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Introduction

Carbohydrate recognition is fundamental to a wide variety of interkingdom interactions. For

example, bacterial peptidoglycan, an N-acetyl-D-glucosamine (GlcNAc)–N-acetylmuramic

acid (MurNAc) polymer [1], and fungal chitin, a GlcNAc polymer [2, 3], are both immunosti-

mulatory to vertebrates. In addition, bacterially produced Nodulation (Nod) factors, which

consist of a modified GlcNAc, play a key role in symbiotic interactions with plants [4]. The

structural similarity of these GlcNAc-containing molecules (Fig 1) suggests possible overlap in

their physiological action, although many of the mechanisms underlying the detection of these

molecules in different organisms appear unrelated. However, a single phylogenetically con-

served domain, called Lysin (LysM), is found in specific receptors in signaling pathways

responsive to one or more of these three related carbohydrates in bacteria, plants, and fungi

and possibly mammalian systems. Thus, promiscuous activation could occur when a structur-

ally similar but physiologically inappropriate ligand binds and thereby aberrantly activates an

incorrect LysM domain-containing receptor. Here, I will discuss this possibility and its impli-

cations for immune pathologies such as asthma in which chitin is relevant.

Bacterial carbohydrates: Peptidoglycan

Most bacteria have cell walls containing peptidoglycan, a polymer composed of alternating β
(1,4)-linked GlcNAc and MurNAc residues cross-linked by species-specific peptides (Fig 1A).

Many proteins are attached noncovalently to the bacterial cell envelope, and the LysM motif is

often used to target these proteins to the peptidoglycan. LysM domains are found in a wide

range of bacterial proteins that are involved in cell wall metabolism, including peptidoglycan

hydrolases and phage lysins [5]. Detailed structural analysis of a LysM domain from a bacterial

peptidoglycan hydrolase reveals that it recognizes both the GlcNAc moiety as well as the pep-

tide stem [6]. In plants, LysM domain-containing proteins serve as peptidoglycan receptors

and initiate a downstream signaling cascade in response to peptidoglycan binding [7]. While a

number of different mammalian proteins are known to recognize peptidoglycan, such as Pep-

tidoglycan recognition proteins (PGRP) [8], they lack LysM motifs. Interestingly, there are

recently identified LysM domain-containing proteins in vertebrates, including zebrafish [9]

and mice [10], although their physiological function is not known.
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Fungal carbohydrates: Chitin

Chitin, a linear β(1,4)-linked polymer of GlcNAc (Fig 1B) derived from a variety of biological

sources including the cell walls of fungi and insects, is one of the most abundant polymers in

nature. In plants, chitin is sensed by LysM domain-containing proteins that function to medi-

ate an appropriate innate response [11]. In fungi, LysM domain-containing proteins called

LysM effectors are important for chitin-triggered immunity, possibly by acting quite generally

on processes including spore germination and hyphal growth [12]. Chitin (and its deacetylated

form chitosan) are immunostimulatory in mammals, although the mechanism underlying chi-

tin recognition remains elusive, perhaps in part because variables including the size of the

physiologically active chitin molecules are not known [3].

Symbiotic carbohydrates: Lipochitin oligosaccharides

The symbiotic relationship between legumes and rhizobial bacteria is central to biological

nitrogen fixation and thereby to the global nitrogen cycle. Key to this relationship are Nod fac-

tors, short species-specific chito-oligosaccharides containing various substitutions on the

reducing and nonreducing termini. One example of a Nod factor is NodSmIV, produced by

Sinorhizobium meliloti (Fig 1C), and as can be seen, it is very similar to both peptidoglycan

and chitin. The plant Nod factor receptors are receptor kinases that contain one to three extra-

cellular LysM domains [13] with very high (approximately nM) affinity for their specific Nod

factor ligand [14].

Potential cross-reactivity in peptidoglycan and chitin recognition

In fungi, LysM domain-containing proteins called LysM effectors play a role in regulating host

colonization, possibly by sequestering fungal-derived chitin [12]. It has been proposed that the

ability of LysM domains to also bind peptidoglycan may allow fungi to affect potential bacterial

competitors during infection [12]. This could occur because cell wall binding even in the

absence of muralytic activity can be sufficient for antibacterial function [15]. In plants, the

LysM domains that mediate Nod factor recognition are also found in other proteins that serve

as receptors for pathogenic signals including chitin and/or peptidoglycan [16, 17]. This has led

to the intriguing hypothesis that Nod factors may have evolved as a mechanism to suppress

innate immunity by interfering with the recognition of chitin and/or peptidoglycan [18]. In

Fig 1. Bacterial and fungal carbohydrates. A. Monomer of L-Lys containing peptidoglycan from Staphlycoccus
aureus. B. Fungal chitin. C. Sinorhizobium meliloti Nod factor NodSmIV. Lys, Lysin; Nod, Nodulation.

https://doi.org/10.1371/journal.ppat.1007271.g001
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support of this idea, Nod factors suppress an innate immune reaction in Arabidopsis thaliana,

even though this species lacks a Nod receptor [14]. Since this effect depends on the presence of

the LYK3 LysM-containing receptor kinase that functions as an innate immune receptor, the

Nod factor could therefore act as a competitive antagonist of LYK3.

In the case of plants, the ability of LysM domain-containing proteins to bind both chitin

and Nod factors presents a potential problem, given the heterogeneous mixture of microbially

produced carbohydrates present in the soil. Specificity of the physiological response could be

maintained through distinct receptor sets, which have a greater affinity for one class of saccha-

ride. Recently, such a mechanism has been shown to operate in the legume Lotus japonicus, in

which a LysM domain-containing kinase that mediates the response to pathogens exhibits

much higher sensitivity to chitin as compared to Nod factors [19]. In mammalian cells, the

ability of Nod factors (lipochitin oligosaccharides) to stimulate mammalian angiogenesis [20],

taken with the previously mentioned observation that a Nod factor is able to suppress a plant

innate immune reaction in species that lack the Nod receptor [14], suggests that physiologi-

cally relevant cross-activation is possible. For example, a chitin derived molecule could bind a

LysM domain that normally binds Nod factor (Fig 2, left). Conversely, a peptidoglycan-derived

muropeptide could bind a LysM domain that normally binds chitin (Fig 2, right). Presumably,

these noncognate bindings would occur at relatively lower affinity, but if environmental con-

centrations of the heterologous ligands are in excess to the normal ligand, then noncognate

binding could be physiologically relevant.

So what direct evidence exists that particular LysM domains, which mediate detection of

either peptidoglycan or chitin in a particular physiological context, could promiscuously

Fig 2. Potential cross-activation of LysM domain-containing carbohydrate receptors. A. The LysM domain of a

Nod factor receptor normally binds Nod factor (left) but could also bind a structurally related chitin molecule (right).

B. The LysM domain of a chitin receptor that normally binds chitin (left) could also bind a structurally similar

peptidoglycan muropeptide (right). Lys, Lysin, Nod; Nodulation.

https://doi.org/10.1371/journal.ppat.1007271.g002
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interact with both ligands? That is, could chitin or peptidoglycan interact with a LysM domain

of a protein that is normally the receptor for the other molecule? The structure of Enterococcus
faecalis AtlA, a LysM domain-containing peptidoglycan hydrolase, indicates that specific, well-

conserved residues in the AtlA LysM domain mediate binding to GlcNAc-(GlcNAc/Mur-

NAc)-GlcNAc. This structure implies that further specificity is determined by secondary inter-

actions between hydrophobic LysM residues such as leucine that interacts with hydrophobic

substitutions of the nonreducing terminal sugar in the case of Nod factor recognition or the

interaction mediated by a nonaromatic residue at the reducing end of the ligand in the case of

peptidoglycan [6].

Both in vitro and in vivo evidence supporting some promiscuity exists (Table 1). In vitro, E.

faecalis AtlA binds chitin with a higher affinity than peptidoglycan [6]. LysM domains of bac-

terial origin bind peptidoglycan fragments and chitin polymers with similar affinity, although

plant LysM demonstrate a greater affinity for chitin [21]. Similarly, a protein consisting of the

three LysM domains from the Lactococcus lactis autolysin AcaA binds both bacterial-derived

peptidoglycan sacculus as well as chitin and the cell wall of the fungus Psilocybe cubensis [22].

In vivo, the LysM domain-containing A. thaliana kinase CERK1 responds to both peptidogly-

can and chitin [23] and the rice LysM receptor-like kinase CERK1 [24] and LysM-domain

containing proteins LYP4 and LYP6 [25] respond to chitin as well as to peptidoglycan.

So how is specificity in signaling maintained? One possibility is some kind of post-transla-

tional modification to the LysM domain (e.g., N-glycosylation [26]) that differentially affects

binding of different GlcNAc-containing molecules. Alternatively, modifications could be tar-

geted to the ligands. Peptidoglycan is often modified, and these modifications can affect its

interaction with the innate immune system [27]. For example, wall teichoic acids of Staphylo-
coccal aureus affect binding to an important peptidoglycan recognition protein in Drosophila
melanogaster [28], although whether these or other modifications affect LysM binding is not

known. Structural studies of chitin binding to a protein containing multiple LysM domains

suggest that cooperative binding to the GlcNAc strand could be important [21, 29]. And in the

case of peptidoglycan, multiple LysM domains increase the affinity, at least as compared to

chito-oligosaccharides [6]. However, while these and other studies implicate the length of the

saccharide polymer as an important factor in specificity, the size of the chitin or peptidoglycan

fragments that are physiologically active is not known [30, 31]. While very small peptidoglycan

fragments derived from the gut flora can exogenously induce the genesis of lymphoid follicles

in mice [32], similar molecules do not stimulate immunity-associated defenses in Arabidopsis
[23]. Thus, polymer chain length is likely a critical but not well-understood parameter for spec-

ificity of activation.

Table 1. Chitin/PG biding of LysM-domain containing proteins. When the specific comparative specificity has

been determined, it is noted; otherwise ligands with approximately comparable affinities observed are listed.

Organism LysM-domain proteins Specificity

E. faecalis AtlA Chitin>PG [6]

L. lactis AcaA Chitin, PG [22]

M. smegmatis MSL Chito-oligosaccharide, Chitin, PG [39].

B. subtilis NlpC/P60 Chitin, PG [21]

T. atroviride TAL6 Chitin, PG [40]

A. thaliana CERK1 PG [23], chitin [23]

O. sativa (rice) OsCERK1, OsLYP4, OsLYP6 Chitin/PG [24], [25]

M. japonicus (shrimp) MjLPBP Chitin, PG [41]

Abbreviations: PG, peptidoglycan.

https://doi.org/10.1371/journal.ppat.1007271.t001
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Promiscuity of carbohydrate ligands in pathologies

While the mechanisms underlying specificity discussed above may be sufficient for normal

physiological function, the presence of aberrantly higher levels of one class of carbohydrate

could interfere with these mechanisms. That is, during a bacterial infection or environmental

exposure to fungal-derived [33] or insect-derived chitin [2], the relative concentrations of

ligands may undergo significant changes with potential pathological consequences. Chitin is

thought to be an important trigger leading to the development of asthma. Chitin administered

to murine airways induces infiltration of eosinophils and basophils and drives stimulation of

both resident and recruited macrophages [34]. In addition, mammalian lung epithelial cells

secrete a chitinase, and mice lacking this enzyme exhibit premature morbidity and mortality,

concomitant with significant airway accumulation of environmentally derived chitin polymers

[35]. One possible explanation for this pathology is that increased chitin levels result in aber-

rant activation of the peptidoglycan receptors in the lung, thereby disturbing the normal bal-

ance of ligand concentration required to achieve proper specificity of recognition. Although

the specific peptidoglycan receptors in the lung are not known, LysM domain-containing pro-

teins of unknown function are found in mammals [10]. Promiscuous activation could also be

relevant to the intriguing but not well-understood role of the microbiota in the pathogenesis of

asthma [36]. Recent observations that transient early life microbial dysbiosis is an important

factor influencing asthma development [37] suggest that bacterial products may have a role in

mediating these effects. Specifically, peptidoglycan is released by growing bacterial cells, and

the substantial levels of peptidoglycan fragments generated by the microbiota have important

systemic immunological effects mediated by key innate immune proteins like Nod1 [30].

Thus, perhaps the levels of these molecules relative to their receptors is affected by the presence

of chitin, which changes the normal ligand:receptor stoichiometry. This would be analogous

to the situation in plants in which exogenous Nod factors can act as a competitive agonist and

suppress the normal plant innate immune reaction to chitin [14]. Finally, inflammatory bowel

disease is another example in which interactions between chitin- and peptidoglycan-signaling

systems could be relevant. Recent work has demonstrated that chitin microparticles adminis-

tered to colitis models greatly affected the bacterial community in the colon, both in overall

number as well as overall species composition [38].
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