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Abstract

Intelligent behavior involves associations between high-dimensional sensory representations and 

behaviorally relevant qualities such as valence. Learning of associations involves plasticity of 

excitatory connectivity but it remains poorly understood how information flow is reorganized in 

networks and how inhibition contributes to this process. We trained adult zebrafish in an appetitive 

odor discrimination task and analyzed odor representations in a specific compartment of 

telencephalic area Dp, the homolog of olfactory cortex. Associative conditioning enhanced 

responses with a preference for the positively conditioned odor (CS+). Moreover, conditioning 

systematically remapped odor representations along an axis in coding space that represented 

attractiveness (valence). Inter-individual variations in this mapping predicted variations in 

behavioral odor preference. Photoinhibition of interneurons resulted in specific modifications of 

odor representations that mirrored effects of conditioning and reduced experience-dependent, 

inter-individual variations in odor-valence mapping. These results reveal an individualized odor-to-

valence map that is shaped by inhibition and reorganized during learning.
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Introduction

Higher brain functions depend on the interpretation of sensory information based on 

experience. This process involves associations between high-dimensional sensory inputs and 

low-dimensional, fundamental qualities such as valence1,2. Associative computations are 

thought to be a main function of piriform cortex (PC), a paleocortical area with prominent 

recurrent connectivity that lacks an obvious fine-scale topography3–8. PC is one of multiple 

interconnected brain areas that receive sensory input from mitral cells of the olfactory bulb 

(OB)3, where odors are represented by normalized and decorrelated activity patterns9–13. PC 

is thought to establish synthetic olfactory object representations by autoassociative memory 

mechanisms based on activity-dependent modifications of recurrent connectivity2,3,14. 

Consistent with such models, learning modified odor responses, pattern separation and 

pattern completion in PC15–17. Moreover, opto- or pharmacogenetic manipulations modified 

associative memories18–20 and ablation of posterior PC impaired temporally remote 

olfactory fear memory21. Nevertheless, mechanisms of memory formation in PC are still 

poorly understood and it remains unclear how odor representations are associated with 

behaviorally relevant qualities such as valence.

Models of memory networks often assume that learning is mediated by specific 

modifications of excitatory synaptic connections2 while inhibition is primarily homeostatic. 

In theory, however, specific inhibitory interactions could further enhance memory functions. 

For example, co-tuning of excitation and inhibition can stabilize memory states22, and 

inhibitory response components may shape tuning curves and population activity. However, 

the hypothesis that specific changes in inhibition contribute to the experience-dependent 

reorganization of information processing has been difficult to address experimentally. In PC, 

results obtained in naïve animals suggest that inhibition is broadly tuned23 but it remains to 

be examined how inhibitory subnetworks are modified during learning.

We examined the plasticity of odor representations in the zebrafish homolog of olfactory 

cortex, the posterior zone of the dorsal telencephalon (Dp)24. Projections from the OB to Dp 

lack a topographic organization25 and odors evoke distributed activity patterns across Dp 

neurons26,27. Repeated passive odor exposure results in an N-methyl-D-aspartate (NMDA) 

receptor-dependent adaptation and reorganization of odor-evoked activity patterns, 

consistent with activity-dependent plasticity of odor processing in Dp28. Here we trained 

adult zebrafish in an odor discrimination task and measured activity patterns in a dorsal-

posterior subregion of Dp (dpDp) that had not been characterized in detail in previous 

studies26–29. Associative conditioning had pronounced effects that were partially reversed by 

photoinhibition of GABAergic interneurons. These results indicate that associative 

conditioning remaps odor space onto a low-dimensional, behaviorally relevant 

representation of valence by a process that modifies inhibition.

Results

Odor representations in dorsal posterior Dp (dpDp)

We measured activity patterns in a dorsal posterior subregion of Dp (dpDp) by two-photon 

Ca2+ imaging in an ex-vivo preparation of the brain and nose after bolus loading of Oregon 
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Green 488 BAPTA-1-AM (Online Methods; Fig. 1a,b)27. We quantified olfactory responses 

to four amino acids (Ala, Trp, His, Ser; 10-4 M), which are natural odorants (Fig. 1b-e). 

Population activity was dense (53 ± 4 % of neurons active per stimulus; mean ± s.d. across 

odors, n = 1790 neurons, N = 13 animals), but was typically dominated by a few strongly 

responsive neurons (population sparseness: 0.38 ± 0.09; mean ± s.d. across animals). The 

mean lifetime sparseness, a measure for tuning sharpness, was low (0.07 ± 0.08; mean ± s.d. 

across neurons). Hence, neurons in dpDp were more broadly tuned than neurons in other 

subregions of Dp27 or in the OB30.

To analyze population activity, we averaged Ca2+ signals during a two-second time window 

after response onset and described activity patterns by vectors across neurons. Distances 

between patterns were quantified by the cosine distance, 1 – cos(α), where α is the angle 

between vectors. This measure is closely related to the Pearson correlation coefficient but 

independent of response intensity, which allowed us to separately analyze effects on the 

structure and on the intensity of population activity patterns. Pairwise distances between 

odor-evoked activity patterns were modest (range: 0.05 to 0.09) and the corresponding 

Pearson correlation coefficients were relatively high (range: 0.76 to 0.86), implying that 

patterns overlapped substantially (Fig. 1f). Pattern discriminability was quantified using a 

classifier that assigns individual trials to odors by matching activity vectors to templates 

constructed from other trials based on the lowest cosine distance. Using this cross-validation 

procedure, classification success was significantly above chance (25%; p < 10–15; Fig. 1g) 

but below 100% (p = 4x10–10) and below the success rate of odor classification based on 

activity patterns from the OB30 or from other subregions of Dp. Similar results were 

obtained when Pearson correlation or Euclidean distance were used as a distance metric 

(Supplementary Fig. 1) or when linear discriminant analysis was used for classification (not 

shown). Hence, odors evoked dense population activity in dpDp that was informative about 

odor identity but not optimized for precise odor identification by simple classifiers.

Associative olfactory conditioning

We next examined how odor representations in dpDp are modified by experience. We first 

analyzed innate behavioral responses to four amino acids (Ala, Trp, His, Ser) by infusing 

them into tanks containing individual, naïve adult zebrafish (Supplementary Fig. 2a, b). Ala 

evoked a transient increase in swimming speed (Fig. 2a) that was reminiscent of appetitive 

behavior31 (Ala vs tank water, p = 0.0006), consistent with a previous report that Ala is 

innately attractive32. Trp, His, or Ser, in contrast, had no obvious effects compared to control 

(tank water) trials, indicating that these amino acid odors were neutral (odor vs tank water, p 

> 0.5 in all cases).

We then trained adult zebrafish in an associative odor discrimination task (Fig. 2b-d)33. 

Briefly, individual fish were exposed once every 20 min to one of two conditioned odors (CS
+, CS–). The positively conditioned stimulus (CS+) predicted the delivery of a food reward 

(unconditioned stimulus, US) into a feeding ring 30 s after stimulus onset while the CS– 

remained unrewarded. Fish received nine CS+ trials and nine CS– trials per day and were 

trained for three or four days. One set of fish (ALA) was trained on Ala as CS+ and Trp as 

CS−, a second set of fish (TRP) was trained on Trp as CS+ and Ala as CS−, and a third set of 
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fish (HIS) was trained on His as CS+ and Ala as CS−. Behavioral responses were measured 

during the 30 s after odor onset by quantifying multiple components of appetitive behavior 

including swimming speed, the height in the water column, and the presence in the reward 

area (Supplementary Fig. 2d-f). Behavioral measures were then normalized and combined to 

obtain a composite behavioral score for appetitive behavior (ζ, Online Methods)33. 

Statistically significant differences between behavioral responses to the CS+ and CS− 

emerged already on the first day of training and approached saturation on the third day (Fig. 

2d; day 1, p = 0.003; day 2, p = 1x10–5; day 3, p = 3x10–9, N = 43 animals), consistent with 

previous observations33. Five out of six individual behavioral components exhibited 

significant differences on the second and third day, showing that results were not dominated 

by a single behavioral readout (Supplementary Fig. 2f). No difference was observed between 

the three training cohorts (p = 0.50, ANOVA; Supplementary Fig. 2c). Hence, fish rapidly 

learned to establish associations between specific odors and an appetitive behavioral 

program.

In an additional group of fish (UNC) we temporally uncoupled the CS (Ala or Trp) and US 

by delivering food 15 min after odor presentation pseudo-randomly in 50% of all trials. 

Hence, fish received the same number of odor stimuli and the same number of food 

applications as in associative conditioning, but odor stimulation was not immediately 

followed by food and did not predict reward (Fig. 2e). In this control experiment, fish did 

not systematically develop differential appetitive responses to Ala and Trp (p ≥ 0.15 on all 

days; Fig. 2f).

Experience modifies odor responses in dpDp

To analyze effects of learning on olfactory processing we compared odor responses in dpDp 

between fish of five experimental groups: ALA (N = 12 animals), TRP (N = 16), HIS (N = 

15), UNC (N = 12) and naïve fish (NAV; N = 13). The majority of fish (12 ALA, 13 TRP, 8 

UNC and 9 NAV fish) originated from the same crossing (Online Methods). An initial 

analysis of basic response properties in this subpopulation revealed that responses averaged 

over all odors were significantly higher than in NAV fish after training in an associative 

paradigm (ALA, TRP; p < 10−13) but not after uncoupled odor exposure (UNC; p = 0.30), 

(Fig. 3a). This increase in the mean odor response of conditioned fish (ALA, TRP) was due 

to an increase in the response amplitude of individual neurons rather than the fraction of 

odor-responsive neurons (not shown). Moreover, changes in response amplitude relative to 

NAV fish were larger for the CS+ than for the CS–: in ALA fish, responses to Ala were 

increased more than responses to Trp (p = 1x10–5), whereas in TRP fish, responses were 

increased to Trp but not to Ala (p = 0.005; Supplementary Fig. 3a). As a consequence, the 

amplitude ratio (Ala/Trp) was significantly shifted in the direction of the CS+ when 

compared to NAV (ALA: p = 0.0006, TRP: p = 6x10–5; Fig. 3b). The Ala/Trp response ratio 

in UNC fish, in contrast, was not significantly different from NAV (p = 0.09). Conditioning 

also changed the signal-to-background ratio of odor responses, which is defined for each 

neuron as the response amplitude normalized to the signal fluctuations during spontaneous 

and odor-evoked activity34 (Supplementary Fig. 3b, c).
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The remaining subpopulation of fish originated from two additional crossings and included 

HIS fish (4 NAV fish, 3 TRP fish, 15 HIS fish, and 4 UNC fish). The absolute amplitude of 

odor responses in this subpopulation was slightly but significantly different from the first 

subpopulation (ca. 10% reduction in NAV fish, p = 0.003; Supplementary Fig. 3d), which 

may reflect differences in genetic background and precluded direct comparisons of response 

amplitudes between HIS fish and other groups. However, in HIS fish, responses to the CS+ 

(His) were significantly increased when compared to NAV fish from the same crossings 

(155% ± 3% (mean ± s.e.m.) of NAV, n = 528; HIS, n = 2040; p < 10–16; Wilcoxon-Mann-

Whitney test, two-sided) consistent with findings in the first subpopulation. To allow for 

comparisons across crossings, further analyses were based on response ratios. The ratio of 

CS response amplitudes (Ala/His; p = 4x10–10; Fig. 3b) and the corresponding signal-to-

background ratio (Supplementary Fig. 3c) were shifted towards the CS+ when compared to 

NAV fish. Hence, responses to the CS+ and CS– were consistently shifted in the direction of 

the CS+ in all conditioned groups.

To examine the relationship between neuronal response amplitudes in dpDp and behavioral 

responses to odors we quantified odor preference at the end of training by the difference d 

between ζ scores for Ala versus Trp or His (d = ζAla – ζTrp or His; d = 0: no preference; d > 

0: preference for Ala; d < 0: preference for Trp or His). The behavioral preference for the CS
+ was correlated to the relative amplitude of the CS+ response after associative conditioning 

(ALA, TRP, HIS): stronger neural responses to the CS+ predicted stronger behavioral 

preference for the CS+ across individuals (r = 0.37, p = 0.02, N = 43 animals; Fig. 3c). In the 

same fish, the amplitude ratio of responses to odors that were not used in conditioning (Ser 

versus His or Trp) was not related to behavioral preference (r = 0.00, p = 1; Fig. 3d). 

Moreover, the Ala/Trp response ratio did not predict behavioral preference in UNC fish (r = 

–0.22, p = 0.49; Supplementary Fig. 3e). The relative enhancement of odor responses to the 

CS+ therefore partially predicted behavioral preference after associative conditioning.

Further analyses showed that the mean lifetime sparseness of odor responses in ALA, TRP, 

HIS, and UNC fish was significantly higher than in NAV fish (p < 10–15 for all comparisons; 

Fig. 3e). Consistent with this observation, the slope of tuning curves constructed by rank-

ordering of odor responses in individual neurons was significantly increased (Fig. 3f). 

Neurons in dpDp therefore became more sharply tuned after associative conditioning and 

uncoupled odor exposure.

Effects of experience on neuronal population activity

Models of olfactory cortex suggest that information storage involves the strengthening of 

recurrent excitatory connections among specific neurons14, which may increase the 

correlation of spontaneous and odor-evoked activity among neuronal subsets. To test this 

hypothesis, we quantified pairwise correlations between activity traces of simultaneously 

recorded neurons in the absence of stimuli (spontaneous correlation). On average, 

spontaneous correlations were positive in NAV fish and significantly increased after 

associative conditioning or uncoupled odor exposure (p < 10–5 for all groups; Fig. 4a). These 

observations cannot be explained by chance effects because shuffling of trials abolished 

correlations. Similarly, correlations between tuning curves (signal correlations) of dpDp 
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neurons in the same individuals were positive in NAV fish and further increased by 

experience (p < 10–15 for all comparisons; Fig. 4b). Across individuals, signal correlations 

were at chance level in NAV fish (p = 0.89; Fig. 4b) but became positive after associative 

conditioning or uncoupled odor exposure (p < 10–6 for all groups; Fig. 4b). These effects 

cannot be explained by a general increase in activity after conditioning (Supplementary Fig. 

3f, g). Associative conditioning and uncoupled odor exposure therefore strengthened 

pairwise neuronal correlations, consistent with models of autoassociative memory3,14.

To further analyze effects of experience on the structure of population activity patterns we 

subtracted the mean matrix of cosine distances between activity patterns in NAV fish (Fig. 

1f) from the distance matrices of other experimental groups. The resulting difference 

matrices (Fig. 4c) reflect effects of experience on the similarity of odor representations, 

independent of effects on response amplitude. We found that ALA training had small and 

heterogeneous effects on pairwise pattern distances. On average, differences in cosine 

distances between ALA and NAV fish were indistinguishable from variability across 

individual NAV fish (Fig. 4d). TRP and HIS training, in contrast, significantly increased the 

mean distance between odor representations (TRP, p = 0.02; HIS, p = 0.02; Fig. 4d). This 

increase was observed for all odor pairs and was particularly pronounced between 

representations of the CS+ (Trp or His) and other stimuli (Fig. 4c). UNC fish showed a trend 

towards increased pattern distances that was, however, not significant when compared to 

NAV fish (p = 0.33; Fig. 4d).

To test for a more specific reorganization of pattern distances we summed absolute distance 

values in each individual distance matrix, after centering each matrix on the group-specific 

mean and subtracting the mean centered distance matrix of NAV fish. This measure detects 

differences in specific pattern distances even in the absence of a change in the mean cosine 

distance and was also significantly increased in TRP and HIS fish (TRP, p = 0.0004; HIS, p 

= 0.02; Fig. 4e), but not in ALA and UNC fish (ALA, p = 0.97; UNC, p = 0.20), when 

compared to NAV fish. Hence, associative conditioning had specific effects on the structure 

of population activity patterns in dpDp that depended on the association between specific 

odors and reward. This reorganization of the structure of odor representations was not 

significant when an intrinsically appetitive odor (Ala) was chosen as CS+ while the CS– was 

intrinsically neutral (Trp or His) but was pronounced when the CS+ was intrinsically neutral 

(Trp or His) while the CS– was intrinsically appetitive (Ala). Hence, the amount of 

reorganization of odor representations may be related to changes in odor-value associations.

The success of odor identification by template matching of odor-evoked activity patterns was 

not significantly different between any of the experimental groups (see below). Hence, 

experience did not significantly facilitate or impair odor identification by a simple classifier, 

supporting the notion that precise odor identification is unlikely to be a primary function of 

dpDp.

Mapping odor space onto a representation of valence

Associative conditioning and uncoupled odor exposure affected not only responses to 

conditioned odors but also modified responses to other odors in an odor- and task dependent 

fashion, raising the possibility that experience-dependent modifications of odor 
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representations generalize according to a global logic. We thus asked whether the 

organization of odor representations in dpDp could be mapped onto a low-dimensional 

structure that captures variations across individuals and experimental groups. In each fish, 

we described the organization of odor representations by the six pairwise cosine distances 

between the four odor-evoked activity patterns (Ala, Trp, His, Ser). The resulting six-

element vector therefore characterized the organization of the olfactory coding space and is 

referred to as the “coding structure” (Fig. 5a). Coding structures of individual fish from all 

groups (NAV, ALA, TRP, HIS, UNC) were pooled and then analyzed by principal 

component analysis (PCA).

The first two principal components (PC 1 and PC 2) represented 62% and 15% of the 

variance, respectively (Fig. 5b). In the space defined by these PCs, coding structures of ALA 

fish were close to those of NAV fish but partially separated from those of TRP and HIS fish. 

Coding structures of UNC fish were similar to those of NAV fish, with few exceptions. To 

further simplify this analysis, we focused on PC 1 which included high loadings (weights) 

on a subset of distances (Fig. 5c), implying that it did not represent the distance between a 

single odor pair or the global distance between all odor pairs. After projection onto PC 1, 

coding structures of TRP and HIS fish were separated significantly from those of NAV fish 

(TRP, p = 0.03; HIS, p = 0.03; Fig. 5d) while coding structures of ALA and UNC fish were 

not significantly different from NAV (ALA, p = 0.98; UNC, p = 0.30; Fig. 5d). Similar 

results were obtained when the coding space was not characterized by distances between 

odors of defined identity (e.g., Ala vs Trp) but by distances between stimuli representing 

task-relevant categories (e.g. CS+ vs CS–; Supplementary Fig. 4a). These results show that 

effects of different behavioral manipulations can be represented to a large extent by 

modifications of coding structures along a single, dominant dimension.

We next examined the relationship between the organization of coding space and behavioral 

odor preference. In UNC fish, which had not learned to associate specific odors with reward, 

behavioral odor preference (d = ζAla – ζTrp) was significantly correlated to the PC 1 score (r 

= 0.74, p = 0.006; Fig. 5e). Hence, a high PC 1 score predicted a preference for Ala while a 

low PC 1 score predicted a preference for Trp. In fish that were trained in an associative 

paradigm (ALA, TRP, HIS), behavioral preference values were distributed over a broader 

range. Nevertheless, the correlation between the behavioral odor preference d and the PC 1 

score remained significant across all experimental groups (r = 0.52, p = 4x10–5; Fig. 5f; 

Supplementary Fig. 4). Correlations also remained significant when scores were obtained by 

projecting coding structures from a subset of the experimental groups onto PC 1 extracted 

from the other experimental groups (Supplementary Fig. 5). Shuffling of coding structures, 

however, reduced or abolished this correlation (Supplementary Fig. 4c, d). Hence, the PC 1 

score consistently predicted behavioral odor preference independent of the specific 

associations between odor and reward in different experimental groups. This indicates that 

PC 1 represents appetitiveness and that experience modified the representation of odors 

along this dimension. Experience may also modify odor representations along other 

dimensions but we did not observe a significant correlation between other principal 

components and behavioral odor preference (Supplementary Fig. 4g). Consistent with the 

low dimensionality of dpDp representations, the variance represented by PC 1 remained high 

in a dataset containing responses to eight odors (28-dimensional coding structures; naïve 
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fish; Supplementary Fig. 4f), but experiments using additional odors are required to assess 

the precise dimensionality of behaviorally relevant dpDp representations. In summary, dpDp 

maps odor representations onto an internal variable that is directly related to behavior. We 

will refer to this internal variable as valence35.

Experience-dependent modification of inhibition

Memory storage depends not only on modifications of excitatory interactions but also 

includes inhibitory interactions that may shape neuronal tuning curves and activity patterns. 

To examine potential functions of inhibition we targeted halorhodopsin-YFP 

(eNpHR3.0YFP)36 to GABAergic interneurons (INs) using a transgenic line that contained a 

Tg(gad1b:Gal4) driver and a Tg(UAS:eNpHR3.0YFP) responder (Online Methods). In adult 

fish, eNpHR3.0YFP was detected in scattered somata and fibers throughout Dp (Fig. 6a; 

Supplementary Fig. 6a). Because the membrane association of eNpHR3.0YFP complicated 

the detection of somata within the densely labelled neuropil we also examined a 

Tg(gad1b:GFP) line that expressed cytosolic GFP under the control of the same promoter37. 

GFP-positive somata were particularly dense below the anterior nucleus taeniae but scattered 

GFP-positive somata were found throughout Dp, consistent with previous observations38. To 

hyperpolarize INs in a subset of trials, orange light (594 nm) was directed at Dp through an 

optical fiber (Fig. 6b) for 6.2 s, starting approximately 500 ms before the onset of odor 

stimulation. This approach allowed us to compare activity across the same neurons under 

control conditions and during photoinhibition of INs (“PIN”).

PIN significantly increased spontaneous activity and odor responses (Fig. 6c-e; 

Supplementary Fig. 6b). When compared among fish from the same crossing, the PIN-

induced increase of responses was significantly higher after associative conditioning or 

uncoupled odor exposure than in NAV fish (p < 10–12, for all groups; Fig. 6f). These 

observations show that experience increased inhibitory components of odor responses.

We next examined subtractive and divisive effects of inhibition. Uniform subtractive 

inhibition decreases all responses by a constant amount, which can sharpen tuning and 

sparsify activity patterns. This form of inhibition has been observed in PC upon silencing of 

somatostatin-expressing INs34. Uniform divisive inhibition, in contrast, decreases activity by 

a constant factor and scales activity patterns without modifying their structure or sparseness. 

To determine whether effects of inhibition are better described by a subtractive or by a 

divisive model, we fitted a linear function to all responses of individual neurons (Fig. 6g). In 

NAV fish, the slope of the linear fit was significantly greater than unity (m = 1.35 ± 0.33, 

mean ± s.d.; p = 1x10-5, bootstrap test, one-sided, N = 13 animals) while the y-intercept was 

close to zero (Y0 = 1.05 ± 0.81, mean ± s.d.), consistent with primarily divisive inhibition. 

The relative contribution of subtractive and divisive components was quantified by the 

relative contributions of the offset and the slope of the fit, respectively, to the mean PIN-

induced response enhancement. This analysis confirmed that the divisive component of 

inhibition dominated over the subtractive component in all experimental groups (Fig. 6h). 

Associative conditioning and uncoupled odor exposure therefore enhanced inhibition 

without major changes in the relative contribution of subtractive and divisive components.
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Further analyses showed that PIN reduced the signal-to-background ratio (Supplementary 

Fig. 6d) and significantly reduced the mean lifetime sparseness of odor responses (NAV, p = 

2x10–12; ALA, p = 8x10–67; TRP, p = 2x10–82; HIS, p = 4x10–41; UNC, p = 0.004; Fig. 7a). 

In fish that underwent associative conditioning (ALA, TRP, HIS), but not in UNC fish, this 

reduction was significantly larger than in NAV fish (Fig. 7a). Changes in inhibitory 

interactions are therefore likely to contribute to the sharpening of odor responses during 

associative conditioning. Across all groups that underwent associative conditioning (ALA, 

TRP, HIS), the relative amplitudes of responses to the CS+ and CS– during PIN remained 

correlated to behavioral odor preference in individual fish (r = 0.35; p = 0.02; Fig. 7b). No 

systematic relationship was observed between the amplitude ratio of responses to non-

conditioned odors (Ser versus His or Trp) during PIN and behavioral odor preference (r = –

0.09, p = 0.58; Fig. 7c). The CS+/CS– response ratio during PIN therefore still predicted 

behavioral odor preference after conditioning, as observed under control conditions. 

Classification of odor-evoked activity patterns by template matching was not significantly 

different during PIN in any of the experimental groups (Fig. 7d).

Inhibition may contribute to systematic modifications of odor-evoked activity patterns after 

experience. If so, inhibitory components of odor responses should have two properties. First, 

inhibition in individual neurons should not be uniform across odors but exhibit non-uniform 

components that shape odor tuning. Second, effects of experience on the tuning of inhibition 

should be coordinated across different neurons to shape population activity patterns in a 

systematic fashion.

Consistent with non-uniform inhibition in individual neurons, linear models of inhibition did 

not fully explain the effects of PIN on odor responses, as indicated by the substantial scatter 

around linear fits (cf. Fig. 6g). More detailed analyses of individual neurons showed that 

effects of PIN on odor responses were nearly uniform in some neurons but highly odor-

dependent in others (Fig. 7e). To further characterize non-uniform inhibition, we measured 

the relative PIN-induced response change for each neuron-odor pair by a change index that 

varies between –1 and 1 (Online Methods). A low variation of the change index across odors 

implies that effects of PIN are largely uniform (divisive), while a high variation implies non-

uniform inhibition. We therefore define the standard deviation (s.d.) of the change index as a 

“non-uniformity index” for each neuron. As a control, we used the same procedure to 

compare successive trials with the same odors under the same conditions (control-control or 

PIN-PIN). The non-uniformity index was significantly higher than the control indices in all 

experimental groups (p < 10–19, for all comparisons; Fig. 7f), confirming that inhibition had 

significant non-uniform effects on individual neurons.

Remapping of odor-valence relationships involves inhibition

To explore whether non-uniform inhibition is coordinated across the population we 

examined effects of PIN on cosine distances between odor-evoked activity patterns. If 

inhibitory components of odor representations are uncoordinated, effects of PIN are 

expected to be unspecific and global. However, we found that effects of PIN systematically 

depended on the odor and task. PIN significantly decreased cosine distances between odor-

evoked activity patterns in all groups except NAV (Fig. 8a, b). As a consequence, differences 
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in pattern distances between experimental groups disappeared (Supplementary Fig. 6e, f). 

Furthermore, the pattern of PIN-induced distance changes was similar in structure, but 

opposite in sign, to the pattern of distance changes induced by associative conditioning or 

uncoupled odor exposure in each experimental group. Consistent with this observation, PIN-

induced distance changes were negatively correlated to experience-related distance changes 

across all fish and odor pairs (ALA, r = –0.77; TRP, r = –0.80; HIS, r = –0.81; UNC, r = –

0.50; Fig. 8c). These results show that inhibitory response components systematically 

depended on associations between odors and reward, implying that effects of inhibition were 

coordinated across the population of neurons in dpDp.

The observation that effects of PIN on odor representations in dpDp were mirror-symmetric 

to effects of experience (Fig. 8b, c) indicates that changes in inhibitory response components 

contributed significantly to the reorganization of odor representations during associative 

conditioning. To corroborate this conclusion, we projected coding structures onto the first 

two principal components and found that PIN reduced distances between coding structures 

from different experimental groups (Fig. 8d, Supplementary Fig. 6g). This observation 

cannot be explained by a change in response amplitudes because coding structures were 

defined by cosine distances. Moreover, in other distance metrics, a non-specific increase in 

response amplitude would be expected to increase, rather than decrease, differences between 

activity patterns. Hence, PIN had specific effects on coding space that were opposite to those 

of experience, consistent with the hypothesis that experience-dependent reorganizations of 

coding space included coordinated plasticity of inhibitory response components.

This conclusion was further supported by the observation that PIN-induced changes in PC 1 

scores were negatively correlated to the PC 1 score under control conditions: a large initial 

PC 1 score predicted a large PIN-induced change of opposite sign (Fig. 8e; over all fish, r = 

–0.74, p = 4x10–13, N = 68 animals; see also Supplementary Fig. 6h). Hence, PIN 

systematically reduced inter-individual variations in odor-valence mappings across all 

experimental groups. Nevertheless, PIN did not fully abolish differences in PC 1 scores 

between experimental groups. Moreover, the PC 1 scores during PIN, although reduced, still 

showed a residual positive correlation to behavioral odor preference (Supplementary Fig. 6j, 

k). These observations indicate that the observed modifications of excitatory response 

components (cf. Fig. 3a) also contribute to inter-individual variations in odor-value maps. 

Our results therefore indicate that experience results in coordinated modifications of 

excitatory and inhibitory interactions that both contribute to the remapping of odor space 

onto an axis of valence in dpDp.

Discussion

Our results revealed multiple effects of experience on odor-evoked activity in dpDp that 

collectively had two major consequences. First, associative conditioning enhanced the 

representation of the CS+ relative to the representation of the CS–. Second, manipulations of 

odor-reward associations remapped representations of odors along a behaviorally relevant 

axis of valence in an experience-dependent fashion. Remapping of odor representations 

involved a global increase in inhibition as well as specific effects on inhibitory components 

of neuronal tuning curves, as revealed by PIN. Hence, modifications of inhibitory response 
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components play an instructive role in the experience-dependent reorganization of odor-

valence associations in dpDp.

Experience-dependent remapping of odor representations

Unlike odor-evoked activity in other subregions of Dp26,27 and in subregions of parts of 

PC4,5,7,8,39, odor responses in dpDp were dense and not very odor-selective. Activity in 

dpDp represented a combination of sensory and task-related information, which is generally 

consistent with neuronal activity in posterior PC40–42; the phylogenetic relationships, 

however, between subregions of Dp and mammalian olfactory cortex remain to be clarified. 

To manipulate odor-value associations we conditioned a familiar feeding behavior on 

olfactory cues33. Although activity was measured in an ex-vivo preparation after 

conditioning, multiple features of neuronal activity were highly correlated to inter-individual 

variations in odor preference. Activity patterns therefore reflected behaviorally relevant 

variations in neuronal circuit function.

Associative conditioning and uncoupled odor exposure enhanced correlations of 

spontaneous activity and odor responses between individual neurons, consistent with 

predictions of autoassociative memory models. However, most memory models consider a 

regime of high dimensionality and high memory capacity2. The high pattern and signal 

correlations in dpDp, in contrast, indicate that activity in dpDp is low-dimensional and not 

optimized for high storage capacity, consistent with the hypothesis that dpDp maps odor 

responses onto a low-dimensional output.

One effect of associative conditioning was a general enhancement of odor responses that 

was more pronounced for the CS+ than for the CS–. Enhanced representations of rewarded 

stimuli have also been observed in other brain areas including auditory and visual 

cortex43–46. In these brain areas, conditioning usually increases the discriminability of 

stimulus representations, suggesting that plasticity supports perceptual learning. In dpDp, in 

contrast, experience did not affect pattern discriminability, suggesting that enhanced 

responses primarily increase the impact of rewarded stimuli onto appetitive behavior.

A second main effect of associative conditioning was a systematic reorganization of 

olfactory coding space in dpDp along a dimension closely related to valence. Inter-

individual variations in the organization of olfactory coding space predicted variations in 

behavioral odor preference across experimental groups and even among individuals within 

the same group. Hence, dpDp maps odor space onto a low-dimensional representation of 

valence that is modified by experience and likely to have a direct influence on appetitive 

behavior. These results are consistent with the notion that the dimensionality of perceptual 

space in olfaction is low although the dimensionality of chemical stimulus space may be 

high47.

The finding that the organization of odor representations predicted appetitive behavior across 

individuals implies that associative learning modified coding space while the valence axis 

remained consistent. This indicates that the quality of information transmitted by individual 

neurons remains stable when odor-value associations change, which is important when 

neurons have defined effects on behavior. Associative learning by a reorganization of coding 
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space is thus a useful strategy in networks that operate close to outputs controlling behavior. 

In Drosophila, valence is encoded by a dense population code across mushroom body output 

neurons that project to specific target areas35,48. In this system, valence is represented along 

a fixed axis while the mapping of odors onto this axis can be modified by experience49, 

similar to our observations in dpDp. Hence, vertebrates and insects may use similar 

strategies to associate odors with low-dimensional, internal variables.

Experience-dependent plasticity of inhibition

To manipulate inhibition we expressed eNpHR3.0YFP under the control of the gad1b 
promoter, which targets interneurons broadly. PIN resulted in a pronounced disinhibition in 

dpDp but incomplete suppression of action potential firing in subsets of interneurons cannot 

be excluded. Nonetheless, effects of PIN were highly correlated to inter-individual variations 

in odor-evoked activity and behavior (Fig. 8 and Supplementary Fig. 6), implying that 

effects of PIN were reliable and effective across individuals.

In PC, photoinhibition of somatostatin-expressing interneurons revealed a form of global 

subtractive inhibition34 whereas our more broadly targeted approach revealed primarily 

divisive inhibition in dpDp. Divisive inhibition can efficiently normalize activity in 

autoassociative networks, which is important to counterbalance recurrent amplification22. 

Consistent with such a function, PIN unmasked an enhancement of divisive inhibition after 

associative conditioning that partially balanced the increase in excitatory odor responses.

Inhibition also had non-uniform effects on tuning curves that were systematically modified 

by associative conditioning, resulting in coordinated changes of inhibitory response 

components across the population. The underlying synaptic modifications may involve 

multiple cell types and connections. In principle, specific modifications of inhibition may be 

indirect consequences of plasticity at synapses between excitatory neurons. Alternatively, 

modifications of inhibition may involve plasticity of synapses from excitatory neurons to 

INs, from INs to excitatory neurons, or both. This hypothesis is consistent with the complex 

non-uniform effects of PIN and their specific contributions to odor-valence mapping. 

Moreover, this scenario is consistent with the observation that inhibitory inputs to neurons in 

posterior Dp exhibit non-random tuning29, and with learning-dependent changes in the 

response selectivity of INs in other brain areas50.

Coordinated plasticity of inhibitory response components contributed significantly to 

experience-dependent plasticity of odor representations in dpDp. PIN reduced inter-

individual variations in PC scores, even among NAV fish, resulting in the convergence of 

coding structures towards a common “baseline state”. Moreover, effects of PIN mirrored 

effects of experience on pairwise distances between activity patterns across all odors and 

fish. Hence, a substantial fraction of task-dependent changes and other inter-individual 

variations in odor-value maps can be explained by variations in patterned inhibition. 

However, PIN did not completely abolish remapping of odor representations, suggesting that 

plasticity of interactions between excitatory neurons also contributed to the reorganization of 

odor responses. These results suggest that inhibitory network plasticity enhances excitatory 

plasticity particularly during specific memory operations.
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Online Methods

Animals and transgenic lines

All experiments were performed using adult zebrafish (Danio rerio) of both sexes, aged 7 

± 4 months (mean ± s.d.). Fish were raised and kept under standard laboratory conditions 

(26 – 27 °C; 13 h/11 h light/dark cycle). With few exceptions (below), experiments were 

performed in a double-transgenic line that expressed the light-sensitive chloride pump 

halorhodopsin (eNpHR3.036) fused to yellow fluorescent protein (YFP) under the control of 

the glutamate decarboxylase 1b promoter Tg(gad1b:Gal4, UAS:eNpHR3.0YFP). These fish 

(‘gad1b-NpHR’) originated from three different crossings (each crossing: ≤ 5females and ≤ 

5 males). Most fish (9 NAV, 12 ALA, 13 TRP, and 8 UNC) originated from the first 

crossing. The remaining fish (4 NAV, 3 TRP, 15 HIS, and 4 UNC) originated from two 

additional crossings of other individuals. All fish used in the study were assigned randomly 

to the different training groups. For activity measurements and analysis of innate behavioral 

odor preference, naïve fish were chosen randomly from large populations (> 40) of gad1b-

NpHR fish. Exceptions (non gad1b-NpHR fish): Fig. 6a (Tg(gad1b:GFP)37, N = 3 animals); 

Supplementary Fig. 4f (mixed population of naïve adult zebrafish, N = 15 animals); 

Supplementary Fig. 6c (Tg(UAS:eNpHR3.0YFP), N = 2 animals). Experiments were 

approved by the Veterinary Department of the Canton Basel-Stadt (Switzerland).

To target optogenetic probes to GABAergic interneurons in Dp we used the promoter of the 

gad1b gene (formerly GAD67), which encodes one of the two major isoforms of glutamate 

decarboxylase in zebrafish51. To enhance the visualization of somata we also analyzed 

Tg(gad1b:GFP) fish37. Throughout Dp, the number and distribution of somata expressing 

eNpHR3.0YFP in Tg(gad1b:Gal4, UAS:eNpHR3.0YFP) fish and GFP in Tg(gad1b:GFP) 

fish were comparable to each other and consistent with the reported expression of gad1b 
mRNA in adult zebrafish38. A high density of positive somata was found posterior to the 

prominent medio-lateral furrow that runs along the anterior border of the nucleus taeniae. In 

addition, scattered somata and dense fibers were observed throughout the volume of Dp 

(Fig. 6a). The number of positive somata was substantially higher than in other transgenic 

lines that target distinct subsets of interneurons in Dp (T.F. and R.W.F., unpublished 

observations). This indicates that the gad1b promoter targeted multiple subtypes of 

interneurons that account for the majority of, possibly all, interneurons in Dp.

The UAS:eNpHR3.0YFP expression construct was generated using the Tol2Kit52, involving 

a multisite recombination reaction (Invitrogen Multisite Gateway manual Version D, 2007) 

between p5E–UAS (5xUAS and E1b minimal promoter53), pME–eNpHR3.0YFP (third-

generation halorhodopsin fused to YFP36), and p3E–polyA as entry vectors, and 

pDestTol2CG2 as destination vector52. A stable transgenic founder line was generated using 

standard procedures54.

Fish expressing Gal4 under the gad1b promoter Tg(gad1b:Gal4) were generated using the 

BAC (bacterial artificial chromosome) homologous recombination technique with the Tol2-

mediated method55. The BAC clone zC24M22 was used, into which a hsp70-Gal4 

(Gal4FF)56 DNA construct was introduced55.
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Experimental preparation, dye loading and odor application

Ca2+ imaging was performed in an ex-vivo preparation of the entire zebrafish brain and 

nose27. Briefly, adult zebrafish were cold-anesthetized, decapitated, and the forebrain was 

exposed ventrally after removing the eyes, jaws and palate. The preparation was placed in a 

custom-made flow-chamber, continuously superfused with teleost artificial cerebrospinal 

fluid (ACSF) and slowly warmed up to room temperature. ACSF contained (in mM): 124 

NaCl, 2 KCl, 1.25 KH2PO4, 1.6 MgSO4, 22 D-(+)-Glucose, 2 CaCl2, 24 NaHCO3, pH 7.257.

Activity was measured in a dorsal aspect of Dp, posterior to the anterior commissure and to 

the furrow at the anterior border of the nucleus taeniae (Fig. 1a). This subregion (dpDp) 

comprises approximately 10% of the volume of Dp. Bolus loading of Oregon Green 488 

BAPTA-1-AM (OGB-1; ThermoFisher Scientific) was performed as described27, with minor 

modifications. 50 μg of OGB-1-AM was dissolved in 30 μl of DMSO/Pluronic F-127 

(80/20; ThermoFisher Scientific) and stored in 4 μl aliquots at −20°C. Prior to each 

experiment, an aliquot was diluted 1:5 in ACSF and loaded into a glass pipette with a tip 

diameter of approximately 5 μm. Pressure injections were targeted to the lateral 

telencephalon, posterior to the prominent furrow and blood vessel and slightly dorsal to Dp. 

One or two injections were made ∼300 - 350 μm dorsal from the ventralmost aspect of Dp. 

Progress of dye uptake was monitored by snapshots of multiphoton images and pressure was 

adjusted to minimize swelling of the tissue. Odor-evoked activity was subsequently 

measured approximately 100 μm ventral to the injection sites (200 – 250 μm from the 

ventralmost aspect of Dp). This region contains a scattered band of large neuronal somata 

that is referred to as dpDp (Fig. 1). Nomenclature of brain areas and drawings showing the 

location of dpDp (Fig. 1a; Supplementary Fig. 6a) are based on the atlas of the adult 

zebrafish brain58. Odor application started > 1 h after dye injection.

Four amino acids (His, Ser, Ala, Trp; Sigma) were prepared as 100x stock solutions in 

deionized water (Fluka), vortexed, sonicated, stored at −20°C, and diluted to a final 

concentration of 10-4 M in ACSF immediately before the experiment. Odors were applied in 

blocks of six trials. In each block, three control and three PIN trials were interleaved. Inter-

stimulus intervals (ISIs) were 2.25 min ± 15 s (mean ± s.d.). The sequence of odor blocks 

was varied across animals to avoid systematic biases, but each experiment was started with 

either one of the neutral odors, followed by either one of the familiar odors, the second 

neutral odor, and the second familiar odor. Odors were applied to the nasal epithelium for ∼3 

s through a constant stream of ACSF using a computer-controlled, pneumatically actuated 

HPLC injection valve (Rheodyne) as described27. No odor stimuli were presented prior to 

the first stimulus in an experiment to minimize potential effects of passive odor exposure on 

odor responses28.

Image acquisition and optical stimulation

Multiphoton calcium imaging in Dp was performed using a custom-built multiphoton 

microscope59, a 20x objective (NA 1.0, Zeiss) and Scanimage/Ephus software60,61. 

Fluorescence was excited at 928 nm and emission was detected by a gated GaAsP 

photomuliplier tube (PMT; Hamamatsu) through a bandpass emission filter (535/50nm). In 

addition, a narrow blocking filter centered on 594 nm was placed in front of the PMT. Laser 
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intensity was adjusted in each focal plane to minimize photobleaching. In each trial, images 

with 256 lines were acquired at 128 ms per frame, starting approximately 33 s before odor 

onset in each trial. After each trial, the field of view was readjusted to compensate for 

potential drifts using an automated routine that acquired a small z stack of ± 3 μm (step size, 

0.5 μm).

For optical stimulation, orange laser light (594 nm) was directed at posterior Dp through an 

optical fiber (200 μm diameter; ThorLabs) positioned approximately 100 – 200 μm from the 

brain surface. While light was directed at posterior Dp, we cannot rule out that scattered also 

had weak effects in adjacent regions. Pulses of light (450 μs) were coupled into the fiber 

using a digital micromirror device (DMD; Texas Instruments)59 and synchronized to every 

second line of image acquisition. Simultaneously, the PMT was switched off. After data 

acquisition, every second line was removed from images to exclude lines affected by 

photostimulation. The same procedure was applied to trials without photostimulation, 

resulting in final images with 128 lines and a fill fraction of approximately 40% under all 

conditions. The intensity of orange light at the tip of the fiber, averaged over the duty cycle, 

was 6 – 8 mW. In Tg(UAS:eNpHR3.0YFP) fish that did not carry the gad1b:Gal4 transgene 

(N = 2), orange laser light had no detectable effect on neuronal activity (Supplementary Fig. 

6c).

Regions of interest (ROIs) were drawn manually over all somata in each image plane, using 

custom-made software (https://github.com/i-namekawa/Pymagor). To calculate the relative 

change in fluorescence (ΔF/F) in each ROI, the time series of raw fluorescence, averaged 

over all pixels, was low-pass filtered by a 2 s rolling average and the baseline fluorescence F 

was defined as the minimum over all time points. Time series of Ca2+ signals were aligned 

to the start of odor-evoked activity to correct for small variations in stimulus onset times 

across animals. ΔF/F was averaged over a 2 s time window starting at response onset. This 

resulted in a time window that was centered approximately on the peak of the population 

response (Fig. 1d). Variation of the temporal alignment procedure or of the analysis time 

window had minimal effects on the results.

Behavioral experiments

Associative conditioning was performed as described33. Briefly, individual gad1b-NpHR 

fish were acclimated to the behavioral setup without food (1-3 days) and subsequently 

trained to associate one odor stimulus (CS+) with a food reward while a second odor 

stimulus (CS–) was not rewarded. Nine trials per odor were delivered each day in odor-

alternating sequence (inter-trial interval: 20 min). Fish received 27 - 36 trials of each odor (n 

= 32.3 ± 4.0 trials, mean ± s.d.; N = 43 animals; no dependence of discrimination 

performance on total trial number (Pearson correlation): r = −0.20, two-tailed t test, p = 

0.19)). Swimming trajectories were monitored in 3D. Appetitive behavioral response 

components included: increased swimming speed, elevated position in water column, 

increased presence in reward zone, increased surface sampling, decreased distance to odor 

inflow, and decreased rhythmic circular swimming. These behavioral components were 

quantified during the 30 s after odor onset and prior to reward delivery by automated 

analyses routines and combined into a compound score of appetitive behavior, ζ33. Odor 
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preference was measured as the mean difference between ζ scores in response to the CS+ 

and CS– over the last nine trials. Alternative metrics for quantification of overall 

discrimination performance gave very similar results.

Uncoupled odor exposure was performed using a similar schedule except that food was 

delivered 15 min after odor presentation and assigned pseudo-randomly to 50% of trials, 

independent of odor identity. Naïve fish were directly taken from the same populations as 

fish used for associative conditioning or uncoupled odor exposure.

Behavioral training was performed in blocks. Per block, four to twelve individuals were 

trained in parallel. After termination of training, fish were ranked according to an initial 

assessment of their discrimination performance, transferred to single tanks in the fish facility 

and successively selected for measurements of odor-evoked activity patterns 2.1 ± 1.2 (mean 

± s.d.) days after last training day. In total, 49 out of 94 trained fish were used for activity 

measurements. Five out of 49 fish were excluded due to technical problems during 

behavioral training (evident only after the fish had been imaged), and one fish was excluded 

upon failed dissection. The remaining 43 fish (12 ALA, 16 TRP, 15 HIS) comprised 

individuals with a wide range of preference scores (Supplementary Fig. 2c). Twelve out of 

14 additional gad1b-NpHR fish that received uncoupled odor exposure were used for 

activity measurements 0.9 ± 0.7 (mean ± s.d.) days after last odor exposure; two fish were 

excluded upon failed dissection. Exclusion criteria were established prior to the start of the 

study.

When behavioral data from fish from different experimental groups were combined for 

analysis (Figs. 3, 5, 7 and Supplementary Figs. 3-6) the sign of the discrimination score was 

adjusted to reflect preference for Ala. Image acquisition and primary data analysis of trained 

fish were performed blind to the odor-reward association of the respective fish for all ALA 

fish and 13 out of 16 TRP fish. For the remaining fish, the affiliation to the training group 

could not be concealed from the experimenter.

To analyze innate behavioral responses to odors, individual gad1b-NpHR fish of both sexes 

(starved for one day; N = 71 animals) were placed in a modified setup (no feeding ring, 

inflow and outflow tubes). Each fish was acclimated for at least 30 min and tested only once 

on one odor (and fish facility water as control). In each application, 1 ml of facility water or 

odor solution (His, Ser, Ala, or Trp; 10−3 M in facility water) was applied to one corner of 

the tank during 20 s after recording baseline swimming activity. We primarily analyzed 

swimming speed, which has been directly related to appetitive behavior in other tasks31,62. 

However, differential effects of Ala and the remaining odors were also observed for the 

distance to the odor application site. Behavioral parameters were normalized to the mean 

value over 50 s prior to stimulus onset and quantified over 40 s after stimulus onset.

Statistical analysis

No statistical methods were used to predetermine sample sizes but our sample sizes are 

similar to those reported in previous publications15,44,50. N indicates the number of animals 

(experiments) and, unless stated otherwise, n indicates number of neurons. Unless stated 

otherwise, sample means are reported ± their standard error (± s.e.m.).
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We tested pooled samples for normality using the Jarque-Bera test. We used a repeated 

measures t test for all paired samples with n > 250. For smaller sample sizes or if the null 

hypothesis of normality was rejected, we used non-parametric tests: non-parametric 

Kruskal-Wallis test followed by a Dunn-Hollander-Wolfe test for nonparametric multiple 

comparisons to one control group (reported p-values are adjusted for multiple comparisons) 

or Wilcoxon signed-rank test for paired samples.

To compare two samples of categorical data (e.g. correctly identified trials in template 

matching classification analysis) we used a Pearson’s chi-squared test for unpaired samples 

(reported p-values are not adjusted for multiple comparisons), or a McNemar test with 

Edward’s correction for paired samples.

Correlation between two variables was quantified using either Pearson’s correlation or the 

non-parametric Kendall’s rank correlation coefficient (related to the non-parametric Theil-

Sen estimator for linear regression).

To test whether the regression slope of linear fits was significantly larger than 1 (Fig. 6), we 

used bootstrapping to estimate the sampling distribution of the regression slope (sampling 

with replacement, repeated 10’000 times, one-sided test).

In all statistical tests (implemented in Igor Pro 8, Wavemetrics), p < 0.05 was considered 

statistically significant. In graphical displays, standard significance levels are indicated as 

follows (p ≥ 0.05: ns; p < 0.05: *; p < 0.01: **; p < 0.001: ***) and are adjusted for multiple 

comparisons (using Bonferroni-adjusted significance levels when multiple pair-wise tests, 

e.g. Pearson’s chi-squared test were used on the same data). In graphs, grey dotted lines 

indicate zero and black or orange dotted lines indicate the median of NAV fish.

Further analyses

Defining responses—For the analysis of signal correlation and SBR (see below), only 

neurons that responded to at least one odor were considered (criterion: mean Ca2+ signal 

during odor response > 2 x s.d. of Ca2+ signal during pre-stimulus phase). Modifying this 

criterion had no major effect on results.

SBR—To quantify discriminability of odor responses (signal) from the background 

(spontaneous) activity, we calculated the signal-to-background ratio (SBR) for odor 

responses in individual trials63 (cf. Supplementary Fig. 3b):

SBR =
Δ F /F odor − Δ F /F spont.

0.5 × σodor
2 + σspont.

2

( Δ F/F)odor and σodor
2 : mean and variance of Ca2+ signal during odor response (3 s); 

( Δ F/F)spont. and σspont.
2 : mean and variance of Ca2+ signal before odor response (25.6 s). For 

odor-specific SBR comparisons (Supplementary Fig. 3c) we only considered neurons that 

responded to both odors. To compare PIN and control trials (Supplementary Fig. 6d), 

background activity was determined in separate trials. Neuron-odor pair trials with a Ca2+ 
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signal z-score < 2 were excluded from all SBR analyses; lifting this criterion had no effect 

on odor-specific SBR comparisons.

Sparseness measures: lifetime and population sparseness—Lifetime and 

population sparseness were calculated using the metric64:

Sparseness =

1 −
∑rn

N

2
/ ∑

rn
2

N

1 − 1
N

This normalized metric describes the “peakiness” of a distribution and ranges between 0 (all 

responses equal) and 1 (all responses zero except one). Lifetime sparseness: distribution of 

response amplitudes across odors in single neurons. Population sparseness: distribution of 

response amplitudes to a single odor across neurons.

Cosine distance—The cosine distance of two population vectors x and y was defined as:

Cosine distance = 1 − cos(θ) = 1 −
∑ xi yi

∑ xi
2 ∑ yi

2

Mean cosine distance matrices were calculated by averaging matrices of individual animals. 

To assess whether the mean cosine distance, across all six pairwise distances, differed from 

NAV fish (pattern separation; Fig. 4d, Supplementary Fig. 6e), we subtracted the mean 

cosine distance matrix of NAV fish from the cosine distance matrices in each individual fish 

(<Δ Cosine dist.>). To assess differences in the structure of cosine distance matrices in each 

group (pattern reorganization; Fig. 4e, Supplementary Fig. 6f), we (1) centered cosine 

distance matrices of each fish by subtracting the mean distance of the corresponding 

experimental group, (2) subtracted the centered mean NAV matrix from the centered matrix 

of each fish, and (3) subsequently calculated the mean of the absolute values in the 

difference matrices (<|Δ Cosine dist.|>). Large values therefore indicate changes in specific 

distances that cannot be accounted for by a change in the mean distance.

Template matching—Odor classification by template matching65 was performed by 

choosing the population response vector of one trial as a test vector and comparing it to 

reference vectors for each odor (similar to leave-one-out cross-validation). Reference vectors 

were constructed by averaging over all trials except for the test trial. The test trial was then 

assigned to the odor that was represented by the reference vector with the lowest cosine 

distance (cf. Fig. 1g). Similar results were obtained when Pearson correlation distance or 

Euclidean distance were used (Supplementary Fig. 1). To account for differences in the size 

of the population vectors between fish we randomly selected n = 95 neurons in each 

classification (minimum population size across all animals: n = 98). This procedure was 

repeated 400 times in each fish, using sampling without replacement.
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Spontaneous correlation—Spontaneous correlations of Ca2+ signals between pairs of 

neurons from the same animal were calculated over the last 20 s of the pre-stimulus phase of 

28 trials (560 s total). Time traces were binned to 1 s bins.

Signal correlation—The analysis of signal correlation was restricted to neuron pairs in 

which both neurons responded to at least one odor. After determining signal correlations for 

all pairs in one animal, signal correlations were averaged over all pairs involving each 

neuron, resulting in a mean signal correlation for each neuron. Further averaging was then 

performed over neurons. Direct averaging of signal correlations over all pairs gave very 

similar results. Signal correlations across animals were calculated accordingly.

Analysis of coding structures—The organization of odor representations in dpDp was 

defined in each fish by the six pairwise cosine distances between all four odor-evoked 

activity patterns (His, Ser, Ala, Trp). Vectors representing these “coding structures” were 

pooled across all fish (NAV, ALA, TRP, HIS, UNC; N = 68 animals) and optical stimulation 

conditions (control and PIN). The resulting 6 x 136 matrix (or its transform), representing a 

total of 136 coding structures, was the input for PCA (Fig. 5, Supplementary Fig. 4). In each 

of the six coding structure dimensions, the 136 individual values were centered by 

subtracting their mean. We did not scale each dimension to unit variance to retain 

information that may be contained in variance differences between dimensions.

Change index and analysis of non-uniform inhibition—Odor-specific effects of 

inhibition on individual cells were quantified by the change index:

Change index (ChI) =
Δ F /F PIN − Δ F /F control
Δ F /F PIN + Δ F /F control

Mean strength of inhibition: mean ChI over odors. Non-uniformity of inhibition: standard 

deviation of ChIs across odors. Only neurons that were modulated by PIN were considered 

(criterion: p-value < 0.1 for pairwise comparison between control and PIN trials; Wilcoxon 

signed rank test, two-sided). Note that with this threshold a selective modulation of one out 

of the four odor responses (i.e. three out of twelve trials) does not suffice to classify a neuron 

as PIN-modulated. In NAV fish, 87% of responsive neurons were classified as PIN-

modulated using this criterion.

Linear regression—To describe effects of inhibition on odor responses we fitted lines to 

different combinations of parameters derived from control and PIN responses, respectively 

(Fig. 6g; Fig. 8c, e; Supplementary Fig. 6h). Fitting was performed using a total least 

squares procedure, which minimizes the orthogonal distance of the regression line from the 

data points. Thus, this method does not distinguish between dependent and independent 

variables and accounts for the equality of measurement errors in the two variables. In the 

remaining linear regression analyses (Fig. 3c, d; Fig. 5e, f; Fig. 7b, c; Supplementary Figs. 

3-6) we used a standard least squares procedure.
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Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. Odor representations in dorsal posterior Dp (dpDp) in naïve fish
a. Location of dpDp (lateral view of the zebrafish brain and two coronal cross-sections) OB: 

olfactory bulb; Tel: telencephalon; TeO: optic tectum; Dc: central zone of the dorsal 

telencephalon; Dl: lateral zone of the dorsal telencephalon; Dm: medial zone of the dorsal 

telencephalon; Dp: posterior zone of the dorsal telencephalon; dpDp: dorsal-posterior Dp; 

NT: Nucleus taeniae; Vs: supracommissural nucleus of the ventral telencephalon. Scale bars 

represent approximations. D: dorsal; P: posterior; L: lateral.
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b. dpDp neurons loaded with OGB-1 (top) and Ca2+ signals (bottom) evoked in the same 

field of view by odor stimulation (Ala, single trial).

c. Odor-evoked Ca2+ signals of 50 randomly selected dpDp neurons before, during, and after 

stimulation with four different amino acid odors (10−4 M; average of three trials each).

d. Ca2+ signal averaged over all trials (n = 3), odors (n = 4), and neurons (n = 1790, from N 

= 13 animals). Gray shading shows s.e.m.. Red bar indicates approximate duration of odor 

stimulation and blue shaded area depicts the 2 s time window used for most analyses.

e. Amplitude of Ca2+ signals evoked by different odors (median ± s.d.). Pairwise odor 

comparisons (paired t tests, two-sided, n = 1790 neurons from N = 13 animals, df = 1789): 

His vs Ser, t = −3.70, p = 0.0002; His vs Ala, t = 0.36, p = 0.72; His vs Trp, t = 3.94, p = 

8x10–5; Ser vs Ala, t = −4.37, p = 1x10–5; Ser vs Trp, t = 7.05, p = 3x10–12; Ala vs Trp, t = 

3.74, p = 0.0002. Box plot: center line, median; box limits, interquartile range; whiskers, 

standard deviation.

f. Pattern similarity matrix showing cosine distance (below diagonal) and Pearson 

correlation (above diagonal) between trial-averaged activity patterns evoked by different 

odor stimuli (average over N = 13 animals). Diagonal values were set to zero (cosine 

distance) or one (Pearson correlation).

g. Classification of odor identity by template matching of activity vectors. Fills show 

percentage of correctly decoded odors using a fixed population size of 95 neurons. White 

dashed line indicates chance level (25 %; McNemar test, n = 156 trials, df = 1, Χ2 = 74.01, p 

< 10–16), and black dashed line shows mean classification success, averaged over all four 

odors (McNemar test for comparison against 100% correct, Χ2 = 39.02, p = 4x10–10).
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Fig. 2. Innate odor preference and associative olfactory conditioning
a. Innate behavioral responses to the four amino acid odors used in this study and tank water 

as control (green). Curves show mean swimming speed (boxcar smoothed) normalized to 

pre-application baseline. Shading shows s.e.m.. Mean swimming speed averaged over 40 s 

(yellow rectangle) was significantly modulated by odor application (Kruskal-Wallis test, N = 

141, df = 4, H = 15.44, p = 0.003), differing from tank water (N = 71 animals) for Ala (N = 

16, Q = −3.59, p = 0.0007) but not for other odors (His: N = 20, Q = 0.10, p = 1; Ser: N = 

20, Q = 0.16, p = 1; Trp: N = 14, Q = 0.69, p = 0.93).
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b. Schematic of setup for associative olfactory conditioning.

c. Schedule for associative conditioning. The CS+, but not the CS–, was followed by a food 

reward. The behavioral response was measured during the first 30 s between odor onset and 

food delivery (‘Test’).

d. Mean learning curves. ζ is a composite score combining multiple components of 

appetitive behavior. Lines and shading show the mean (± s.e.m.) of ζ for the first three days 

of training (nine trials per day). Comparisons between CS+ and CS– (Wilcoxon signed rank 

test, two-sided, N = 43 animals [2 fish without data on day 1], ALA, TRP, and HIS): day 1, 

N = 41, T = 206, p = 0.003; day 2, N = 43, T = 133, p = 1x10–5; day 3, N = 43, T = 42, p = 

3x10–9.

e. Schedule for uncoupled odor exposure. The same odor stimuli as for associative 

conditioning (Ala and Trp) were applied 15 min prior to food presentation, which occurred 

with a probability of 50 % on each trial, independent of the odor (Online Methods).

f. Mean ζ-scores for Ala and Trp in UNC fish. Lines and shading show the mean (± s.e.m.). 

No systematic differences in appetitive responses to Ala and Trp were observed (Wilcoxon 

signed rank test, two-sided, N = 12 animals): day 1, T = 25, p = 0.30; day 2, T = 20, p= 0.15; 

day 3, T = 33, p = 0.68.
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Fig. 3. Learning- and experience-dependent enhancement of odor responses in dpDp
a. Mean odor-evoked response amplitude averaged over all neuron-odor pairs, expressed as 

percentage of mean amplitude in NAV fish. Responses of ALA and TRP fish were 

significantly higher than responses of NAV fish (Kruskal-Wallis test, n = 5654, df = 3, H = 

155.69, p < 10–15). Non-parametric multiple comparisons against NAV (n = 1262): ALA, Q 

= −9.03, p < 10–15, n = 1591; TRP, Q = −7.62, p = 5x10–14, n = 1839; UNC, Q = 1.44, p = 

0.30, n = 962. Box plot: center line, median; box limits, interquartile range; whiskers, 

standard deviation.
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b. Ratio of Ala/Trp response amplitudes (Kruskal-Wallis test with NAV, ALA, TRP, UNC: n 

= 6423, df = 3, H = 85.33, p < 10–15) or Ala/His response amplitudes (Wilcoxon-Mann-

Whitney test, two-sided: NAV, n = 528, HIS, n = 2040, U = 444’188, p = 4x10–10) differed 

between experimental groups. Non-parametric multiple comparisons against NAV (n = 

1262), two-sided: ALA, Q = −3.62, p = 0.0006, n = 1591; TRP, Q = 4.17, p = 6x10–5, n = 

2162; UNC, Q = -2.01, p = 0.09, n = 1408. Results show that associative conditioning 

shifted relative response amplitudes towards the CS+. Box plot: as in (a).

c. Relative response amplitudes to training odors (Ala vs Trp or His) were correlated to 

behavioral odor preference in individual fish (ALA, TRP, and HIS; color code as in b). 

Pearson correlation: r = 0.37 (N = 43 animals, t test of null hypothesis of r = 0, two-sided, df 

= 41, t = 2.54, p = 0.02). Kendall‘s rank correlation: τ = 0.31 (test of null hypothesis of τ = 

0 using a normal approximation, two-sided, z = 2.90, p = 0.004).

d. Relative response amplitudes to neutral odors (Ser vsHis or Trp) were not correlated to 

behavioral odor preference. Pearson correlation: r = 0.00 (t test of null hypothesis of r = 0, 

two-sided, t = 0.004, p = 1). Kendall‘s rank correlation: τ = –0.03 (test of null hypothesis of 

τ = 0 using a normal approximation, two-sided, z = –0.32, p = 0.75). N as in (c).

e. Lifetime sparseness was increased after associative conditioning and uncoupled odor 

exposure (Kruskal-Wallis test, n = 8991, df = 4, H = 366.19, p < 10–15). Non-parametric 

multiple comparisons against NAV (n = 1790), two-sided: ALA, Q = –9.95, p < 10–15, n = 

1591; TRP, Q = –16.76, p < 10–15, n = 2162; HIS, Q = –16.72, p < 10–15, n = 2040; UNC, Q 

= –9.72, p < 10–15, n = 1408. Box plot: as in (a).

f. Mean tuning curves (line), constructed by rank-ordering of odor responses in each neuron. 

Shaded areas show s.e.m.. The slope of individual tuning curves was significantly increased 

(Kruskal-Wallis test, n = 6202, df = 4, H = 314.94, p < 10–15; non-parametric comparison 

against NAV, n = 1322 neurons with trial-averaged responses to at least one odor, two-sided: 

ALA, Q = 8.47, p < 10–15, n = 1325; TRP, Q = 14.83, p < 10–15, n = 1603; HIS, Q = 15.52, 

p < 10–15, n = 992; UNC, Q = 9.43, p < 10–16, n = 960).
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Fig. 4. Experience strengthens pairwise correlations and modifies neuronal population activity in 
dpDp
a. Correlation of spontaneous activity after associative conditioning and uncoupled odor 

exposure was significantly higher than in NAV fish (‘data’; Kruskal-Wallis test, n = 8991, df 

= 4, H = 431.64, p < 10–15). Non-parametric multiple comparisons against NAV, two-sided: 

ALA, Q = –17.33, p < 10–15; TRP, Q = –12.43, p < 10–15; HIS, Q = –4.88, p = 2x10–6; 

UNC, Q = –14.76, p < 10–15. Shuffling of time bins abolished correlations (‘data’ vs 

‘shuffled’; paired t test, two-sided, df = n-1: NAV, t = 79.16, p < 10–300; ALA, t = 72.86, p < 
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10–300; TRP, t = 80.06, p < 10–300; HIS, t = 58.90, p < 10–300; UNC, t = 76.33, p < 10–300). 

Number of neurons as in Fig. 3e. Box plot: center line, median; box limits, interquartile 

range; whiskers, standard deviation.

b. Correlation of odor tuning curves (signal correlation) after associative conditioning and 

uncoupled odor exposure was significantly higher than in NAV fish, both within the same 

fish (left; Kruskal-Wallis test, n = 6202, df = 4, H = 332.18, p < 10–15) and across fish (right; 

H = 785.84, p < 10–15). Only neurons that responded to at least one odor were included in 

this analysis. Non-parametric multiple comparisons against NAV within fish (n = 1322), 

two-sided: ALA, Q = –14.18, p < 10–15, n = 1325; TRP, Q = –16.86, p < 10–15, n = 1603; 

HIS, Q = –12.14, p < 10–15, n = 992; UNC, Q = –10.45, p < 10–15, n = 960. Across fish (n = 

1322), two-sided: ALA, Q = –14.38, p < 10–15; TRP, Q = –14.95, p < 10–15; HIS, Q = –

26.57, p < 10–15; UNC, Q = –5.31, p = 2x10–7. Correlations were abolished after shuffling 

of stimulus labels (‘data’ vs ‘shuffled’, paired t test, two-sided, df = n-1). Within fish: NAV, t 
= 36.18, p = 9x10–200; ALA, t = 48.93, p = 3x10–299; TRP, t = 48.68, p = 4x10–318; HIS, t = 

39.17, p = 2x10–203; UNC, t = 38.59, p = 2x10–197. Across fish: NAV, t = –0.14, p = 0.89; 

ALA, t = 14.28, p = 4x10–43; TRP, t = 19.55, p = 2x10–76; HIS, t = 19.55, p = 2x10–95; 

UNC, t = 4.57, p = 5x10–6. Box plot: as in (a).

c. Effects of experience on the cosine distance between odor-evoked activity patterns. The 

triangles above the diagonal contain distance matrices averaged over individuals in each 

training group. The triangles below the diagonal contain the difference between each matrix 

and the distance matrix of NAV fish (Fig. 1f). Increases (decreases) in pattern distance are 

depicted by blue (red) colors. Number of animals as in (d).

d. Mean pairwise cosine distance of activity patterns (‘pattern separation’) was increased in 

TRP and HIS fish (Kruskal-Wallis test, N = 68 animals, df = 4, H = 10.71, p = 0.03). Non-

parametric multiple comparisons against NAV, two-sided: ALA, Q = –0.51, p = 0.96, N = 

12; TRP, Q = –2.55, p = 0.02, N = 16; HIS, Q = –2.59, p = 0.02, N = 15; UNC, Q = –1.38, p 

= 0.33, N = 12. Box plot: as in (a).

e. Mean absolute difference of centered distance matrices to the mean matrix of NAV fish 

was increased in TRP and HIS fish (Kruskal-Wallis test, H = 17.84, p = 0.0008). This 

measure quantifies the reorganization of the structure of distance matrices (Online Methods) 

relative to the mean NAV matrix, even in the absence of a change in mean pattern distance. 

Non-parametric multiple comparisons against NAV, two-sided: ALA, Q = –0.49, p = 0.97; 

TRP, Q = –3.71, p = 0.0004; HIS, Q = –2.50, p = 0.02; UNC, Q = –1.65, p = 0.20. Number 

of animals and df as in (d). Box plot: as in (a).
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Fig. 5. Mapping odor space onto a valence axis
a. Coding structures of all fish (N = 68 animals) from all five experimental groups. Each 

column (observation) is one coding structure. Rows (variables) represent cosine distances 

between activity patterns evoked by different odor pairs.

b. Projection of coding structures of all fish onto the first two principal components. Each 

plot symbol represents one fish. Colors show association of each coding structure with the 

experimental group. For ALA, TRP, and HIS fish, larger marker size indicates higher 

behavioral discrimination score. Number of animals as in (a).

c. PC 1 loadings on the six coding structure dimensions. Number of animals as in (a).

d. Mean PC 1 scores differed significantly between experimental groups (Kruskal-Wallis 

test, H = 10.01, p = 0.04; same data as in b). PC 1 scores in TRP and HIS fish were 

significantly more negative than in NAV fish. Non-parametric multiple comparisons against 

NAV: ALA, Q = 0.43, p = 0.98; TRP, Q = 2.43, p = 0.03; HIS, Q = 2.49, p = 0.03; UNC, Q = 

1.44, p = 0.30. Number of animals and df as in Fig. 4d. Box plot: center line, median; box 

limits, interquartile range; whiskers, standard deviation.

e. Significant correlation between PC 1 score and behavioral odor preference in UNC fish. 

Pearson correlation: r = 0.74 (N = 12, t test of null hypothesis of r = 0, two-sided, df = 10, t 
= 3.50, p = 0.006). Kendall‘s rank correlation: τ = 0.58 (test of null hypothesis of τ = 0 

using a normal approximation, two-sided, z = 2.61, p = 0.009).

f. Significant correlation between PC 1 score and behavioral odor preference across all 

training groups. Pearson correlation: r = 0.52 (N = 55, t test of null hypothesis of r = 0, two-

sided, df = 53, t = 4.48, p = 4x10–5). Kendall‘s rank correlation: τ = 0.35 (test of null 

hypothesis of τ = 0 using a normal approximation, two-sided, z = 3.72, p = 0.0002).
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Fig. 6. Experience-dependent enhancement of inhibition in dpDp
a. Expression of GFP in Tg(gad1b:GFP) and of eNpHR3.0YFP in Tg(gad1b:Gal4, 
UAS:eNpHR3.0YFP) fish. Images are maximum intensity projection of multiphoton image 

stacks covering the dorso-ventral extent of Dp, including dpDp, over which odor-evoked 

activity was measured (approximately 70 μm). See also Supplementary Fig. 6a. Scale bars: 

50μm; L: lateral; P: posterior. The experiment was independently repeated three times 

(gad1b:GFP), and 68 times (gad1b-NpHR), respectively, with similar results.

b. Scheme illustrating expression of eNpHR3.0YFP in a broad spectrum of interneurons in 

dpDp, hyperpolarization of interneurons by orange light (594 nm) through an optical fiber, 

and simultaneous two-photon Ca2+ imaging.

c. Example of odor-evoked Ca2+ signals in dpDp under control conditions (top) and during 

PIN (bottom). Scale bar: 50μm.

d. Odor-evoked Ca2+ signal averaged over all neurons, trials and odors in NAV fish under 

control conditions (black; same as in Fig. 1d) and during PIN (orange). Shadings show 

s.e.m. (n as in Fig. 1d). Red bar indicates approximate duration of odor stimulation; orange 

bar depicts light exposure.
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e. Spontaneous and odor-evoked Ca2+ signals in 50 randomly selected dpDp neurons under 

control conditions (left) and during PIN (right; Ala, average of n = 3 trials). Red bar 

approximates duration of odor stimulus (Ala).

f. The PIN-mediated increase in odor response amplitude, which reflects the strength of 

odor-evoked inhibition, was increased after associative conditioning and uncoupled odor 

exposure (Kruskal-Wallis test, n = 5654, df = 3, H = 250.75, p < 10–15). Non-parametric 

comparisons to NAV (n = 1262), two-sided: ALA, Q = –11.82, p < 10–15, n = 1591; TRP, Q 

= –7.47, p = 2x10–13, n = 1893; UNC, Q = –14.72, p < 10–15, n = 962. Amplitude change is 

expressed in percent suppression of PIN amplitude. Box plot: center line, median; box 

limits, interquartile range; whiskers, standard deviation.

g. Amplitudes of individual odor responses under control conditions (x-axis) and during PIN 

(y-axis) in NAV fish. Each data point represents one neuron-odor pair (n = 7160 from N = 

13 animals). Green line is a linear fit (total least squares) indicating primarily divisive 

inhibition. Responses to different odors are shown in different colors; no obvious differences 

were observed between responses to different odors.

h. The relative contribution of divisive and subtractive effects of inhibition were not 

modulated by odor experience (Kruskal-Wallis test, N = 68, df = 4, H = 4.64, p = 0.33). In 

each fish, a linear function was fitted to all responses of individual neurons to determine the 

relative contribution of the offset and the slope of the fit, respectively, to the total PIN-

induced disinhibition. The divisive component dominated in all groups. Non-parametric 

multiple comparisons against NAV, two-sided: ALA, Q = –0.61, p = 0.93; TRP, Q = –0.38, p 

= 0.99; HIS, Q = –1.91, p = 0.11; UNC, Q = –1.19, p = 0.47. Number of animals as in Fig. 

4d. Box plot: as in (f).
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Fig. 7. Non-uniform effects of inhibition in dpDp
a. PIN decreased tuning sharpness and this effect was enhanced after associative 

conditioning. Box plots quantify differences in lifetime sparseness of the same neurons 

under control conditions and during PIN (Kruskal-Wallis test, n = 8991, df = 4, H = 167.75, 

p < 10–15). Comparisons of PIN vs control (paired t test, two-sided): NAV, t = 7.09, p = 

2x10–12; ALA, t = 18.12, p = 8x10–67; TRP, t = 20.09, p = 2x10–82; HIS, t = 13.74, p = 

4x10–41; UNC, t = 2.92, p = 0.004. Non-parametric multiple comparisons against NAV, two-

sided: ALA, Q = 7.51, p = 1x10–13; TRP, Q = 9.30, p < 10–15; HIS, Q = 4.87, p = 2x10–6; 

UNC, Q = –1.68, p = 0.18. Number of neurons and df as in Fig. 3e. Box plot: center line, 

median; box limits, interquartile range; whiskers, standard deviation.

b. Relative response amplitudes to training odors (Ala vs Trp or His) remained correlated to 

behavioral odor preference in individual ALA, TRP, and HIS fish during PIN. Pearson 

correlation: r = 0.35 (t test of null hypothesis of r = 0, two-sided, t = 2.40, p = 0.02). 

Kendall‘s rank correlation: τ = 0.30 (test of null hypothesis of τ = 0 using a normal 

approximation, two-sided, z = 2.79, p = 0.005). Number of animals and df as in Fig. 3c.

c. Relative response amplitudes to neutral odors (Ser vs His or Trp) remained uncorrelated to 

behavioral odor preference in individual ALA, TRP, and HIS fish during PIN. Pearson 

correlation: r = –0.09 (t test of null hypothesis of r = 0, two-sided, t = –0.56, p = 0.58). 
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Kendall‘s rank correlation: τ = –0.07 (test of null hypothesis of τ = 0 using a normal 

approximation, two-sided, z = –0.68, p = 0.49). Number of animals and df as in Fig. 3c.

d. PIN did not affect odor identification by template matching. Bars show percentage of 

correct odor identifications under control conditions (open bars) and during PIN (orange 

bars). Control vs PIN comparisons, McNemar test, df = 1: NAV, Χ2 = 0, p = 1, n = 156 trials; 

ALA, Χ2 = 0.25, p = 0.62, n = 144; TRP, Χ2 = 0.17, p = 0.68, n = 192; HIS, Χ2 = 0.5, p = 

0.48, n = 180; UNC, Χ2 = 0.5, p = 0.48, n = 144). Multiple comparisons against NAV 

(Pearson’s Chi square test, df = 1), control responses: ALA, Χ2 = 0.01, p = 0.90; TRP, Χ2 = 

0.58, p = 0.45; HIS, Χ2 = 4.5, p = 0.03; UNC, Χ2 = 1.06, p = 0.30. Multiple comparisons 

against NAV (Pearson’s Chi square test, df = 1), PIN responses: ALA, Χ2 = 0.50, p = 0.48; 

TRP, Χ2 = 0.25,p = 0.62; HIS, Χ2 = 0.38,p = 0.54; UNC, Χ2 = 0.07, p = 0.80.

e. Odor responses of two individual neurons under control conditions (different colors) and 

during PIN (orange). Top: PIN-induced disinhibition was non-uniform across odors. Bottom: 

PIN-induced disinhibition was largely uniform. Numbers below traces show odor-specific 

change indices. SDinh shows s.d. across the four change indices, a measure of the non-

uniformity of inhibition. Vertical scale bars: 20% ΔF/F; horizontal scale bars: 10 s.

f. Non-uniformity of inhibition. Filled bars (orange; ‘CP’) show mean non-uniformity of 

inhibition, calculated by comparing control to PIN trials. Hollow black bars (‘CC’) show the 

same analysis comparing control trials to each other. Hollow orange bars (‘PP’) show the 

same analysis comparing PIN trials to each other. Comparison ‘CC’ vs ‘CP’ (paired t test, 

two-sided): NAV, t = –31.78, p = 4x10–168, n = 1433; ALA, t = –30.05, p = 1x10–152, n = 

1363; TRP, t = –9.37, p = 2x10–20, n = 1650; HIS, t = –10.09, p = 3x10–23, n = 1740; UNC, t 
= –22.53, p = 2x10–93, n = 1151. Comparison ‘PP’ vs ‘CP’ (paired t test, two-sided): NAV, t 
= 35.78, p = 7x10–201; ALA, t = 36.72, p = 1x10–205; TRP, t = 42.99, p = 2x10–271; HIS, t = 

41.14, p = 6x10–259; UNC, t = 28.72, p = 4x10–137. Only PIN-modulated, responding 

neurons were considered for this analysis (Online Methods). Number of animals as in Fig. 

4d. Box plot: as in (a).
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Fig. 8. Inhibition and reorganization of coding space
a. Cosine distances between odor-evoked activity patterns in NAV fish under control 

conditions (triangle below the diagonal; same as Fig. 1f) and during PIN (triangle above 

diagonal). Average cosine distance, control vs PIN, Wilcoxon signed rank test, two-sided: 

NAV, N = 13, T = 18, p = 0.06.

b. Effects of PIN and effects of experience on distances between odor-evoked activity 

patterns. Triangles above the diagonal show mean PIN-induced changes in pattern distance 

within the same fish (‘Δ PIN’, PIN – control). Triangles below the diagonal (‘Δ Learning / 

experience’) show mean difference in pattern distances relative to NAV fish under control 

conditions (ALA – NAV, TRP – NAV, HIS – NAV, UNC – NAV; identical to Fig. 4c). 

Average cosine distance, control vs PIN, Wilcoxon signed rank test, two-sided: ALA, N = 

12, T = 0, p = 0.0004; TRP, N = 16, T = 9, p = 0.001; HIS, N = 15, T = 2, p = 0.0002; UNC, 

N = 12, T = 11, p = 0.03.

c. Correlation between effects of PIN-induced inhibition and effects of experience on pattern 

distances in individual fish. For each fish, the effect of PIN on pattern distances was 

measured by subtracting the distances under control conditions and during PIN (PIN – 

control; y-axis). The effect of experience on pattern distances was determined by subtracting 

the mean distance matrix of NAV fish from the distance matrix under control conditions (x-

axis). Each plot symbol represents the observed distances changes for one odor pair in one 

fish. Significant negative correlations were observed in all groups (t test of null hypothesis of 

r = 0, two-sided, df = n-2; n is the number of distance values): ALA, r = –0.77, t = –9.96, p = 

5x10–15, n = 72; TRP, r = –0.80, t = –13.05, p = 8x10–23, n = 96; HIS, r = –0.81, t = –12.75, 
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p = 1x10–21, n = 90; UNC, r = –0.50, t = –4.85, p = 7x10–6, n = 72. Kendall‘s rank 

correlation (test of null hypothesis of τ = 0 using a normal approximation, two-sided): ALA, 

τ = –0.48, z = –5.95, p = 3x10–9; TRP, τ = –0.61, z = –8.82, p = 1x10–18; HIS, τ = –0.58, z 

= –8.14, p = 4x10–16; UNC, τ = –0.34, z = –4.26, p = 2x10–5.

d. PIN reduced distances between coding structures from different experimental groups. 

Diamonds represent group means (± s.e.m.) of coding structures projected onto the first two 

principal components. Polygons illustrate systematic differences between mean coding 

spaces of fish that were subjected to different experience. Gray polygon shows substantial 

differences between experimental groups under control conditions. Yellow polygon shows 

PIN-dependent shift of groups along the primary axes of coding space, compressing group 

differences and abolishing separability along the primary dimension (PC 1; Supplementary 

Fig. 6g). Number of animals as in Fig. 5b.

e. PIN-mediated change of PC 1 score as a function of PC 1 score under control conditions. 

The effect of PIN was significantly correlated to the control PC 1 score across all fish 

(Pearson correlation, df = N-2): r = –0.74 (t test of null hypothesis of r = 0, two-sided, t = –

9.01, p = 4x10–13). Kendall‘s rank correlation: τ = –0.51 (test of null hypothesis of τ = 0 

using a normal approximation, two-sided, z = –6.20, p = 5x10–10). Significant negative 

correlations were also observed in all individual groups, except UNC (Pearson correlation): 

NAV, r = –0.61, t = –2.57, p = 0.03; ALA, r = –0.66, t = –2.80, p = 0.02; TRP, r = –0.81, t = 

–3.33, p = 0.0009; HIS, r = –0.84, t = –5.56, p = 9x10–5; UNC, r = –0.40, t = –1.42, p = 

0.19. Kendall‘s rank correlation: NAV, τ = –0.33, z = –1.59, p = 0.11; ALA, τ = –0.39, z = –

1.78, p = 0.07; TRP, τ = –0.62, z = –3.33, p = 0.0008; HIS, τ = –0.65, z = –3.41, p = 

0.0006; UNC, τ = –0.15, z = –0.69, p = 0.49. Number of animals as in Fig. 4d. Similar 

observations were made along PC 2 (Supplementary Fig. 6h).
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