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Abstract

Chimeric antigen receptors (CARs) are recombinant receptors that combine the specificity of an antigen-specific
antibody with the T-cell's activating functions. Initial clinical trials of genetically engineered CAR T cells have
significantly raised the profile of T cell therapy, and great efforts have been made to improve this approach. In this
review, we provide a structural overview of the development of CAR technology and highlight areas that require
further refinement. We also discuss critical issues related to CAR therapy, including the optimization of CAR T cells,
the route of administration, CAR toxicity and the blocking of inhibitory molecules.
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Introduction

Adoptive cellular therapy (ACT) has received much atten-
tion as a realistic technique for cancer treatment [1-3].
Tumor-reactive T cells can be isolated from tumor-
infiltrating lymphocytes (TILs) and then expanded in vitro
before re-infusion back into cancer patients [4]. The
adoptive transfer of TILs yields a durable regression of
melanoma tumors [5,6]. However, the process by which
tumor-reactive TILs are isolated and expanded is tech-
nically difficult, labor-intensive and time-consuming.
Moreover, another limitation in the more widespread
application of TIL therapy is the difficulty in identifying
antigen-specific T cells in other cancer types.

To overcome these obstacles and to broaden the appli-
cations of ACT, gene-therapeutic approaches for the re-
direction of T-cells to defined tumor-associated antigens
(TAAs) have been developed [7]. One sophisticated
strategy involves the engineering of autologous T-cells
with a chimeric antigen receptor (CAR) [8], which is com-
posed of a specific antigen-binding moiety that is derived
from the variable regions of a monoclonal antibody (mAb)
and linked through a hinge and a transmembrane (TM)
motif to a cytoplasmic lymphocyte-signaling moiety [9,10].
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The CARs endow T cells antigen-specific recognition, acti-
vation and proliferation in an MHC-independent manner.
Current clinical trials using engineered CAR T cell therapy
demonstrate clinical responses in both hematological ma-
lignancies and solid tumors [2,11]. Here, we will provide
an overview of the recent development of the CAR tech-
nology and discuss the challenges and future prospects for
this pioneering approach.

CAR binding domain

The classic CAR consists of an extracellular antigen-
recognition domain attached to an extracellular spacer/
hinge domain, a TM region that anchors the receptor to
the cell surface and a signaling endodomain. A scFv de-
rived from the variable heavy chain (VH) and variable light
chain (VL) regions of an antigen-specific mAb linked by a
flexible linker is commonly utilized as the extracellular
TAA-binding domain in most CARs (Figure 1A). The scFv
retains the same specificity and a similar affinity as the full
antibody from which it was derived [12]. Moreover, the
small molecular size of scFvs facilitates both the genetic
manipulation and expression of the CAR. Furthermore, it
determines the CAR antigen specificity and binds the
target protein in an MHC-independent manner. To date,
the scFvs of CARs are most often derived from mouse
mAbs. Human anti-mouse antibody (HAMA) responses
can occur within days and can block antigen recognition
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Figure 1 Schematic of different chimeric antigen receptors (CARs) used to re-direct the T cell immune response. (A) Schematic structure
of second-generation classic CAR. Second-generation CARs contain one costimulatory endodomains (illustrated with CD28 or 4-1BB or OX-40 or
CD27), cloned in frame with the scFv and the CD3z endodomain. (B) Schematic structure of physiological CAR which contains full length CD27
or NKG2D receptor fused to CD3z endodomain. (C) Schematic structure of universal CAR, which utilize biotin or anti-FITC scFv as binding domain
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by CARs. Therefore, the use of humanized [13] or fully
human scFv [14] may be preferable to mouse scFv. In
addition, the affinity of scFv must be considered in the de-
sign of CARs. The affinity of the scFv selected for design-
ing a CAR also should be considered. Hudecek et al. [15]
showed that increasing the affinity of a CAR enhances its
T-cell effector function and recognition of tumors. How-
ever, the development of higher affinity CARs with greater
anti-tumor activity could theoretically increase the risk of
on-target toxicity and mandates careful safety studies in a
relevant model.

The extracellular antigen-recognition domain of CARs
can also be a ligand for a receptor that is expressed on
tumor cells [11]. Non scFv-based ligand-binding domains
have been utilized in a CAR format (Figure 1B). For ex-
ample, the CD27 receptor [16], the heregulin molecule (a
ligand for Her3 and Her4 receptors) [17], interleukin (IL)-
13 mutein [18], vascular endothelial growth factor (anti-
VEGFR2) [19], and the NKG2D receptor [20-22], have
been used successfully for engineered T-cell therapy,
resulting in tumor regression in vivo. Recently, a novel
chimeric NKp30 CAR targeting the B7-H6 (NKp30 ligand)
expressing tumor was developed [23].

To expand the applications for T cell-based immuno-
therapy in cancer, Tamada et al. [24] and Urbanska et al.
[25] constructed similar “universal” CARs (uCAR) that
utilize anti-fluorescein isothiocyanate (FITC) scFv and

avidin in either a monomeric (mcAv) or dimeric (dcAv)
form as binding domains fused to T-cell signaling do-
mains, respectively (Figure 1C). These uCAR T cells
recognize various cancer types when bound to FITC-
labeled or biotinylated antigen-specific mAbs or scFvs,
resulting in efficient target lysis, T-cell proliferation, and
cytokine production. More recently, Kudo et al. [26] con-
structed a novel uCAR containing the high-affinity CD16
(FCGR3A) V158 variant, CD8« hinge and transmembrane
domains, along with signaling domains. CD16V-based
uCAR T cells have bound humanized antibodies with
higher affinity and engagement of the CD16V-uCAR pro-
voked T cell activation, exocytosis of the lytic granules and
sustained proliferation. Further, the co-administration of
CD16V uCAR T cells with immunotherapeutic antibodies
exerted considerable antitumor activity in vivo. Import-
antly, the treatment of immunocompromised mice using
the novel uCAR T cells plus the labeled mAbs currently in
clinical use exhibited potent antitumor activity. The need
for many different immune receptor genes to cover all
cancers limits the feasibility of ACT, and the use of uCARs
may address this issue.

CAR targeting

Most antigens targeted by CAR-T cells are simply ‘tumor-
associated’ and not ‘tumor-specific. The potential for
“on-target, off-organ” toxicity is a serious concern in CAR
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T-cell therapy. Thus, the judicious selection of TAAs is
the first step and is critical to the success of CAR-based
ACT. CD19 is the widely and successfully utilized target of
CAR-modified T cells [27-29], being universally expressed
by acute lymphoblastic leukemia, the most common malig-
nancy of children, whereas its expression on non-tumor
tissues is restricted to B-cells and their progenitors, but
not hematopoietic stem cells. The toxicity of targeting this
antigen using anti-CD19 CAR-modified T cells is limited
to B cell aplasia and the consequent effects on humoral
immunity, which is considered to be a tolerable side-effect
of this therapy [11]. In contrast, one colon cancer patient
treated with Her2/neu CAR-T cells died 5 days after the
adoptive transfer; this patient died of what appears to have
been a cytokine storm and respiratory failure triggered by
the recognition of the low levels of antigens on lung epi-
thelial cells [30]. These studies suggest that ideal TAAs are
required by the tumor cell for survival and should show
restricted expression to the tumor cell surface and other-
wise non-vital tissues.

The effect of antigen density for CAR therapy is not
yet well defined. It appears that CAR T cells typically
target highly expressed antigens, while low antigen-
expressing tumor cells are resistant to CAR T cell ther-
apy [31,32]. This resistance could be a limitation in their
activity against tumors expressing low antigen levels. The
intensity of antigen expression on target cells, however,
can be increased by the administration of epigenetic mod-
ulators [32]. On the other hand, lesser sensitivity may be-
come an advantage when the avoidance of low-level
antigen expression on normal cells is desirable.

CAR signaling

CARs are grouped into three generations of increasing
costimulatory activity (Figure 1A). The first-generation
CARs contain a single signaling unit that is most com-
monly derived from the CD3z chain or FcRg subunits
[33]. However, first-generation CARs have limited clin-
ical activity for the treatment of lymphoma, neuroblast-
oma, and ovarian and renal cancer [34-37] because the
activation of the CAR-modified T cells induces only
transient cell division and suboptimal cytokine produc-
tion, and these functions fail to produce prolonged T-
cell expansion and sustained antitumor effects [38].

The therapeutic success of adoptive therapy with CAR
T cells depends on the appropriate costimulation of CD3z
to induce full T-cell activation [39]. These CARs contain
costimulatory signaling domains derived from the T cell
costimulatory molecules, such as CD28, which is the
molecule most commonly selected by CARs [29,40-42].
However, other costimulatory molecules, such as 4-1BB
(CD137), OX40 (CD134), ICOS and CD27, also play im-
portant roles in regulating T-cell proliferation, survival,
and antitumor functions [10,41,43]. Notably, Porter et al.
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[44] described a heavily pretreated patient with chronic
lymphocytic leukemia (CLL) who had a complete remis-
sion. This remission was associated with the tumor lysis
syndrome following the transfer of second-generation
CD19 CAR-T cells coupled with 4-1BB and CD3z signal-
ing domains.

A special second-generation CAR developed recently
separates the T cell signaling domains into two different
CARs, one of which contains the costimulatory signaling
domains, such as CD28 or 4-1BB, while the other CAR,
with a different specificity, contains only the CD3z
signaling domain. This strategy reproduces the physio-
logical signals’ 1 and 2 checkpoints of T cell activation.
Wilkie et al. [45] have tested this principle by co-
expressing Her2- and MUCI-specific CARs that signal
using CD3z and CD28, respectively. They found that
“dual-targeted” T cells kill Her2 + tumor cells efficiently
and proliferate in a manner that requires the co-expression
of MUCI1 and Her2 by tumor cells in vitro. Recently, Kloss
et al. [46] presented a similar strategy and co-transduced
T cells to express CARs targeting the prostate tumor anti-
gens PSMA and PSCA. They showed that co-transduced T
cells destroy tumors that express both antigens but do not
affect tumors that express either antigen alone. Hence, the
potential for “on-target” toxicity should be reduced. These
findings further pave the way for testing the safety of this
strategy in clinical trials.

Furthermore, combining the signaling from multiple
signaling molecules, such as CD3, CD28, and CD137 (or
CD134) to form a 3rd generation CAR has also been
tested [47,48]. In a clinical setting, Till et al. have reported
that CARs containing three activation motifs have potent
anti-tumor efficacy [49].

CAR hinge and transmembrane

In addition to signaling domains, previous studies [50,51]
highlight the requirement of a spacer/hinge domain
inserted between the scFv binding and transmembrane
(TM) domain in CD3z-signaling CARs for its stable ex-
pression on the surface of T cells. A spacer or flexible
hinge region domain mediates CAR flexibility and appears
to be important for ensuring the suitable positioning of
the binding domain during scFv-antigen interactions
[51,52]. In addition, the TM domains have significant
effects on the cell surface expression of CARs and may
also influence CAR function. For example, Pulé et al
[53] showed that CARs containing the CD28 TM domain
result in the highest expression, while the CAR transduc-
tion with the OX40 and CD3z TM domains have inter-
mediate and the lowest expressions, respectively. Zhang
et al. [23] also showed that CD28 TM-containing chimeric
NKp30 CARs often show greater surface expression
than do CARs with CD3z TM, perhaps because the
CD28 TM-containing CARs tend to predominantly form
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homodimers independent of the TCR-CD3 complex,
whereas the CD3z TM-containing CARs can form hetero-
dimers of CAR with the endogenous CD3z chain that may
be limited by the TCR-CD3 complex expression. Greater
expression of CD28 TM-containing CARs was shown to
correlate with better functional activity.

Currently, various TM regions have been employed in
CAR, including CD3z [18], FceRly [54], CD4 [55], CD7
[56], CD8 [10,47], CD28 [10,47], OX40 [57] and H2-Kb
[58]. However, there is evidence supporting the notion
that the intracellular domains, rather than the TM do-
mains, mediate stable cell surface expression [59]. Add-
itional comparative studies of different cytoplasmic and
TM domains are required.

Generation of CAR modified T cells

Both lentiviruses and retroviruses have been widely used
as gene transfer vectors, and they compose the vector
system that is currently used in the majority of clinical
gene therapy trials for cancer [60] (Figure 2). However,
the lentiviral vectors have become more widely used and
are advantageous because they mediate the efficient
transduction of cells, can be used with both dividing and
nondividing cells, result in long-term, stable transgene
expression and appear to be less prone to gene silencing
[60]. Nonviral gene transfer technologies have been ex-
plored for gene therapy. Dr. Cooper’s group [61,62] re-
ported a new nonviral approach for the electrotransfer
of DNA plasmids using the Sleeping Beauty (SB) trans-
poson/transposase system into primary human T cells,
which resulted in efficient and stable CD19-specific
CAR gene expression.

An alternative non-viral approach that does not rely
on transgene integration, which uses RNA electropor-
ation, results in transient CAR expression, precluding ef-
fective T-cell persistence beyond a week [63] (Figure 2).
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The use of transient CAR T cells, which require multiple
injections to provide meaningful tumor responses, may re-
duce the destruction of normal tissues or prevent T-cell
accumulations to levels that increase the risk of cytokine
storms [64]. More recently, mRNA CAR T cells have me-
diated antitumor activity in patients with advanced solid
tumors [65]. Thus, these results support the development
of mRNA CAR-based strategies for cancer therapy.

Optimization of CAR T cells

It is now clear that the adoptive transfer of the less-
differentiated naive (Ty) or central memory (Tcy) T cell
subsets is associated with superior T cell engraftment,
persistence, and antitumor activity, thus correlating
highly with the objective clinical responses [66]. These
subsets can be enriched using cell surface molecules
such as CD62L before the CAR introduction; these cells
have been shown to persist to a greater extent in vivo
than the more differentiated T cells [67,68]. A recently
identified stem cell-like population of T cells [69] with
strong engraftment potential in peripheral blood may be
more effective for ACT and is worth exploring for CAR-
redirected targeting in vivo. Moreover, when common y
chain cytokines such as IL-7, IL-15, and IL-21 are added
to the T cell cultures, they shift the final T cell pheno-
type towards that of a less-differentiated T cell type
[70,71]. Furthermore, the chemokine system plays a
major role in driving T cell migration. Therefore, the ex-
pression of specific chemokine receptors that can aid in
the precise trafficking of T cells to tumors have been ex-
plored, including the co-expression of CXCR2 and
CCR2b on CAR-T cells [72-74].

Route of administration of CAR T cells
Although systemic (intravenous, IV) injection is favored in
clinical applications because of its ease of administration,
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Figure 2 Schema for adoptive cellular therapy with genetically modified CAR T cells. T cells can be isolated from patient blood by
apheresis, and genetically modified to express a transgene encoding a tumor-specific CAR. The genetically modified T cells are then expanded
in vitro using several approaches before infusion into the patient.
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several preclinical studies [47,75,76] suggest that the re-
gional (intratumoral, IT or intraperitoneal, IP) administra-
tion of T cells may provide optimal therapeutic effects,
which may be in part due to increased T-cell trafficking to
the tumor.

Indeed, Dr. Maher’s group [76] showed that CAR
T cells remain at the site of inoculation with minimal
systemic absorption when delivered via IP or IT routes.
In contrast, after IV administration, CAR T cells initially
reach the lungs and then are redistributed to the spleen,
liver, and lymph nodes. These findings may help to ex-
plain the development of rapid lung toxicity [30] and
grades 2—4 liver toxicity [36] in Her2-specific CAR and
CAIX-specific CAR T cell therapy trials. More recently,
Dr. Maher’s group [77] showed that ErbB CAR T cells
elicit antitumor activity in mice in the absence of detect-
able clinical or histologic toxicity when administered in
moderate doses by the IV or IP routes. However, when
large numbers of these cells are administered using the
IP route, cytokine release syndrome results. In contrast,
when delivered using the IT route, T-cells remain at the
site of injection for several days, where they promote
tumor regression but never elicit cytokine release syn-
drome. These findings raise the possibility that ErbB-
targeted T cells may prove useful in the treatment of
human malignancy provided that the dosing and route
of administration are optimized carefully. To test this
possibility, Dr. Maher’s group [78] recently designed a
protocol for the phase I clinical testing of the intratu-
moral injection of CAR T cells in locally advanced or
recurrent head and neck squamous cell carcinomas
(Clinicaltrials.gov number: NCT01818323). Intratumoral
injection may provide a safe and potentially effective
management strategy for CAR therapy.

In addition, RNA CAR-electroporated T cells may be
particularly suitable for regional administration, due to
the transient nature of the CAR expression on the T cells
[64]. Furthermore, clinical studies have shown the feasi-
bility and safety of both the intratumoral and intraperi-
toneal injection of T cells [79,80].

Overall, a local route of administration of the engi-
neered T cells may provide the optimal therapeutic effect
and decrease the potential for the “on-target, off-organ”
toxicity discussed below.

CAR toxicity

The immune-mediated recognition of targeted antigens
in normal tissues is referred to as “on-target, off tumor”
toxicity. “On-target” toxicity was first reported for the
CAIX CAR [36], which was used to treat patients
with metastatic renal cell cancer and consisted of
limiting the liver enzyme elevations that were most
likely caused by the CAR T cells that recognized the
CAIX antigen expressed at low levels on the bile duct
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epithelial cells. The elimination of the normal B-cell
compartment in the patients treated with CD19-specific
CAR T cells represents an expected on-target toxicity
that can be managed by administering intravenous im-
munoglobulin [27,81].

In addition, tumor lysis syndrome (TLS) and cytokine
release syndrome (CRS) were also reported in patients
treated with CD19 CAR T cells [27,44,81]. TLS is a
group of metabolic abnormalities that results from the
rapid release of intracellular metabolites from lysed ma-
lignant cells and is most frequently associated with
hematological malignancies after the initiation of cyto-
toxic treatment [82]. However, TLS may be delayed, oc-
curring one month or more after the CD19 CAR T cell
infusion [44]. TLS has been managed successfully by
standard supportive therapy, including allopurinol, hy-
dration, alkalinization, and rasburicase [83]. CRS that is
induced by CAR T cell therapy was recently reviewed
[84]. CRS is a disorder characterized by nausea, head-
ache, tachycardia, hypotension, rash, and shortness of
breath caused by the release of cytokines from the im-
mune cells. CRS is also frequently observed in the clin-
ical trials that treat hematological malignancies with
CAR T cells. Severe CRS is described as a cytokine
storm, which can be fatal [30]. CRS usually occurs 6-20
days after the infusion of CAR T cells, although it may
occur in a very short time in some patients and may be
related to various CAR structures, underlying diseases
and the patients’ genetic polymorphisms. The current
management of CRS includes corticosteroids, cytokine
antagonists and supportive therapy [84]. In addition,
CRS-related mortality should be reduced by designing
safer CARs, following a strict dose-escalation scheme,
intensively monitoring the inflammatory cytokines and
taking timely and effective measures, including the ad-
ministration of various antagonists of cytokines under
the current situation [84].

In addition to these toxicities, anaphylaxis has been re-
ported in patients infused with CAR-T cells. Maus et al.
[85] reported the safety observed in four patients treated
with mRNA electroporated murine anti-human mesothe-
lin CAR T cells. One subject developed anaphylaxis
and cardiac arrest within minutes of completing the third
infusion, most likely because it induced an IgE antibody
specific for the murine-based antibody sequences present
in the CAR-modified T-cell product. These results indi-
cate that the potential immunogenicity of CARs derived
from murine antibodies may be a safety issue for mRNA
CARs, especially when administered using an intermittent
dosing schedule.

Blocking inhibitory molecules
Despite encouraging results in clinical trials, the existence
of a number of different immunosuppressive pathways
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can limit the full potential of CAR T cell therapies. The
interaction of inhibitory molecules on activated T-cells
and their ligands on tumor cells compromises T-cell func-
tion. This includes the increased expression of inhibitory
immune receptors such as T-cell membrane protein-3
(TIM-3), cytotoxic T lymphocyte-associated antigen 4
(CTLA-4), and/or programmed death-1 (PD-1) on T cells
following T-cell activation, which can limit the duration
and strength of the adaptive immune response [86].

Promising clinical results infusing mAbs that block the
interaction between PD-1 and PD-L1 (or PDL2) in pa-
tients with solid tumors have been reported [87,88].
Thus, blocking this pathway may further enhance the
antitumor activity of the gene-modified T cells. Indeed,
John et al. [89] first showed that the expression of the
PD-1 receptor was significantly increased on Her2 CAR
T cells following its coculture with PD-L1+ Her-2+ ex-
pressing tumor targets. They further demonstrated that
the administration of an anti-PD-1 antibody can signifi-
cantly enhance the therapeutic efficacy of CAR T-cell
therapy in vivo. On September 4, 2014, U.S. Food and
Drug Administration (FDA) approved anti-PD-1 anti-
body pembrolizumab for the treatment of patients with
unresectable or metastatic melanoma. These results are
encouraging for moving towards testing this combined
approach in a clinical setting.

Conclusions and future directions

In conclusion, our review discussed the development of
CAR technology and highlighted some key issues for
avoiding the severe adverse events of CAR T cells-based
therapy. The judicious selection of candidate TAAs is es-
sential for improving efficacy and safety. Factors that re-
quire further consideration include the CAR design, the
affinity of the scFv, the density of target molecules, dis-
ease burden, the route of administration of CAR T cells
and the tumor microenvironment.

CAR-based ACT has emerged as a promising immuno-
therapeutic strategy and already has shown impressive
success, particularly for patients with hematological malig-
nancies. Currently, investigators are extending this strat-
egy to solid tumors [90]. Genetic engineering strategies
can meet some of the requirements for an effective CAR-
based therapy [2], which includes enabling T cells/NK cells
to respond more powerfully against tumor cells and facili-
tating trafficking to tumors and persistence for long pe-
riods. To maximize therapeutic safety, introducing a
controllable suicide gene such as an inducible caspase-9
(iCasp9) as a safety switch may increase the safety of cellu-
lar therapies and expand their clinical applications. With
further modifications in the laboratory and an increased
number of clinical trials to test this strategy, engineered
CAR-based ACT for cancer may provide significant im-
provements in cancer immunotherapy.
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