by overlaying each picture with a grid, and following
the movement of distinct points in the sample. The resulting coordinates can be converted to changes
in actual values for the size or height of the foam, and can be correlated with the pressure at the
moment of picture acquisition. This method of evaluation was applied for three different sample
temperatures and a pressure reduction rate of 50 and 10 mbar/s, respectively. As an example, the
plotted results for 10 mbar/s are shown in Figure 3, as experiments at different pressure reduction
rates behave similarly.
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Figure 3. Percentage growth as a function of pressure for 5, 23, and 40 ◦C, at 10 mbar/s.

Independent of the initial suspension temperature, foaming starts between 450 and 550 mbar.
However, the growth, as well as the pressure at which the foaming stops, are highly influenceable by
the initial temperature. A lower temperature leads to an inhibited foaming, which results in a lower
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overall growth. Even though the foaming process itself continues up to lower pressures, the lower
foaming rate cannot be compensated. For example, a suspension with a pressure reduction rate of
10 mbar/s and an initial temperature of 5 ◦C stops foaming at 15 mbar, while a 40 ◦C suspension
already stops at 35 mbar. Suspensions undergoing 50 mbar/s exhibit a very similar behavior. Looking
at foaming rates over pressure, the highest suspension temperature also results in the highest growth
rates values at higher pressures (Figure 4).
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Figure 4. Foaming rate as a function of pressure for different temperatures at 10 mbar/s.

Samples with an initial temperature of 23 ◦C exhibit a lower maximum at lower pressures while
5 ◦C samples showed an almost constant foaming rate and, therefore, no identifiable maximum.

To evaluate and verify the findings from the radiographical evaluation, the results were compared
to data obtained from the freeze dryer at IKTS (Table 1) [24]. Apart from 5 ◦C suspensions, their
findings support the trend identified at the ILK. For suspensions with an initial temperature of 5 ◦C,
the IKTS identified a foaming rate maximum at pressures between 40 and 60 mbar. However, the freeze
dryer is equipped with an additional condenser, which is not available in the in situ device. It is not
possible, so far, to achieve the foaming rate maximum and finish the pressure-induced foaming process.

Table 1. Comparison of the pressures of beginning, end, and maximum of foaming at temperatures of
5, 23, and 40 ◦C by in situ µCTs (ILK) and by freeze dryer (IKTS) [24].

Suspension’s
Temperature (◦C)

Pressure at Beginning of
Foaming (mbar)

Pressure at Maximum
Foaming Rate (mbar)

Pressure at End of Foaming
(mbar)

Freeze Dryer In Situ µCT Freeze
Dryer In Situ µCT Freeze

Dryer In Situ µCT

5 500 450–550 40–60 n.d. 10 15
20 400 450–550 80 50–90 20 25
40 400 450–550 80–100 90–150 60 35

Through analysis of radiographic images, edge effects on the foaming process can be verified.
Figure 5 illustrates their impact on a 10 mbar/s sample at 23 ◦C. Both edges, as well as the center, were
manually tracked using the method described earlier, and the local growth rates were determined.
As expected, the edges exhibit a much slower growth when compared to the center. Possible reasons
include wall friction, as well as a drying of the suspension. This behavior is especially observable
in suspensions with an initial temperature of 40 ◦C, which also develops a compact layer on top of
the suspension.
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Figure 5. Edge effects on foaming at 23 ◦C (10 mbar/s).

3.2. CT Evaluation of the Freeze Foaming Process

To examine the developmental stages of foaming, µCT and the improved testing device is used
to create a virtual and reconstructed volume (VGStudio 2.0, Volume Graphics GmbH, Heidelberg,
Germany) of the foam’s structure. During the CT measurements, the sample is rotated 360◦, and
after an angle of 0.25◦, one image is taken. Those pictures can be reconstructed with the program
“Phoenix datos”, which is generating a 3D model. This model can be imported into “VGStudioMax 3.0”
(Volume Graphics GmbH). In this program, it is possible to perform various analyses, such as defect
analysis or foam structure analysis. A region of interest (ROI) is selected, and a surface determination
is performed automatically. A threshold value is determined to be able to separate material from
background. The porosity can be determined from this data.

In order to acquire sufficient CT data, given that Freeze Foaming is a fast process, the
exposure time is reduced from 500 to 250 ms. In addition, the number of images for the holding
steps is reduced from 1440 to 720. The following parameters were selected for the evaluation
of the foam structure: Threshold—80%, Accuracy—Fast; Direction of analysis—Right; Analysis
mode—Background; Features—Advanced cell properties.

The first step was a complete foaming at two pressure reduction rates (10 mbar/s and 50 mbar/s).
The results and their porosities are shown in Figure 6.
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Figure 6. Cross-sections and porosities of completely foamed suspensions at two pressure reduction
rates and three temperatures.
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Increasing the pressure reduction rate from 10 to 50 mbar/s results in only a slight increase in
porosity (Figure 6, right). However, the orientation of the pores seems to be significantly influenced by
the pressure reduction rate. Suspensions foamed at 50 mbar/s exhibit vertically elongated pores, while
those foamed at 10 mbar/s are oriented more horizontally. Due to the higher reduction rate inflicted
on the process-induced air, the velocity of the inflating bubbles increases, thus forming vertical pores.
In both cases, this is especially visible for 23 ◦C samples. Samples with an initial temperature of 40 ◦C
show a decrease in porosity during foaming, due to their low viscosity, and the foam collapses before
freezing by reaching the triple point.

3.3. Stages of the Foaming Process

Given the results of radiographic imaging, five holding stages were identified for analyzing the
stages of the foaming progress (at 30, 40, 50, 70, and 100 mbar). The pressure reduction rate was
adjusted to 10 mbar/s. Cross-sections of those scans are shown in Figure 7 (5 ◦C) and Figure 8 (23 ◦C).
For each evaluation, three CT scans were executed to observe pores, and their development—the
suspension (1000 mbar), the holding stage at its target pressure, and the final foam structure (5 mbar).
Air bubbles that have been introduced into the mold during suspension filling have a large influence
on the foam structure. They grow even larger during foaming, and develop significantly larger pores.
Due to their high viscosity, this growth is inhibited in 5 ◦C tempered suspensions. Furthermore, the
maximum foaming rate takes place at lower pressures (40–60 mbar) [24]. As a large amount of water
evaporates, the pressure reduction rate drops, and the time to reach the target pressure of <5 mbar is
too long. This process-induced growth inhibition results in a significantly lower porosity. In general,
suspensions with an initial temperature of 5 ◦C exhibit a lower porosity after foaming, due to a higher
viscosity and a lower amount of escaping water vapor. On the other hand, suspensions with an initial
temperature of 40 ◦C exhibit a viscosity too low to be stable during the CT scan and, therefore, were
not monitored.
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Figure 7. Holding stages (I: 100 mbar, II: 70 mbar, III: 50 mbar, IV: 40 mbar, V: 30 mbar) of a 23 ◦C
tempered suspension with a pressure reduction rate of 10 mbar/s ((a) suspension; (b) holding stage;
(c) foam).



Materials 2018, 11, 2478 8 of 12
Materials 2018, 11, x FOR PEER REVIEW  8 of 13 

 

 

Figure 8. Holding stages (I: 100 mbar, II: 70 mbar, III: 50 mbar, IV: 40 mbar, V: 30 mbar) of a 5 °C 

tempered suspension with a pressure reduction rate of 10 mbar/s ((a) suspension; (b) holding stage; 

(c) foam). 

Using the software VGStudioMax, which allows access to volume-based data, the pore size 

distributions were determined for each holding stage. An exemplary distribution for a 23 °C sample 

is depictured in Figure 9a. The growth starts slowly, accelerates to a maximum, and then slows down 

again. The lowest variance in pore size distribution can be found at 50 mbar on a 23 °C sample, with 

a relative curve width (b = d90/d10) of 36.2 (b100mbar = 53.1, b70mbar = 36.2, b40mbar = 153.5, b30mbar = 160.9). 

When the pressure drops below 50 mbar, the pore size distribution becomes flatter and wider, 

indicating a ripening process. Figure 9b shows the increasing porosity as a function of the decreasing 

pressure for the three investigated temperatures. Due to their high viscosity, 40 °C foamed samples 

could not be investigated with regard to holding stages and foam formation, because the foam 

structures collapsed during the investigation. 

 
(a) (b) 

Figure 9. Pore size distribution of a 23 °C sample (a) and porosity (b) at 5, 23, and 40 °C samples of 

different holding stages; pressure reduction rate: 10 mbar/s. 

3.4. Mechanical Properties 

Due to the dependence of porosity and pore size distribution of Freeze Foamed samples on 

process parameters, mechanical properties should vary as well. To evaluate their behavior under 

30 mbar1000 mbar 5 mbar

100 mbar1000 mbar 5 mbar 70 mbar 5 mbar1000 mbar

50 mbar1000 mbar 5 mbar 40 mbar 5 mbar1000 mbar

a b c

a b c

a b c

a b c

a b c

I

III

V

II

IV

0

500

1000

1500

2000

2500

1,0E+06 1,0E+07 1,0E+08 1,0E+09 1,0E+10 1,0E+11 1,0E+12

ab
so

lu
te

 f
re

q
u

en
c
y

pore volume in μm3

100

70

50

40

30

0

10

20

30

40

50

60

70

1000 100 70 50 40 30 5

p
o
r
o
s
it

y
in

 %

pressure in mbar

5  C

23  C

40  C

106 107 108 109 1010 1011 1012

Figure 8. Holding stages (I: 100 mbar, II: 70 mbar, III: 50 mbar, IV: 40 mbar, V: 30 mbar) of a 5 ◦C
tempered suspension with a pressure reduction rate of 10 mbar/s ((a) suspension; (b) holding stage;
(c) foam).

Using the software VGStudioMax, which allows access to volume-based data, the pore size
distributions were determined for each holding stage. An exemplary distribution for a 23 ◦C sample is
depictured in Figure 9a. The growth starts slowly, accelerates to a maximum, and then slows down
again. The lowest variance in pore size distribution can be found at 50 mbar on a 23 ◦C sample, with
a relative curve width (b = d90/d10) of 36.2 (b100mbar = 53.1, b70mbar = 36.2, b40mbar = 153.5, b30mbar
= 160.9). When the pressure drops below 50 mbar, the pore size distribution becomes flatter and
wider, indicating a ripening process. Figure 9b shows the increasing porosity as a function of the
decreasing pressure for the three investigated temperatures. Due to their high viscosity, 40 ◦C foamed
samples could not be investigated with regard to holding stages and foam formation, because the foam
structures collapsed during the investigation.
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Figure 9. Pore size distribution of a 23 ◦C sample (a) and porosity (b) at 5, 23, and 40 ◦C samples of
different holding stages; pressure reduction rate: 10 mbar/s.

3.4. Mechanical Properties

Due to the dependence of porosity and pore size distribution of Freeze Foamed samples on
process parameters, mechanical properties should vary as well. To evaluate their behavior under load,
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cylindrical sintered samples were manufactured and subjected to standardized compression tests.
Recorded tension–compression curves are depicted in Figure 10.
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Figure 10. Compression tests on sintered samples (40 ◦C suspension; 5 ◦C suspension; devolatilized
23 ◦C suspension; 23 ◦C suspension).

The fracture behavior clearly exhibits a dependency on suspension temperature (5, 23, and
40 ◦C) and pretreatment (devolatilized and not devolatilized suspensions during the manufacturing
process). Samples with a narrow pore size distribution [24] (5 ◦C and 23 ◦C devolatilized [23]) possess
a pronounced maximum of force. On the other hand, specimens with a less uniform distribution of
pores [24] (40 ◦C and 23 ◦C not devolatilized) show a more constant force level, and only reach about
half the maximum force when compared to more homogeneous samples. Mechanical properties of
the samples manufactured using Freeze Foaming are strongly influenced by microporosities inside
the struts [23]. However, as the resolution of the CT scans were insufficient to examine their structure,
they could not be taken into account here.

Furthermore, in situ compression tests, at selected load levels, were conducted to examine failure
phenomenology (Figures 11–13).
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Figure 11. Recorded force–travel curves of compression tests conducted on an in situ µCT; 5 ◦C.
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Figure 12. Recorded force-travel curves of compression tests conducted on an in situ µCT; 23 ◦C
not devolatilized.
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Figure 13. Recorded force-travel curves of compression tests conducted on an in situ µCT; 40 ◦C.

For more inhomogeneous samples, material failure starts to occur between 25 N (40 ◦C) and 50 N
(23 ◦C) (Figures 12 and 13). The density of fractures constantly rises, with increasing deformation,
until a partial structure failure develops at relatively low load levels of 50 N (40 ◦C) and 110 N (23 ◦C
not devolatilized). On the other hand, more homogeneous foam structures show a maximum load
up to 200 N, even after the first signs of material failure (Figure 11). Detailed examinations show that
especially cracks on the surface lead to material failure. This is a sign of an uneven sample surface,
and results in a non-uniform load.

4. Conclusions

Biocompatible new materials will become increasingly important in the future. Ceramic structures
based on Freeze Foaming allow ecological manufacturing without a need for organic scaffolds.
Tailoring these ceramic foams to specific applications, a defined and reproducible adjustment of
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their structure and mechanical properties is necessary. However, the formation of the foam structure
during Freeze Foaming is not yet fully understood. Their manufacturing is influenced by a complex
interaction of different steps and material’s properties within the process.

Using a novel in situ µCT device, it was possible to examine the foaming process and the stages
of the foaming process. Due to an integrated pressure control system, the foaming could be stopped at
any applied pressure.

Radiographic imaging gathered information about the beginning, maximum, and end of foaming,
depending on the temperature of the suspension. Independent of the temperature, foaming starts
between 450 and 550 mbar. An earlier end of foaming was detected when increasing the suspension
temperature to 40 ◦C, due to a higher water vapor partial pressure and a lower viscosity. Suspensions
with an initial temperature of 5 ◦C did not exhibit a foaming maximum in our device, due to their
high viscosity.

To observe the pore formation during Freeze Foaming, µCT scans were performed using the
new µCT device. Virtual volumes of Freeze Foam scaffolds were created and analyzed. Foaming
was executed with varying pressure reduction rates. While the porosity changed only slightly
with varying pressure reduction rates, the pores were oriented differently. During foaming, 40 ◦C
tempered suspensions collapsed before reaching the triple point, due to their low viscosity. On the
other hand, the growth of 5 ◦C suspensions were inhibited by their high viscosity. As a result of
radiographic examinations, five pressure values were identified as holding stages of interest. Those
stages revealed a large influence of air bubbles introduced during mold filling on the final foam
structure. Independent of the initial temperature of the suspension, there is a continuous rise in
porosity during the foaming process, in general, while the variance of pore size increases. Furthermore,
the results of compression testing of sintered samples show a distinct force maximum for 5 ◦C and
23 ◦C tempered and devolatilized Freeze Foams. On the other hand, samples with a less homogeneous
structure (40 ◦C and 23 ◦C not devolatilized) exhibit a force plateau and a maximum force about half
that of samples.

Approaches for the defined production of Freeze Foams have been achieved. However, the
complexity of the Freeze Foaming process requires more experiments and evaluation, in order to truly
control the pore structure and, thus, make them more suitable for larger industries and applications.
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