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Abstract

Solid tumors develop abnormally at spatial and temporal scales, giving rise to biophysical barriers that impact anti-tumor
chemotherapy. This may increase the expenditure and time for conventional drug pharmacokinetic and pharmacodynamic
studies. In order to facilitate drug discovery, we propose a mathematical model that couples three-dimensional tumor
growth and angiogenesis to simulate tumor progression for chemotherapy evaluation. This application-oriented model
incorporates complex dynamical processes including cell- and vascular-mediated interstitial pressure, mass transport,
angiogenesis, cell proliferation, and vessel maturation to model tumor progression through multiple stages including tumor
initiation, avascular growth, and transition from avascular to vascular growth. Compared to pure mechanistic models, the
proposed empirical methods are not only easy to conduct but can provide realistic predictions and calculations. A series of
computational simulations were conducted to demonstrate the advantages of the proposed comprehensive model. The
computational simulation results suggest that solid tumor geometry is related to the interstitial pressure, such that tumors
with high interstitial pressure are more likely to develop dendritic structures than those with low interstitial pressure.
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Introduction

Tumors have highly irregular properties compared to normal

tissue, including multiple cell phenotypes, heterogeneous density,

high intra-tumoral pressure, and tortuous vasculature [1–4]. The

complexity of tumor morphology can cause the use of conven-

tional methods for anti-tumor drugs become inefficient and

expensive. Nowadays, mathematical models based on underlying

biological properties can provide a powerful tool to facilitate drug

development and pre-clinical evaluation. Such models consist of

realistic quantitative mathematical descriptions of biological

phenomena that can be calibrated by comparison with experi-

mental data. The primary advantage of mathematical modeling is

its controllable characteristics and high efficiency compared to

laboratory experiments. Underlying biological mechanisms may

be revealed by comparing the computational simulation results

with experimental observations. Moreover, by simply changing

parameter values of the descriptive equations, the significance and

functions of variables representing specific biological features can

easily be tested.

It has been well established that solid tumors grow in two

distinct phases: the initial growth being referred to as the avascular

phase and the later growth as the vascular phase. The transition of

solid tumor growth from the relatively harmless avascular phase to

the invasive and malignant vascular phase depends upon the

crucial process of angiogenesis. Tumor angiogenesis has been

studied since 1960s and it is a physiological process in which the

tumor cells secrete diffusible substances known as Tumor

Angiogenesis Factor (TAF) into the surrounding tissue to stimulate

the formation of new capillary blood vessels. The new blood

vessels grow towards and penetrate the tumor; they are crucial for

supplying the tumor cells with vital nutrients and disposing of

waste products. Araujo and McElwain presented a comprehensive

review on the history of mathematical modeling of solid tumor

growth [5] and for the discussion and history on angiogenesis

discoveries, see the review paper by Kerbel [6].

In the past decades, many studies have been dedicated to the

modeling of tumor growth and treatment, theoretically and

computationally. Various mathematical approaches and tech-

niques have been used to model tumor growth from many aspects

and view points. Avascular tumor models by [7–9] were proposed

to simulate tumor growth based on basic mechanisms. Multi-

dimensional avascular tumor growth models [10,11] have been

utilized to perform more detailed simulations; however, such

models are limited by a lack of realistic vasculature and associated

transport phenomena. Therefore, as new discoveries on tumor-

induced angiogenesis were reported and with advances in

computing technology, vascularized tumor models have become
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increasingly prevalent in recent years [12–16]. For example, Sinek

et al. [17] developed a two-dimensional model for tumor growth

and angiogenesis modeling and applied the model to predict

nanoparticle chemotherapy. Sanga et al. [18] extended the model

to three dimensions to better recapitulate heterogeneity of tumors

for the study of drug treatment. This model treated tumor cells as

a single population and did not incorporate drug concentration-

dependent cell cycle heterogeneities. Tumor growth with angio-

genesis have also been modeled using multicell [19] and multiscale

[20,21] techniques, as well as multiscale modeling by incorporat-

ing drug therapy at the extracellular level [22] and drug

combination for tumor treatment [23]. Nevertheless, existing

models lack of sufficient resolution to evaluate cancer drug effects

at the cellular level. Advanced mathematical models incorporating

more details are needed to provide further insights into the tumor

progression and response to chemotherapy.

In this paper, we present a three-dimensional mathematical

model of tumor growth coupled with tumor-induced angiogenesis,

in which we use empirical methods to simulate experimental

observations. This enables us to make realistic predictions of the

transition from avascular to vascular tumor while avoiding getting

stuck in obscure mechanisms or complex calculations. Several new

methods and concepts in modeling are introduced: Firstly, we

propose an efficient method for calculating intra-tumoral intersti-

tial pressure that incorporates the contributions of both tumor cells

and endothelial cells. Secondly, we introduce a concept called the

‘‘Virtual Branching Hotpoint (VBH)’’ to regulate the vessel

branching process. Both the vessel growth rate and appearance

of VBH are calculated based on empirical formulas that describe

the local concentration of tumor angiogenesis factor (TAF).

Thirdly, cell proliferation is assumed to be controlled by ‘‘Cell

Vital Energy (CVE)’’, a new concept describing cell progression

towards division according to the local microenvironment,

nutrient (oxygen) availability and waste product (carbon dioxide)

disposal, and drug concentration. And fourthly, drug pharmaco-

dynamics is modeled empirically to predict the overall therapeutic

effects upon tumor cells. The dynamics of oxygen, carbon dioxide,

TAF, and drug are modeled using partial differential equations.

We envision that the proposed model will serve as a simulation

platform for tumor growth prediction and chemotherapy evalu-

ation. We also performed a series of computational simulations to

shed light on tumor progression in the three dimensional space

and provide detailed insights into tumor response to various drugs.

The simulation results suggest that solid tumor geometry is related

to interstitial pressure, such that tumors with high interstitial

pressure are more likely to develop dendritic structure compared

to those with low interstitial pressure.

Mathematical Model and Methods

Multiscale 3D tumor modeling is utilized to detail mechanisms

of tumor growth. Pressure in the avascular tumor state has been

implicated to interstitial fluid compression by densely packed,

rapidly dividing tumor cells [24–26], which we term here cell-

induced tumor pressure (CTP). Upon neovascularization, vessel

perfusion was also assumed to play a role in generating the so-

called vasculature-induced tumor pressure (VTP). A comprehen-

sive growth pressurization model (GPM) is developed to adaptively

calculate tumor pressure at the tissue-level as a function of both

CTP and VTP. Within tumor tissue, gradients of interstitial

pressure have been studied to impact the transport of macromol-

ecules such as metabolites, growth factors, and drugs [27,28]. To

scale the model to the level of heterogeneities in mass transport, we

built a series of mass conservation equations based on biophysical

and biomechanical rules. Specifically, we considered oxygen (O2)

and carbon dioxide (CO2) as the primary metabolites that regulate

cell activity, and tumor angiogenesis factor (TAF), an angiogenic

growth factor capable of altering tumor pressure and growth factor

distribution. At the cellular level, cell phenotype was determined

by cell activity and cell vital energy (CVE). System equations

describing drug distribution directly influenced the CVE, such that

individual cells could be defined as active, quiescent, or necrotic.

Active tumor cells were assumed to divide when the CVE reached

a specific threshold. The resulting changes in cell number and

phenotype were fed back into the tumor pressure and mass

transport calculations. The overall structure of this model is

summarized in Fig. 1. All parameters were defined in such a way

that calibration of individual variables and tuning of separate

modules to experimental observations would be able to effectively

simulate tumor progression from an avascular to vascular state in

the presence and absence of different drugs.

2.1 Solid Tumor Growth Model
Many biophysical and biochemical factors that play important

roles in tumor growth, including tumor interstitial pressure, tissue

density, nutrient availability, and metabolic waste clearance have

been widely investigated in previous tumor modeling studies

[13,18,29]. In this work, we treat tumor pressure and metabolite

concentrations as representative governing factors of both

avascular and vascular solid tumors. Tumor interstitial pressure

has been implicated in cell proliferation [24–26] and migration

outwards towards regions of lower pressure. Tissue oxygen and

carbon dioxide levels are assumed to regulate tumor cell activities

including oxygen consumption rate, carbon dioxide secretion rate,

and drug uptake rate during chemotherapy.

High interstitial pressure is thought to be generated via various

mechanisms including intracellular forces, interstitial fluid com-

pression, and blood vessel perfusion. Yet, none of these

mechanisms is considered to be dominant and instead are thought

to work together [27]. We therefore propose a new tumor pressure

calculation method called GPM describing tumor pressure as a

combination of pressure caused by cell-induced tumor pressure

(CTP) and vascular perfusion-induced tumor pressure (VTP).

Firstly, avascular tumor pressure can be calculated as a sum of

pressure perceived by tumor cell X0 at a grid point (x0, y0, z0) due

to pressure caused by tumor cell Xi located at (xi, yi, zi):

pc
X0

~
XN

i~1

pc
(X0,Xi )

: ð1Þ

The pressure can be expressed in the form of Gaussian-like

function:

pc
X0

~
XN

i~1

ac
Xiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2p(sc
Xi

)2
q exp {

(lc
(X0,Xi )

)2

2(sc
Xi

)2

 !
, ð2Þ

where lc
(X0,Xi )

~Dist(X0,Xi) is the Euclidean distance between

tumor cell Xi and tumor X0 at the reference point (x0, y0, z0).

Because tumor pressure is related to tumor cell density, we define

the parameters ac
Xi

and sc
Xi

as

ac
Xi

~ac
0

(hc)2

(hc)2z0:52
, ð3aÞ
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sc
Xi

~sc
0

(hc)2

(hc)2z0:52
z0:05, ð3bÞ

hc~
Tumor cell number

(2Kz1)3{1
, ð3cÞ

describing the parameters’ dependency on cell density hc, which is

defined as tumor cell number fraction of total neighboring cells

within the K neighboring cells of cell at X0. Tumor cell number

N = (2K+1)3 is the total grid points within X0-centered K-

neighboring cubic with a length of (2K+1) in each dimensional

space. In areas of high tumor cell density, compact intracellular

space and compressed interstitial fluid result in higher pressure

compared to normal tissue or peripheral regions of solid tumor

where cell density is lower.

For vascularized tumors, perfusion into the solid tumor

contributes to tumor cell pressure, which is calculated similarly

to tumor cell induced pressure, denoted as pn
(Xn,Xi)

. This pressure is

caused between certain endothelial cell at Xn and its neighboring

grids Xi. We calculated pn
(Xn ,Xi)

for each endothelial cell within K-

neighboring cubic with length of (2K+1), and then added VTP to

CTP to get the final combined tumor pressure p in vascularized

tumor. We define

pn
(Xn ,Xi )

~an
Xn

exp {
(ln

(Xn ,Xi )
)2

2(sn
Xn

)2

 !
, ð4aÞ

an
Xn

~an
0

(hn)2

(hn)2z0:52
, ð4bÞ

sn
Xn

~sn
0

(hn)2

(hn)2z0:52
z0:05, ð4cÞ

where hn is calculated similar to Eq. 3c. Following [30], Darcy’s

law for flow through a porous medium can be used to describe

interstitial fluid transport in the tumor, generally given as

ui~{k+pi ð5Þ

where k the is hydraulic conductivity of the interstitium and pi is

the interstitial pressure.

It has been well studied that enhanced proliferation of tumor

cells consequently increases the demand for nutrients that are

necessary for the synthesis of macromolecules (DNA, RNA,

proteins) and important as the carbon source for generation of

metabolic energy in tumor cells. Nutrients such as glucose, amino

acids, fatty acids, vitamins, and micronutrients are hydrophilic.

They do not easily permeate across cell’s plasma membrane,

particularly mammalian cells. They also require specific trans-

porters for their uptake by cells [31]. Therefore, for the sake of

simplicity, in our model we use only oxygen for generic nutrient

concentration. Oxygen (O2) is a crucial element in the body which

is needed by cells for aerobic metabolism. The availability of

oxygen plays an important role in a way that it affects tumor cell

metabolism, angiogenesis, growth, and metastasis [32,33]. Oxy-

gen, which is bound to hemoglobin in red blood cells, is carried

and delivered by blood vessels to every part of our body. There are

three varieties of blood vessels: arteries, capillaries, and veins. The

arteries carry the oxygen-rich blood away from the heart to the

capillaries, at which the oxygen is released and rapidly diffuses into

the tumor tissue. The tissue also releases its waste products such as

carbon dioxide (CO2) that passes through the wall of capillaries and

into the red blood cells, which is transported by the veins back to

the lungs and heart. Hence, the spatio-temporal evolution for

oxygen concentration (n) is assumed to occur through diffusion,

production by blood cells, removal by tumor cells, and convection

of the interstitial fluid flow:

Figure 1. Multi-scale modeling system structure.
doi:10.1371/journal.pone.0083962.g001
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Ln

Lt
~ Dn+2n|fflfflffl{zfflfflffl}

diffusion

{ +:(u:n)|fflfflffl{zfflfflffl}
convection

z rn(rV ,(pV {p))dP
V|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

oxygen released by bloodcells

{ ln(Ai)dVT|fflfflfflfflfflffl{zfflfflfflfflfflffl}
uptake by cells

,

ð6Þ

where Dn is oxygen diffusion coefficient in the tumor tissue, the

third term

rn(rV ,(pV{p))~rn0 Ri weight ð7Þ

denotes the kinetics of oxygen supply by blood cells (the process is

occurred in neo-vessels and denoted by dP
V

, rn0 is the rate of

oxygen supply, Ri is the radius of blood vessel defined in Eq. 20,

and

weight~

pV {p

pV
, if pV{pw0

0, if otherwise

8><
>:

is the pressure gradient through vessel wall, pV is vascular

pressure. Oxygen is assumed to decay with each tumor cell activity

Ai (refer to Eq. 12). The process is occurred in cells (denoted by

dVT
) and is expressed as

ln(Ai)~ln0Ai : ð8Þ

The parameters dP
V

and dVT
are indication functions for neo-

vessels and tumor cells, respectively and remain as such for all

equations in this paper.

Tumor cells not only consume large amounts of oxygen and

nutrients, but also accumulate metabolic wastes during tumor

growth process due to inefficient drainage. This can result in

reduced cell activity and biosynthesis or even cell necrosis. In this

paper, we consider carbon dioxide (CO2) as a representative waste

metabolite in order to study its influence upon tumor growth. The

rate of change of carbon dioxide (w) spatially and temporally is

assumed to occur through diffusion, convection, production by

cells, and removal by red blood cells in the blood vessels (or

capillaries), hence

Lw

Lt
~ Dw+2w|fflfflffl{zfflfflffl}

diffusion

{ +:(u:w)|fflfflffl{zfflfflffl}
convection

z rw(Ai)dVT|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
carbon dioxide source

{ lw(rV ,(pV {p))dP
V|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

removal via blood vessel

:

ð9Þ

The carbon dioxide secretion rate rw(Ai) is assumed to be

proportional to cell activity Ai and given by

rw(Ai)~rw0Ai , ð10Þ

where tumor cell activity Ai is defined in Eq. 12, and the carbon

dioxide residue is taken up by blood vessels, expressed as

lw(rV ,(pV {p))~lw0 Ri weight , ð11Þ

where lw0 is the rate of carbon dioxide consumption by blood

vessels, and Ri and weight are previously defined. Low CO2 levels

can increase cell activity, maintain a high cell proliferation rate,

high oxygen consumption rate, and carbon dioxide secretion rate.

Cell activity of each cell Ai plays an important role in defining

cell cycle and is influenced by cell metabolism, protein/DNA

synthesis, ligand binding, etc. Here the expression is dependent on

the concentration of oxygen (n) and carbon dioxide (w), given by

Ai~
n

nz1
exp ({5(w{1)4) : ð12Þ

We propose a new concept called ‘‘Cell Vital Energy (CVE)’’

denoting the energy stored within a given cell for proliferation. We

assume that a tumor cell adds CVE according to the following

equation

dVi

dt
~

Ai

Aiz1
kactive , ð13Þ

where kactive is a constant. If the CVE depletes (Ai#0), the cell is

considered to be dead; on the contrary, if the CVE reaches a

proliferation threshold, the cell begins to divide into two daughter

cells. Ai = 0.5 is set as the threshold for separating active tumor

cells and quiescent tumor cells. When activity is above 0.5, cells

actively synthesize proteins, add CVE for proliferation, and

consume CVE at certain rate according to cell activity, which is

depicted by the Hill function in Eq. 13. When activity falls below

0.5, tumor cells become quiescent and stop adding vital energy for

proliferation. At the same time, they consume vitality at very low

rate kquiescent because of normal housekeeping activities. Therefore,

the rate of tumor cell vital energy consumption defined as

dVi

dt
~{kquiescent , ð14Þ

and kquiescent is a constant.

Tumors grow mainly through uncontrollable cell proliferation

[34]. In our model, we treat each cell as located in the center of a

three-dimensional cube surrounded by 26 neighboring grid points, as

shown in Fig. 2. During cell division, potential directions for spatial

Figure 2. An illustration showing one cell located in the center
of cube surrounded by 26 neighboring grid points. The potential
directions for spatial transition are calculated according to pressure
gradients along these 26 directions.
doi:10.1371/journal.pone.0083962.g002
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transition are calculated according to pressure gradients along these

26 directions. Tumor cells are assumed to migrate or proliferate

towards directions of lower interstitial pressure, and as a result,

dividing cells inside the solid tumor successively push other cells

towards peripheral region. Cell spatial transition probabilities are

calculated according to this method of space availability or density

dependency, where space with low cell density indicates higher

transition probability. We determine areas with low cell density or

grids that are not occupied by cells, then we calculate pressure

gradient between the dividing cell and free grids. The dividing cell

will move towards the grid with highest pressure gradient.

2.2 Solid Tumor Angiogenesis Model
Tumor cells consume nutrients more rapidly than normal cells.

This leads to hypoxia in the center of avascular tumors once a

threshold volume is reached. In response to hypoxia, tumor cells

begin to secret tumor angiogenesis factor or TAF to induce new

vessels to sprout from pre-existing vasculature towards hypoxia

regions [35]. In this paper, tumor vessel growth is determined by

TAF density as well as tumor interstitial pressure, under the

assumption that TAF secretion rates are higher under hypoxic

conditions. TAF concentration field is described by the following

partial differential equation

Lc

Lt
~ Dc+2c|fflfflffl{zfflfflffl}

diffusion

{ +:(~uu:c)|fflfflffl{zfflfflffl}
convection

z rc(n)dVT|fflfflfflfflffl{zfflfflfflfflffl}
TAF release by tumor cells

{ lc(rV )dP
V|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

removal via blood vessel

,

ð15Þ

where cells’ TAF secretion rate rc(n) is assumed to be proportional

to their oxygen level and given by

rc(n)~rc0(1{n) : ð16Þ

Similar to metabolic waste removal, the rate of TAF removal

drops in high pressure regions, hence

lc(rV )~lc0 Ri : ð17Þ

Tumor-induced blood vessels are assumed to grow towards

dense areas of TAF. The probability of endothelial cell migration

was considered in six directions, denoted as directional derivative

at spatial grid (xi, yi, zi). According to [36], blood pressure is

assumed to be highly related to vessel growth rate, especially the

pressure difference between inside and outside of tip vessels. High

pressure differences propel tip endothelial cells to rapidly

proliferate. The endothelial cell proliferation cycle-pressure

relationship is given by

t(xi,yi,zi)~kn(an)Dp(xi ,yi ,zi ) , ð18Þ

where parameters kn and an can be calibrated according to

measured normal vessel growth rate, and Dp(xi,yi,zi) is the

pressure difference across vessel wall from inside to outside.

High resolution images of tumor vasculature show that tumor

vessels are highly tortuous [37] and the branching pattern is

greatly different from normal blood vessel networks. To simulate

the aberrant vasculature, we propose a new method for calculating

tumor vasculature branching which we define ‘‘Branching

Hotpoints’’ (BHs), located in the tissue at which vessels branch

out, as shown in Fig. 3. BHs are related to TAF concentration,

tissue density, and fibronectin density. In our model, we only

consider TAF for simplicity. We calculate the possibility of BH for

each grid point following similar approach as Eq. 18,

pBH~kBH(aBH)log (ci ) : ð19Þ

where kBH and aBH are constants. The distribution of BHs is

recalculated during tumor progression. We assume that TAF-

induced vessels cannot grow into tumor necrotic core due to

adverse pressure and cell density. Therefore, as TAF concentra-

tion, tissue density, and interstitial pressure arise at the tumor

center, the angiogenic vasculature becomes denser and much

more tortuous. Vessel age, as well as vessel radius, continue to

grow with each iteration after sprouting from pre-existing vessels,

and as a result, tumor vessels vary spatially and temporally in their

ability to deliver nutrients and remove wastes. Vessel maturation

provides nutrients to starving tumor cells, thereby stimulating

further tumor growth and eventually leading to metastasis

Figure 3. Branching Hotpoint (BH)-induced tumor vasculature branching. Green dots indicate area of enhanced concentration of stimuli for
vessel branches.
doi:10.1371/journal.pone.0083962.g003
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(metastasis is beyond the focus of this paper). In this way, tumor

growth and angiogenesis are modeled as coupled processes.

2.3 Drug Treatment
Chemotherapy is an important anticancer approach for the

treatment of both primacy tumors and distant metastases.

Generally, these drugs can be categorized into two main types:

anti-angiogenic drugs and cytotoxic drugs. Anti-angiogenic drugs

such as bevacizumab, for example, inhibit the growth of new

vasculature by lowering the TAF secretion rate, deactivating TAF,

preventing TAF-mediated signaling, or inducing endothelial cell

apoptosis directly. Cytotoxic drugs such as Cisplatin, for example,

induce damage to tumor cell DNA in order to prevent cell

replication. In our model we apply cytotoxic drugs that act directly

at the tumor cell level. Vessel radius can be calculated based on

endothelial cell age Agei,

Ri~
Agei

AgeizkAR2
kAR1 ð20Þ

where Ri is vessel radius calculated from Agei, kAR1 and kAR2 are

constants. Vessels are pruned when Agei = 0.

In order to study the pharmacodynamics of both treatment

types, we define the drug distribution inside tumor microenviron-

ment as follows,

Ld

Lt
~ Dd+2d|fflfflffl{zfflfflffl}

diffusion

{ +:(~uu:d)|fflfflffl{zfflfflffl}
convection

z rd (rV ,(pV{p),dV (t))dP
V|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

drug released by blood vessel

{

ld1(Ai)d
2dP

T|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
uptake by cells

{ ld2d|ffl{zffl}
natural decay

,
ð21Þ

Table 1. Summary of parameter values for 3D tumor model and angiogenesis.

Symbol Value Unit Description Reference

Dn 8610214 m2/s Oxygen diffusion coefficient [29]

rn0 6.861024 mol/(m3s) Oxygen supply rate [29]

ln0 361025 ml/(cm3s) Oxygen consumption rate [53]

Dw 4610214 m2/s Carbon dioxide diffusion coefficient Estimated

rw0 161025 mol/(m3s) Carbon dioxide secretion rate Estimated

lw0 2.561025 ml/(cm3s) Carbon dioxide consumption rate Estimated

Dc 1.2610213 m2/s TAF diffusion coefficient Estimated

rc0 261029 mol/(m3s) TAF secretion rate Estimated

lc0 0 ml/(cm3s) TAF consumption rate Estimated

Dd 1.5610214 m2/s Drug diffusion coefficient Estimated

ld0 2.561027 ml/(cm3s) Drug consumption rate Estimated

ld2 161028 ml/(cm3s) Drug decay rate Estimated

kBH 0.361023 - Branching hotpoints constant Estimated

aBH 1.3 - Branching hotpoints constant Estimated

kactive 1.0 - Rate of CVE addition by active cells Estimated

kquiescent 0.1 - Rate of CVE addition by quiescent cells Estimated

kAR1 1.0 - Vessel radius constant Estimated

kAR2 500.0 - Vessel radius constant Estimated

k 4.5610215 cm2/mmHg2sec Interstitium’s hydraulic conductivity Estimated

Lp 2.861029 m/mm Hg-sec Microvascular wall’s hydraulic conductivity [30]

P 1.4961029 m/sec Vascular permeability coefficient Estimated

sT 0.82 - Average osmotic reflection coefficient [30]

sD 0.1 - Average osmotic reflection coefficient Estimated

pV 0.3546 mmHg Osmotic pressure of plasma Estimated

pi 0.2667 mmHg Osmotic pressure of interstitial fluid Estimated

pV 30 mmHg Capillary/vascular pressure Estimated

p0 60 mmHg Tumor pressure Estimated

dV 1.0 mol/m3 Interstitial drug concentration Estimated

n0 8.4 mol/m3 Standard nutrient concentration Estimated

w0 10.5 mol/m3 Standard waste concentration Estimated

c0 4.361024 kg/m3 Standard TAF concentration [54]

d0 2.13 mol/m3 Standard drug concentration Estimated

doi:10.1371/journal.pone.0083962.t001
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where Dd is drug diffusion coefficient in tumor tissue, rd (:) is drug

supply rate through new vessels and following [30] is defined as

rd (rV ,(pV {p),dV (t))~
JV

V
(1{sD)dV (t)z

P
S(rV )

V
(dV (t){di)

Pev

ePev{1
:

ð22Þ

In the first term of the right hand side of Eq. 22 above, JV=V is

drug’s volumetric flow rate out of the vasculature per unit volume

of tissue and given by

JV

V
~

LpS(rV )

V
(pV {pi{sT (pV {pi)) , ð23Þ

where Lp is the hydraulic conductivity of tumor microvascular

wall, S(rV )=V is the surface area per unit volume for drug

transport in the tumor, pV is the vascular pressure, pi is the

interstitial pressure, pV is the osmotic pressure of the drug, pi is the

osmotic pressure of the interstitium, and sT is the average osmotic

reflection coefficient for drug. In the second term of the right hand

side of Eq. 22, the Peclet number Pev is the ratio of convection to

diffusion magnitude across tumor capillary wall and given by

Pev~
JV

PS(rV )
(1{sD) , ð24Þ

where P is the vascular permeability coefficient and di is the

interstitial drug concentration. In both terms, sD is the osmotic

reflection coefficient (different value than sT ) and dV (t), which has

been modeled and used in [22], is the time course drug

concentration within blood inside tumor capillary that comes

from the predictions of organ level compartmental drug delivery

or direct measurements. In this paper, we set dV (t) to constant dV .

In the Eq. 21, the drug consumption by tumor cells is expressed as

ld1(Ai)~ld0 Ai , ð25Þ

where it is linear with cell activity Ai, and ld2 is the rate of drug

natural decay.

We extend Eq. 13 by replacing kactive as

(kactive{kCell Drug½Drug�) to depict the effects of drug treatment

at the cellular level. If cell vital energy drops below zero, the cell is

considered as apoptotic in our model, which is an irreversible

transition from quiescent status. When cell volume Vi reaches

mitosis threshold, the tumor cell begins to divide to two daughter

cells with half of original tumor vital energy, which is proposed

based on basic cell mitosis theory. By this means, we are able to

study dynamic effects of different drugs upon tumor cells.

Computational Simulation Results

Small tumors and metastases, on the order of several millimeters

or less, cannot be detected by modern imaging techniques.

Fortunately, chemotherapy can be utilized to suppress the

development of small tumors. Using MatlabH, we performed a

series of computational simulations to simulate this tumor growth

and its corresponding treatment response. All parameter values

used in the computational simulations are listed in Table 1, unless

specified otherwise. Source code of our model can be found at

http://www.wakehealth.edu/CTSB/Software/Software.htm

3.1 Simulation Setup
The 3D virtual microenvironment for tumor simulation was set

at 1 cm3 divided by a discrete lattice with a grid of 20062006200

points. Two separate lattices were constructed for tumor cells and

endothelial cells, with the constraint that each grid point can

contain only a single cell at each given timepoint. The starting

oxygen (O2), carbon dioxide (CO2), TAF, and drug concentrations

were assumed to be homogeneous n0,w0,t0 and d0 respectively.

Dirichlet boundary conditions were set for each growth factor

niEV~1,wiEV~0,tiEV~0, and diEV~0 for computational pur-

poses. Equations were normalized and then solved using Finite

Difference Method (FDM). Initially at t = 0 there were five cancer

cells were placed in the center of computational domain. As the

tumor grew with time, the interstitial pressure, metabolite, and

TAF concentrations were calculated accordingly for each grid

point during simulation period. Cytotoxic drug was supplied via

the vasculature at day 40th, and its relative concentration was

calculated for each grid point over time. The following assump-

tions were made: 1) angiogenesis is induced by tumor cell

quiescence; 2) tumor cells cycle once every 24 hours [38]; 3) cells

reversibly enter quiescence when CVEv0:5; 4) cells irreversibly

become necrotic when CVE~0; and 5) tumor pressure

p0~60mmHg [27] and capillary pressure pV ~30mmHg [39].

Tumor growth was simulated for 60 days (1 day equals to 33 steps

or iterations) to cover the transition from avascular to vascular

state. All simulations were performed on an Intel Core2 Quad

3.0 GHz CPU, 8 GB Memory desktop. The total simulation time

was 12.68 hours.

3.2 Tumor Growth
The simulation results of tumor cell population changes with

time are presented in Fig. 4 and Fig. 5. Fig. 4 shows the number of

cells comprising the tumor and their relative metabolic state. The

tumor growth process was characterized by four distinct stages:

exponential growth (T1), linear expansion (T2), stasis (T3), and

secondary growth (T4). Stages T1 and T2 represent the avascular

state of tumor growth, in which tumor cells rapidly uptake oxygen

and generate large amount of carbon dioxide during proliferation

and proteins/DNA synthesis. As oxygen levels drop, the CVE is

impaired and the cell cycle lengthens, resulting in the transition

Figure 4. Tumor cell number over time. Blue: total cells; Red:
active tumor cells; Green: quiescent tumor cells; Black: necrotic
tumor cells.
doi:10.1371/journal.pone.0083962.g004
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from T1 to T2. When the CVE drops below 0.5, tumor growth

reaches a steady state characterized by an increase in cell

quiescence. During stage T3, continued depletion of the CVE

results in cell necrosis at the tumor core. The tumor cell number

remains constant, however, the relative fraction of necrotic cells to

quiescent cells increases over the course of several weeks. The

initiation of angiogenesis at stage T4 generates a new supply of

nutrients for further tumor growth, resulting in renewed cell

proliferation. Fig. 5 shows tumor volume and morphology changes

during this progression. Tumor volume changes were observed at

stages T1, T2 and T4, whereas stage T3 was characterized by

expansion of the necrotic core while the overall tumor volume

remained constant.

3.3 Tumor Angiogenesis
Tumor-induced angiogenesis was studied using a refined lattice-

based model in which endothelial cells proliferate up a TAF

gradient at a rate determined by the local interstitial pressure. The

baseline vessel growth rate was assumed to be D0~0:6mm=day
for normal tissue [40], which increased to Di~0:6z0:2pV {pi

when vessels reached tumor tissue. Unlike studies in which

angiogenesis was simulated only by tip cell division [41–43], here

we also modeled vessel maturation and its influence on nutrient

availability. Endothelial cell age was increased with each model

iteration, such that vessel diameter and related average surface

area per unit volume for mass transport [44] increased with time

on a point-by-point basis (refer to Eqs. 22–24). Representative

images of the tumor vasculature network at different stages is

shown in Fig. 6.

3.4 Mass Transport
Various vascular abnormalities including shunts and tortuous,

leaky vessels cause considerable blood and interstitial fluid infusion

into tumor microenvironment [45,46]. Meanwhile, deficient

circulation and lymphatic drainage also add to this effect [47].

Our model predicts that the complex interplay between tumor

interstitial pressure and the blood vessel distribution leads to

spatial and temporal variations in metabolite and growth factor

availability. Fig. 7 illustrates how this mass transport influences

specific tumor features including tumor cell activity, CVE, and

interstitial pressure. Tumor vessels appeared to preferentially

localize at the periphery of the tumor (Fig. 7 (a)), resulting in high

concentrations of oxygen near the tumor edge and little to no

oxygen at the tumor center (Fig. 7 (b)). Carbon dioxide

accumulation occurred throughout but was highest inside the

tumor periphery (Fig. 7 (c)), likely due the presence of live cells

combined with insufficient waste clearance. TAF was found to

concentrate inside the tumor (Fig. 7 (d)), particularly in regions

characterized by low oxygen content and high carbon dioxide

content. Actively cycling cells appeared at the tumor periphery in

regions of high oxygen influx and carbon dioxide clearance (Fig. 7

(e)). CVE was present in large portions of the tumor but absent

within the necrotic core (Fig. 7 (f)). Individual CVE values varied

by spatial position, likely due to local variations in metabolism,

protein/DNA synthesis, ligand binding, etc. Tumor interstitial

pressure was significantly higher than that of the surrounding

tissue and was highest at the tumor core (Fig. 7 (g)). Literature

[27,48] suggests this phenomenon is due the fact that quickly

dividing tumor cells are much more compact compared to normal

cells, which pushes healthy tissue outward to form a boundary to

trap interstitial fluid and pressure inside the tumor. Our model

corroborates this, since here we considered both CTP and VTP, as

well as probability of tumor cell movement or the direction of

tumor growth. Despite modeling tumor growth coupled with

angiogenesis, the other important processes in cancer progression

such as cell detachment (from primary tumor mass), tissue

invasion, intravasation, and circulation of tumor cells in blood

vessels are not included in our model. Reader may refer to

modeling papers by [49,50] for modeling on the related issue.

Figure 5. Tumor volume and morphology changes during progression including exponential growth, linear expansion, stasis, and
secondary growth processes (T1–T4). Brown region: Viable cells; Black region: Necrotic cells.
doi:10.1371/journal.pone.0083962.g005

Figure 6. Angiogenic sprouting and vessel maturation during tumor growth. New vessel branches and sprouts occur at vessel branching
hotpoints (VBHs) in response to changes in TAF concentration and interstitial pressure. These vessels grow towards hypoxic regions in order to
provide independent blood supply. Vessel diameter as well as vessel density increases with time, shown here at timepoints. Note that the vessels are
absent from tumor center, due the presence of a necrotic cell core.
doi:10.1371/journal.pone.0083962.g006
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3.5 Tumor Morphology
In order to study tumor morphology with respect to interstitial

pressure, we tested tumors of low (p0~40mmHg) and high

(p0~60mmHg) interstitial pressure while keeping the vascular

pressure constant (pV~30mmHg). Computational results indicat-

ed that high-pressure tumors are more likely to develop dendritic

structures compared to low-pressure tumors due to a stronger

outwards interstitial fluid convection. This in turn reduces oxygen

influx and waste clearance, favoring cell quiescence and/or

necrosis at the tumor core. Thus we would expect well-

vascularized cells at the tumor periphery to proliferate more

rapidly, resulting in a dendritic structure, as shown in Fig. 8.

3.6 Tumor Growth Following 3D Vascular Inputs
By calibrating individual model parameters using MRI and

intravital microscopy measurements, we were able to reconstruct

3D vasculature structures within the tumor growth simulation. In

Fig. 9, we present one such simulation output. Multiple iterations

of the simulation yielded angiogenic sprouting from the pre-

existing vasculature at calculated VBH. Dendritic tumor growth

was preferentially observed in areas of high vascularization and

nutrient availability, as previously predicted. This example serves

to illustrate a major strength of the model, that is, tumor growth

and angiogenesis may be modeled using measured, site-specific

vascular networks.

3.7 Cytotoxic chemotherapy
The toxicity of drugs targeted to tumor cells is determined by

drug concentration and tumor cell activity, with higher concen-

trations of drug more likely to induce cell cycle transition from

active to quiescent or necrotic (refer to Eq. 22). The intravascular

Figure 7. Influence of metabolite and growth factor distribution on tumor properties. (a) Vascularized 3D solid tumor morphology on Day
45; (b) Predicted oxygen distribution; (c) Predicted carbon dioxide distribution; (d) Predicted TAF distribution; (e) Cell activity distribution; (f) CVE
distribution; (g) Interstitial pressure distribution; MDE distribution is similar to tumor pressure field. (Intensity: Red (high) R Blue (low)).
doi:10.1371/journal.pone.0083962.g007

Figure 8. Predicted tumor morphology as a function of
interstitial pressure. Low pressure tumors (40 mmHg) develop a
rounded morphology (left) whereas high pressure tumors (60 mmHg)
develop a dendritic morphology. Simulated time period: Day = 45.
doi:10.1371/journal.pone.0083962.g008
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drug concentration can be predicted using body level pharmaco-

kinetics models, as introduced in [22,51]. For simplicity, we

treated the drug concentration as constant, similar to that

observed with intravenous infusion. Nevertheless, time-varying

plasma drug concentrations can be readily simulated. The baseline

plasma drug concentration was set to d0 = 2.13 mol/m3, as

commonly used for doxorubicin [52]. In our simulation, the

concentration of drug in the tumor interstitium was influenced by

the pressure difference within capillary blood and extracellular

space, as well as vessel mass exchange surface per unit volume (as

determined by vessel diameter and/or age). The cytotoxic drug

was therefore more likely to diffuse into low pressure regions and

unable reach inner tumor cells.

Cytotoxic therapy was simulated to start at day 40, concomitant

with secondary tumor expansion. Fig. 10 shows representative

illustrations of drug distribution and tumor size after treatment. A

low concentration of drug (0.1 mol/m3) was found to produce little

growth suppression, resulting in expansion of both the viable cells

and necrotic core. Increasing the drug concentration to 1 mol/m3

resulted in slowed proliferation of the active cells and a more

compact tumor morphology. Large doses of drug (10 mol/m3)

produced significant cell apoptosis.

3.8 Parameter sensitivity analysis
We performed parameter sensitivity analysis to examine the

robustness of the system of our model, that is to evaluate if varying

key parameters may affect the results. We varied the parameters

rn0 and ln0 in Eq. (6), rw0 and lw0 in Eq. (9), rc0 in Eq. (15), and

ld0 and ld2 in Eq. (21) by reducing and increasing their values

0.1%, 1%, and 10% from their default values listed in Table 1.

The results are presented in Table 2, where we compared the

average value of the main variables of the system model, that is

nutrient, waste, TAF, and drug. The results in Table 2 are the

percentage changes of the values of varying parameters with

respect to the values using default parameters, arranged in order of

‘‘nutrient/waste/TAF/drug’’, taken at simulation day 60. For

example, in the first row and first column for results of rn0 reduced

to 210%, the percentage change of nutrient is 0.18, waste is 0,

TAF is 0, and drug is 2.7. As we observe in Table 2, the average

value of the variables are quite robust with regard to changes of

the parameters. We can see that the most sensitive variable to

changes is TAF, which is found to have large sensitivity when

varying ln0.

Figure 9. Solid tumor growth simulation with angiogenesis from a virtual 3D vasculature. The cross-sectional plane shows the nutrient
availability within the simulation area.
doi:10.1371/journal.pone.0083962.g009
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Discussion

Here we proposed a multi-scale tumor growth and angiogenesis

model for chemotherapy evaluation. At tissue level, we calculated

the tumor interstitial pressure based on a GPM which incorporates

pressure induced by tumor cell contact and vascular perfusion.

The GPM model can adaptively calculate tumor pressure during

tumor growth from an avascular to vascular state with relatively

low computational costs. The model is not limited to tumors of

rounded morphology and can be applied to tumors with dendritic

morphology and unclear boundaries. Incorporating tumor pres-

sure-induced interstitial fluid convection, we built a series of mass

conservation partial differential equations to model oxygen,

carbon dioxide, and TAF distributions at intratumoral level. With

this information, detailed and comprehensive mechanisms of

tumor cell proliferation and endothelial cell angiogenesis were

proposed at cellular level in order to provide high-resolution

predictions for single drug regimen. For future work, we will

extend the model where an expression for anti-angiogenic drug

can be included. Anti-angiogenic drugs target immature vessels

and may cause endothelial cell apoptosis. Systematic computa-

tional simulations conducted in this paper illustrate the advantages

of our model. Multiple features of early stage tumor progression,

including tumor cell expansion, morphology changes, and cell

phenotype transitions were simulated in our model. Furthermore,

since the 3D tumor morphology and growth patterns may vary by

tumor origin and/or metastatic site, we incorporated tissue-

specific variables, including tissue density, growth factor diffusion

rates, and vasculature structure. Being comprised of different

functional modules that are easily modified and refined, the model

has the potential to incorporate additional details, including cell

signaling pathways, drug molecule properties, and local perfusion

characteristics. With such additional inputs and calibration, the

model may be customized for specific applications. We envision

that the proposed model and its future advances can serve as a

Figure 10. Tumor morphology and drug distribution following three different drug administration concentrations (0.1, 1, and
10 mol/m3), shown at normalized scale. In our model, drug is inserted at day 40. Two figures in the top left figures show tumor growth without
drug. The rest figures show the effect of drug on tumor on the same day (55) with different drug concentrations (shown on the right figures with
color bar). Brown region denotes living cells and black region indicates necrotic cells.
doi:10.1371/journal.pone.0083962.g010

Table 2. Results of the parameter sensitivity analysis by varying key parameters of nutrient (rn0,ln0), waste (rw0,lw0), TAF (rc0), and
drug (ld0,ld2).

210% 21% 20.1% +0.1% +1% +10%

rn0 0.18/0/0/2.7 0.11/0.01/0.37/5.41 0.07/0.01/1.87/2.7 0.08/0.01/0.75/5.41 0.07/0.01/0.75/5.41 0.01/0.02/1.87/8.11

ln0 0.25/0.14/25.37/2.7 0.52/0.1/20.52/13.51 0.47/0.13/27.99/5.41 0.09/0.08/18.66/8.11 0.52/0.1/21.27/13.51 0.35/0.12/22.76/2.7

rw0 0.12/0/3.73/5.41 0.07/0/0.75/5.41 0/0/0.37/0 0.07/0.01/0.37/5.41 0.02/0.01/0.75/2.7 0.01/0.02/2.61/2.7

lw0 0.06/0.01/0.37/5.41 0.01/0.01/0.37/0 0.11/0.02/1.49/5.41 0.05/0.01/0.37/2.7 0.02/0/0.37/2.7 0.15/0.01/1.87/8.11

rc0 0.07/0.01/4.48/2.7 0.11/0.01/0.75/8.11 0.04/0.01/0.75/2.7 0.09/0.01/0.37/5.41 0/0.01/0.75/0 0.05/0.01/6.72/2.7

ld0 0.09/0.01/0.75/5.41 0.13/0/0.75/8.11 0.09/0/1.12/8.11 0.08/0/1.12/8.11 0.08/0/1.12/5.41 0.04/0/1.12/2.7

ld2 0.06/0.01/0.75/2.7 0.15/0.01/0.37/8.11 0.17/0.01/0.37/10.81 0.16/0.01/0.37/10.81 0.16/0.01/0.75/10.81 0.16/0.01/0.37/10.81

The results are the percentage changes of varied parameters with respect to default values presented in Table 1, arranged in order of ‘‘nutrient/waste/TAF/drug’’.
doi:10.1371/journal.pone.0083962.t002
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valuable predictive platform for cancer drug discovery, screening,

and testing.
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