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1  | INTRODUC TION

The Mediterranean islands are populated by rich biotic communities, 
which comprise a mixture of recently arrived species and ancient 
insular radiations (Fois et al., 2020). Similar to other regions of the 
world, the diversity of these island communities has been influ-
enced by geographic isolation and the geophysical characteristics 
of islands (surface area and topography; Kadmon & Allouche, 2007; 
MacArthur, 1965). The sea constitutes a powerful barrier to faunal 
movement, strongly reducing the species that can reach islands 
(Fattorini, 2002). However, animals can bypass this barrier using in-
termittent land corridors, or across the sea by swimming or by drift-
ing/floating objects (Spennemann, 2020; Stankiewicz et al., 2006).

The colonization routes followed to reach an island deter-
mine the composition of its faunal assemblages. The formation of 

land corridors allows the almost barrier- free flow of continental 
fauna, whereas sweepstake dispersal routes are associated with 
strong filtering and species poor assemblages (Mazza et al., 2013; 
Simpson, 1940). The great faunal diversity of the communities 
on Mediterranean islands may be explained by the fact that spe-
cies reached the islands using several dispersal routes (Poulakakis 
et al., 2013). However, unlike other regions of the world (e.g., in oce-
anic islands, such as the Galapagos or Samoa, in which natural col-
onization from the mainland probably occurred by rafting dispersal; 
Caccone et al., 1999; Gill, 1993), it is possible that dispersal among 
the Mediterranean islands through land corridors played a very im-
portant role during the colonization process given that this sea is a 
closed basin.

The importance of dispersal through land corridors is also sup-
ported by phylogeographic studies, which suggested that there is 
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a link between island connectivity and the molecular divergence of 
subpopulations of species/genera across island systems (Kornilios 
et al., 2019; Thompson, 1999). Colonization following the forma-
tion of land bridges occurred during several phases from the Middle 
Pliocene (17 Mya) to the later glacial eustatic regressions (20 Kya; 
Parmakelis et al., 2006). However, some islands such as Mallorca, 
Crete, and Cyprus are surrounded by deep sea regions, and their 
isolation has possibly remained uninterrupted since the Messinian 
event (5.33 Mya; Palombo, 2018).

In this study, we evaluated the dispersal patterns of several spe-
cies of Squamata (Reptilia) throughout the Mediterranean islands. 
These islands have relatively diverse reptile assemblages, although 
this species diversity depends greatly on the sizes of the islands and 
their geographical locations (Chondropoulos, 1986; Mayol, 1997; 
Figure 1). Most of the squamate island species only occur on a few 
islands or a single archipelago, thereby indicating a limited ability to 
disperse across the sea (Hurston et al., 2009). However, a few spe-
cies have spread among several archipelagos, such as some geck-
oes, lacertid lizards, and skinks (Di Nicola & Mezzadri, 2018; Stille 
et al., 2021), and thus, these species may possess adaptive traits 
that enhance their capacity as island colonizers. If these traits are 
only shared among evolutionarily related species, their dispersion 
patterns should exhibit a phylogenetic signal (hypothesis i). We also 
tested (hypothesis ii) that squamates with small body sizes and lo-
cated at lower trophic levels would have been more successful at 
dispersing across the sea because of their higher capacity to occupy 
islands with a range of sizes (Holt et al., 1999; Krysko & MacKenzie- 
Krysko, 2016; Lomolino, 2005).

2  | MATERIAL S AND METHODS

2.1 | Study region

The study region covered the Mediterranean basin (Figure 2). This 
basin includes a large number of islands, with broad variability in 
their isolation and geophysical characteristics (Arnold, 2008; Itescu 

et al., 2018). In total, 105 species of Squamata occur on these is-
lands and their patterns of occurrence were evaluated based on data 
obtained from biogeographic atlases and scientific papers (see the 
references provided in Appendix S1). Squamate species have been 
separated into endemic and mainland in origin based on recent phy-
logeographic studies (Kindler et al., 2013; Kornilios et al., 2010, 2019; 
Kotsakiozi et al., 2018; Senczuk et al., 2019; Spilani et al., 2019; Stöck 
et al., 2016; Utiger & Schätti, 2004).

2.2 | Dispersal paths

The dispersal patterns were analyzed by decomposing the paths into 
two components: length of the route (= distance traveled) and depth 
of the sea floor along the route (= bypassed sea depth). These two 
components described the progressive difficulty of reaching an is-
land across the sea (Heaney et al., 2005). The distance traveled was 
estimated with a minimum- cost vector network by connecting the 
vertices of a graph (Sessions, 1992). This procedure generated the 
shortest path that connected the island network without assuming 
any dispersal step (i.e., origin– destination). The distance traveled 
was also estimated by building a cost surface model, which assumed 
a direction of dispersal (origin– destination) and that the path fol-
lowed the gradient of minimum resistance (Carroll et al., 2012).

We defined the origins in a different manner for island endemics 
and mainland species. For endemic species, we considered the origin 
as the largest central island (e.g., Ibiza for Podarcis pityusensis or Crete 
for Podarcis cretensis) or pairs of large central islands (Corsica- Sardinia 
or Mallorca- Menorca) within an archipelago (because endemic spe-
cies are not restricted to a single island; Speybroeck et al., 2016). 
This definition is supported by the dispersal patterns described for 
some endemic species (e.g., Podarcis lilfordi, Terrasa et al., 2004). In 
mainland species, we considered the origin as the continental region 
nearest to the island where these species are distributed, except 
for those where the origin has been restricted by phylogeographic 
studies, such as Hemidactylus turcicus, Tarentola mauritanica, and 
Chalcides ocellatus (Kornilios et al., 2010; Rato et al., 2010, 2011). 

F I G U R E  1   Examples of island reptiles 
in the Mediterranean. Clockwise: 
Algyroides fitzingeri (Corsica); Natrix 
helvetica sicula (Sicily); Chamaeleo 
chamaeleon (Tunisia); Heremites vittatus 
(Tunisia). Credits: Daniel Escoriza
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In these latter species, only the regions where they are supposed 
to be native have been considered in the models. The regions of 
origin were mapped based on Schleich et al. (1996), Geniez (2015), 
Speybroeck et al. (2016), and IUCN (2021).

The surface resistance was modeled to minimize the traveling 
cost following the coastline by using three variables: the distance 
to the coast (greater resistance with distance), terrain elevation 
(greater resistance with elevation), and depth of the sea floor 

(greater resistance with sea depth). However, there is still some 
uncertainty regarding the level of resistance that the sea imposes 
on the movement of species, and this uncertainty was considered 
by building three models that assumed various levels of resistance 
(Beier et al., 2009). Model 1 (M1) assumed that the transmarine 
route imposed greater resistance than land, although it is still rel-
atively easy to travel across the sea (e.g., in semi- aquatic snakes, or 
by drifting on wind- driven sea currents; Baker, 2015; Renner, 2004). 

F I G U R E  2   Map of the study region, 
showing the islands included in the study 
(red dots)

TA B L E  1   Description of the variables and descriptive statistics

Variable Category Description Mean SE

Minimum tree Distance Minimum- cost vector network 986.32 km 135.06

Total travel Distance Summation of travel lengths 815.59 km 142.83

Average travel Distance Total travel/number of travels 53.55 km 9.11

Maximum single travel Distance Longest travel 279.60 km 40.66

Average depth Sea floor depth Mean sea depth along the travel −129.60 m 14.22

Maximum depth Sea floor depth Maximum depth along the travel −640.21 m 61.20

Prop. travel‒ 150 Sea floor depth Proportion of the travel with sea depth < −150 m 0.84 0.02

Note: The mean values and standard error (SE) were obtained for all species and for the models M1, M2, and M3 (Total travel- Prop. travel−150).

F I G U R E  3   PCA scatter plot showing the variation in the characteristics of the paths (blue vectors) among species of insular squamates. 
Lizards, red; Snakes, blue
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F I G U R E  4   Squamata species (Mediterranean islands) phylogenetic tree, showing the mapped values of the first two PCA axes (a) PC1 
(travel distance); (b) PC2 (travel depth)
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Model 2 (M2) assumed that island colonization occurred mostly 
during recent eustatic regressions. Species could only travel along 
the transmarine route until they reached a depth threshold of around 
−150 m (i.e., minimum sea level during the last glacial cycle; Lambeck 
& Purcell, 2005). Model 3 (M3) assumed that the transmarine route 
was very unlikely, so species maximized their movement across land 
routes, even by significantly increasing the distances traveled.

These models allowed us to generate a network of paths connect-
ing the islands to each other and to the mainland, and we estimated 
the following variables from these paths: total distance traveled, av-
erage distance traveled, maximum distance traveled in a single trip 
(i.e., connecting two adjacent points), average sea depth along the 
trip, maximum sea depth along the trip, and percentage of trip above 
−150 m sea level (Table 1). The mean value of these variables for 
each model (M1, M2, M3) and species are shown in Appendix S2. 
The cost surface models and species paths were generated using a 
digital elevation model of the sea floor (Becker et al., 2009) and the 
package GRASS- GIS (GRASS Development Team, 2020).

2.3 | Species data

We constructed a phylogenetic tree using a synthesis- based phy-
logeny generated from the TimeTree database (Kumar et al., 2017). 
TimeTree generates an optimal phylogenetic tree compared with 
other candidate topologies (Hedges et al., 2015). This approach is 
suitable for testing evolutionary hypotheses, and it usually pro-
duces similar results to those generated by purposely constructed 

phylogenies (Li et al., 2019). The pairwise divergence times between 
species were used to calculate the 10th percentile of the distances 
(measured in Mya), evaluating the species phylogenetic isolation rel-
ative to the complete pool of insular species (a measure related to the 
interspecific niche overlap; Münkemüller et al., 2014). This distance 
will be greater if the species shows a distant phylogenetic relation-
ship relative to other island species, which could favor the coloniza-
tion potential of this species. The species were also grouped in the 
following categories: snakes/lizards, island endemic/mainland, and 
based on trophic preferences (vertebrates/invertebrates). We also 
included the average total length (snout tip to the tip of the tail for 
adult specimens) for each species. These data were obtained from 
several previously published sources (Baier et al., 2013; Di Nicola 
& Mezzadri, 2018; Geniez, 2015; Schleich et al., 1996; Speybroeck 
et al., 2016).

2.4 | Data analysis

The analyses tested (i) the strength of the phylogenetic signal in 
the dispersal patterns, and (ii) the effects of the species groups (i.e., 
phylogenetic isolation, snakes, endemics, trophic rank, and body 
size) in the dispersal patterns. Continuous variables with skew and 
kurtosis values that indicated non- normality were logarithmically 
transformed prior to the analyses (Sokal & Rohlf, 1995). The species 
associations with the variables describing the components of the 
dispersal paths were visualized using principal component analysis 
(PCA; Pearson, 1901).

λ K

Minimum tree Estimate 0.209 0.089

p- Value .0079 .0139

Total travel Estimate 0.214 0.063

Estimate 95% CI 0.153‒ 0.276 0.057‒ 0.069

p- Value .4663 .5044

Average travel Estimate 0.008 0.081

Estimate 95% CI 0.004‒ 0.011 0.074‒ 0.087

p- Value .8828 .4496

Max single travel Estimate 0.069 0.056

Estimate 95% CI 0.053‒ 0.084 0.053‒ 0.060

p- Value .4404 .5182

Average depth Estimate 0.003 0.162

Estimate 95% CI 0.0006‒ 0.0044 0.150‒ 0.174

p- Value .9607 .1938

Max depth Estimate 0.012 0.066

Estimate 95% CI 0.00‒ 0.028 0.058‒ 0.074

p- Value .9347 .5419

Prop. travel‒ 150 Estimate 0.137 0.059

Estimate 95% CI 0.116‒ 0.157 0.058‒ 0.061

p- Value .3202 .3389

TA B L E  2   Evaluation of the 
phylogenetic signal (Pagel's λ and 
Blomberg's K) for the dispersion variables, 
including the uncertainty generated by 
the three dispersion models (M1– M3) for 
the variables total travel to prop. travel−150
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The intensity of the phylogenetic signal was determined by cal-
culating Pagel's lambda and Blomberg's K statistics (Münkemüller 
et al., 2012). Pagel's lambda values vary between 0 and 1, where 0 
denotes that a trait has evolved independently of the phylogeny and 
values close to 1 correspond to a Brownian model that indicates a 
phylogenetic signal during trait evolution (Pagel, 1999). Blomberg's 
K values vary between 0 and ∞, where values of K < 1 represent 
less phylogenetic signal than that expected under Brownian motion 
(Blomberg et al., 2003). When estimating the phylogenetic signal, we 
considered the uncertainty of the cost surface models and the differ-
ences between groups of squamates (if these groups included more 
than 30 species because the lambda and K parameters are sensitive 
to small phylogenies; Münkemüller et al., 2012). These analyses were 
conducted using the sensiPhy package (Paterno et al., 2018) for the 
R environment (R Development Core Team, 2021).

Associations between the species groups and characteristics of 
the dispersal paths were tested using phylogenetic linear regression 
models (PLMs; Revell, 2010). Total length was included in the models 
as an interacting term with snake/lizard category because most of 
the lizards in the region have total length values in the lower range 
for snakes (Speybroeck et al., 2016). PLMs were built by incorpo-
rating several phylogenetic structures for the error term: Brownian 
model (BM), the Ornstein– Uhlenbeck model with fixed root (OU1), 
the Ornstein– Uhlenbeck model with random root (OU2), Pagel's 
lambda, Pagel's kappa, Pagel's delta, and the early burst model (EB; 
Ho & Ané, 2014; Pagel, 1999). In these models, we also accounted 
for spatial effects (e.g., those associated with the uneven distribu-
tion of islands throughout the basin), including a variable generated 
with the centroids of the geographical coordinates of species. The 
optimal PLM was selected after comparing them against a null model 
(without covariance structures) using the delta Akaike's informa-
tion criterion (AIC) and AIC weights (Burnham & Anderson, 2002). 
Models with delta AIC < 2 had great support, and AIC weights 
close to 1 indicated a higher probability of being the best candidate 
(Symonds & Moussalli, 2011). These analyses were conducted with 
the phylolm package (Ho & Ané, 2014) for the R environment.

3  | RESULTS

The first two axes obtained by PCA accounted for a large proportion 
of the variance (cumulative proportion = 0.916, PC1 = 0.805, PC2 = 
0.111; Figure 3). On the first axis, the variables that described the dis-
tance traveled (total distance traveled, average distance traveled, and 
maximum distance traveled in a single trip) accounted for 67.7% of the 
total variance (Figure 3). On the second axis, the variables that de-
scribed the bypassed sea depth (average depth and maximum depth 
along the routes) accounted for 61.9% of the total variance (Figure 3).

The phylogenetic relationships among species on the first two 
axes obtained by PCA are shown in Figure 4. The estimates of 
Pagel's lambda and Blomberg's K indicated that no phylogenetic sig-
nal was present in any of the path properties (Figure 4; Table 2). In all 
cases, the phylogenetic signal was either insignificant or significant 

and close to 0 (i.e., phylogenetically related species shared fewer 
similarities in terms of their dispersal with each other than to those 
at greater evolutionary distances; Table 2). We also detected no phy-
logenetic signal when lizards and snakes were evaluated separately 
(Table 3).

The model with no phylogenetic covariance structures obtained 
the best fit for this data set (Table 4). The PLMs showed that the 
bypassed sea depth had a significant spatial component (aver-
age depth, maximum depth, and proportion of trip above −150 m; 
Table 5), where they indicated a significant negative association with 
longitude. This result implied that the dispersal paths in the east-
ern Mediterranean bypassed deeper marine regions (Figure 5). The 
regression analyses also showed that snakes traveled larger aver-
age distances whereas island endemics traveled shorter average 
distances and that small- sized lizards traveled larger distances than 
other groups of squamates (Table 5).

4  | DISCUSSION

In this study, we modeled the dispersal paths of squamates through-
out the Mediterranean archipelagos. The dispersal models accounted 
for the uncertainty regarding the resistance imposed by the sea on 
the movements of species, which could generate a range of routes, 
particularly when evaluating long traveling distances. However, the 

TA B L E  3   Evaluation of the phylogenetic signal (Pagel's λ and 
Blomberg's K) for the dispersion variables, separating the groups of 
Squamata snakes and lizards

λ p- Value K p- Value

Minimum tree

Snakes 0.00007 1.00 0.083 .331

Lizards 0.00005 1.00 0.188 .043

Total travel

Snakes 0.00005 1.00 0.160 .509

Lizards 0.019 .855 0.039 .652

Average travel

Snakes 0.00004 1.00 0.127 .732

Lizards 0.064 .360 0.035 .829

Max single travel

Snakes 0.00006 1.00 0.187 .341

Lizards 0.053 .525 0.037 .763

Average depth

Snakes 0.00005 1.00 0.179 .366

Lizards 0.577 .683 0.094 .017

Max depth

Snakes 0.080 .488 0.151 .585

Lizards 0.576 .138 0.061 .177

Prop. travel−150

Snakes 0.590 .350 0.196 .286

Lizards 0.144 .171 0.052 .323
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analyses obtained similar results when the distances traveled were 
estimated without assuming a dispersal direction and landscape re-
sistance. Our results highlighted the lack of a phylogenetic signal in 
the dispersal paths when evaluating both the distances traveled and 
bypassed sea depth. This finding indicated that no squamate lineages 
in the Mediterranean basin had greater dispersal capacities than 
others. It was also feasible that more intense interspecific competi-
tion between phylogenetic relatives in small islands (Escoriza, 2020) 
could counteract the effects of traits that might possibly enhance 
transmarine dispersal.

Snakes and lizards differed in terms of their dispersal patterns. 
The analyses revealed that snakes show greater average traveled 
distances. Thus, when snakes traveled similar distances to lizards, 
they did so with fewer “stops” (i.e., by populating less intermediate 
islands). The lower number of stops may have been a consequence 
of the failure of snakes to colonize small islets or to maintain sta-
ble populations on these islets for long periods because most of 
the snakes, even those with small body sizes, occupied higher tro-
phic levels than lizards (Pernetta et al., 2011). However, this re-
sult could also have been a human- induced artifact given that the 
longest paths traveled by Mediterranean snakes are due to trans-
locations (e.g., Erix jaculus, Hierophis viridiflavus, or Hemorrhois hip-
pocrepis; Utiger & Schätti, 2004; Pinya & Carretero, 2011; Insacco 

et al., 2015), and thus, they do not follow the expected sequence 
of island chains. Natricine snakes are possible exceptions because 
they are efficient marine dispersers (Brischoux & Kornilev, 2014; 
Kyriazi et al., 2013) but confined to large islands due to their re-
quirements for permanent freshwater habitats (Zotos et al., 2021). 
However, in this group of semi- aquatic snakes, at least two island 
populations of Natrix maura (Mallorca and Sardinia) were intro-
duced (Guicking et al., 2008).

Our analyses also indicated that the island endemics had shorter 
average traveled distances. Thus, when endemic species traveled 
similar distances to mainland species, they had a greater number of 
“stops” (or by populating a larger number of intermediate islands). 
This is consequence of the process of radial dispersion by following 
an ordered array of islands (i.e., from the closest to the furthest). 
This is to be expected considering that very few populations of en-
demic squamates had anthropogenic origins (Lo Cascio et al., 2006; 
Pérez- Mellado et al., 2017). The regression models demonstrated 
the importance of the spatial component in the dispersal patterns. 
For example, squamates crossed deeper regions of the sea in the 
eastern Mediterranean region where the density of islands is also 
greater (Arnold, 2008). This finding could be a consequence of 
greater success on the transmarine routes in this region, which is 
highly dependent on stochastic factors (Simpson, 1940).

BM OU1 OU2 Lambda Kappa Delta EB Null

Minimum tree

ΔAIC 91.62 0.96 0.96 2.00 31.60 73.09 93.62 0.00

AICw 0.00 0.24 0.24 0.14 0.00 0.00 0.00 0.38

Total travel

ΔAIC 141.40 9.34 9.34 2.00 43.62 120.43 143.40 0.00

AICw 0.00 0.007 0.007 0.26 0.00 0.00 0.00 0.72

Average travel

ΔAIC 157.92 12.67 12.67 2.00 48.38 135.25 159.92 0.00

AICw 0.00 0.001 0.001 0.27 0.00 0.00 0.00 0.73

Max single travel

ΔAIC 136.82 9.33 9.33 2.00 44.11 115.83 138.82 0.00

AICw 0.00 0.007 0.007 0.26 0.00 0.00 0.00 0.72

Average depth

ΔAIC 48.41 3.46 3.46 2.16 27.89 35.59 50.41 0.00

AICw 0.00 0.11 0.11 0.19 0.00 0.00 0.00 0.59

Max depth

ΔAIC 91.69 8.10 8.10 2.00 39.73 76.74 93.69 0.00

AICw 0.00 0.01 0.01 0.26 0.00 0.00 0.00 0.72

Prop. travel−150

ΔAIC 132.48 9.35 9.35 2.00 49.40 111.28 134.48 0.00

AICw 0.00 0.007 0.007 0.26 0.00 0.00 0.00 0.72

Note: The best candidate is the one that shows a delta AIC (ΔAIC) <2 and AIC weight (AICw) close 
to 1.
Abbreviations: BM, Brownian motion model; delta, Pagel's δ model; EB, early burst model; kappa, 
Pagel's κ model; lambda, Pagel's λ model; OU1, Ornstein– Uhlenbeck model with fixed root; OU2, 
Ornstein– Uhlenbeck model with random root.

TA B L E  4   Candidate phylogenetic 
linear regression models evaluating the 
association among dispersion variables 
and Squamata traits/groups, including 
several phylogenetic covariance 
structures or none (null model, Null)
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Our analyses indicated that a morphological trait could influence 
the transmarine dispersal process, at least in lizards. Body size was 
negatively associated with the distance traveled in lizards, possibly 
because small lizards can more readily populate tiny intermediate 

islands (Delaugerre & Corti, 2020; Pafilis et al., 2020) or be trans-
ported accidentally by man (Austin, 1999). In addition, small- bodied 
lizards tend to have larger population sizes, which could favor the 
probability of successful dispersal by rafting, including the use of a 

Model 
statistics Variables Estimate p- Value

Minimum tree R2 .209 Latitude 0.147 .0003

AIC 333.127 Endemic −0.622 .0524

AICw 0.297 TL:no −0.524 .0353

Total travel R2 .067 TL:no −0.580 .1557

AIC 452.252

AICw 0.315

Average travel R2 .150 Latitude −0.101 .0439

AIC 346.821 Snake 0.596 .0282

AICw 0.511 Endemic −0.850 .0129

Max single travel R2 .062 TL:no −0.554 .1200

AIC 423.253

AICw 0.377

Average depth R2 .144 Longitude −0.041 .0005

AIC 327.907 Snake −0.399 .0933

AICw 0.467

Max depth R2 .112 Longitude −0.047 .0035

AIC 394.572 Snake −0.719 .0287

AICw 0.572

Prop. travel−150 R2 .236 Latitude 0.029 .0023

AIC −13.733 Longitude −0.007 .0044

AICw 0.373 Endemic −0.129 .0296

Abbreviations: AIC, Akaike information criterion; AICw, AIC weight; TL :no, interaction between 
total length and snake category (yes/no).

TA B L E  5   Best phylogenetic linear 
regression model generated by AIC 
selection, evaluating the association 
between predictor variables and travel 
descriptors

F I G U R E  5   Dispersal paths of Squamata in the Mediterranean islands. (a) Minimum shortest distance; (b) modeled paths in lizards; 
(c) snakes; (d) island endemics. Blue, M1; yellow, M2; red, M3. When the paths overlap, only M2 is shown

(a) (b)

(c) (d)
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wider range of raft sizes (Hsu et al., 2021; Novosolov et al., 2016). 
Examples of highly successful island colonizers with small body 
sizes are found in several distantly related lizard lineages within the 
Mediterranean region, including skinks (e.g., Ablepharus), geckoes 
(Euleptes and Mediodactylus), and lacertids (Ophisops), and thus, a 
phylogenetic signal was not detected.

5  | CONCLUSIONS

In this study, for the first time, we evaluated the dispersal patterns 
of Squamata in the Mediterranean islands by estimating several pa-
rameters to quantify the difficulty of reaching these islands. The re-
sults highlighted the lack of any phylogenetic signal in the dispersal 
process, thereby indicating that no evolutionary lineages had superior 
colonization capacities. Our analyses also revealed important differ-
ences in the dispersal process for snakes compared with lizards, al-
though these differences could have been human- induced artifacts 
because some long- distance dispersals of snakes may possibly have 
been due to accidental introductions. In lizards, small body size possi-
bly enhanced the probability of success over long- distance sea routes.
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