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Simple Summary: Trypophloeus klimeschi Eggers (Coleoptera: Curculionidae: Scolytinae) causes
substantial mortality to Populus alba var. pyramidalis individuals in Xinjiang, China. Currently, the
number of host trees killed by this bark beetle is increasing. Climate change has exacerbated this
problem, causing its range to expand. Here, using Maxent, we simulated its distributions in the 2030s
and 2050s under representative concentration pathways (RCPs) 2.6, 4.5 and 8.5. The distribution
expanded the most under RCP 8.5. It is large enough to pose substantial challenges for forest
managers across northern China. Our study contributes to the construction and protection of shelter
forests in Northern China because we present novel evidence of the potential impacts of climate
change on forestry.

Abstract: Temperature and precipitation are the two main factors constraining the current distribution
of Trypophloeus klimeschi. Currently, T. klimeschi is mainly distributed in South Xinjiang, where it
occurs between the southern edge of the Tianshan Mountains and northern edge of the Tarim Basin.
In addition, Dunhuang in northern Gansu also provide suitable habitats for this bark beetle. Two
other potential areas for this species are in or near the cities of Alaer and Korla. Under future climate
scenarios, its total suitable area is projected to increase markedly over time. Among the climate
scenarios, the distribution expanded the most under the maximum greenhouse gas emission scenario
(representative concentration pathway (RCP) 8.5). Jiuquan in Gansu is projected to become a suitable
area in the 2030s. Subsequently, T. klimeschi is expected to enter western Inner Mongolia along the
Hexi Corridor in the 2050s. In southeastern Xinjiang, however, the suitable area in northern Ruoqiang
and most areas of Korla may decrease. By the 2050s, it is large enough to pose substantial challenges
for forest managers across northern China. Our findings provide information that can be used to
monitor T. klimeschi populations, host health, and the impact of climate change, shedding light on the
effectiveness of management responses.

Keywords: Trypophloeus klimeschi; climate change; species distribution models; insect–climate interactions;
pest management

1. Introduction

Trypophloeus klimeschi Eggers (Coleoptera: Curculionidae: Scolytinae) is a newly recorded
species in China [1]. T. klimeschi is native to the Kyrgyz Republic, which borders the Xin-
jiang Uygur Autonomous Region [2]. In 2003, this beetle was first found in Aksu, Xin-
jiang [1,3]. Subsequently, the beetle spread rapidly to adjacent areas and is now found
in Dunhuang, Gansu Province [4]. T. klimeschi first attacks the branch shoots of Populus
alba var. pyramidalis Bunge and then gradually spreads to the main trunk. The beetle com-
pletes its life cycle in the phloem under the bark, except during a brief dispersal when
the adults search for new host trees [4,5]. The injured branches turn yellow and wither,
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many of the leaves fall off, and dense holes are formed in the trunk surface, causing the
injured trees to wither and rapidly die [1,4]. Trypophloeus klimeschi typically completes two
generations per year and mature larvae overwinter. First-generation adults emerge from
late-May to late-June and second-generation adults emerge in August [6]. T. klimeschi have
strong host-selection specificity, which can cause the extent of injury to vary with the age of
P. alba var. pyramidalis. However, other local poplar species, such as P. alba L., P. tomentosa
Carr, and P. dakuanensis Hsu, are not invaded by this beetle [4]. In recent years, a large
number of host trees in northwestern China were killed by this beetle, which overburdened
the original fragile shelterbelt [4,6]. As a preferred afforestation tree species for greening
and shelterbelts, especially in the northern China, many P. alba var. pyramidalis stands
provide an ecological corridor for the spread of T. klimeschi from the northwestern to the
eastern region of China [7]. Integrated control of this bark beetle has already been placed
on the agenda. However, traditional physical and chemical control measures are unable to
effectively treat T. klimeschi due to its hidden lifestyle. Based on these reasons, the adverse
situation is expected to become increasingly serious.

Global warming, which has been acknowledged internationally in recent years, has
had global effects, and further impacts are inevitable [8]. Future changes in temperatures
might have significant effects on insect growth rates, thus influencing both biological
processes (e.g., number of generations per year) and geographical distribution [9,10].
Insects are therefore particularly sensitive to the warming associated with climate change,
and may be early indicators of local climate change [11]. Observations of field populations
found that the geographical range of T. klimeschi have expanded [6]. New occurrence
records continue to be published [4–6]. The projected climate changes are likely to alter
the characteristics of the spread of T. klimeschi, and cause shifts in species distributions on
an ongoing basis. It is therefore critical to understand how its geographical distribution
in China will respond to climate change, to enable appropriate ongoing forest ecosystem
management. To address this, we applied species distribution models (SDMs) to predict
climate-change-driven habitat shifts for this species.

SDMs have become a major focus of large-scale ecology and biogeography stud-
ies. They are widely applied to model plant and insect habitat ranges; assess the effects
of global environmental change on species and ecosystems; evaluate the risk of species
invasion and spread; and manage and plan the habitats for species, communities, and
ecosystems [12,13]. Popular SDMs, including BIOCLIM, GARP, BIOMAPPER, DOMAIN,
GAM, GLM, CLIMEX, and Maxent [14–21], use species occurrence records (presence only,
or presence/absence), associated with environmental variables, to describe the fundamen-
tal niche of a particular species. They then project this niche onto the landscape of interest
to reflect the potential distribution area of the species [22]. Maxent is widely used because
of its excellent predictive performance. Maxent modeling predictions are typically stable
and reliable even when species distribution data are incomplete or when sample sizes are
small [23–25].

Effective representation of the geographical distribution of the T. klimeschi population
can provide a significant reference point for forest managers in the face of climate change.
In this study, we used Maxent to model the current and future potential distributions of
T. klimeschi in China. This research has three objectives: (1) identify the dominant envi-
ronmental variables that describe the distribution range of T. klimeschi; (2) predict future
potential distributions of T. klimeschi under climate change scenarios; and (3) track the
changes in the centroids of T. klimeschi distributions.

2. Materials and Methods
2.1. Study Area

The cultivation area of P. alba var. pyramidalis was used as a proxy study area (Figure 1).
P. alba var. pyramidalis is a fine tree species for farmland shelterbelt, fast-growing and high-
yield forest, windbreak and sand-fixation forest, and roadside greening because of its
excellent characteristics, with strong wind resistance, drought resistance, and ease of
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maintenance [7]. All afforestation projects are flourishing with the long-term support and
protection of the Chinese government. The host trees are widely distributed in northern
China, especially in Xinjiang. To better understand the climatic environment, the distribu-
tion profile of the P. alba var. pyramidalis is as follows (Table 1) [7,26].

Figure 1. Occurrence records of T. klimeschi and current distribution P. alba var. pyramidalis in China.

Table 1. Profile of the cultivation area of Populus alba var. pyramidalis.

Climate Belt Environmental Overview Distribution Records

Northern warm temperate
deciduous broad-leaved forest

The annual average temperature is 7–12 ◦C, the average
temperature of the coldest month is −10∼−3 ◦C, the

average temperature of the warmest month is 18∼27 ◦C,
and the annual precipitation is 500–700 mm.

Shenyang, Huludao, Dalian, Dandong, Anshan,
Liaoyang, Jinzhou, Yingkou, Panjin, Beijing, Tianjin,

Taiyuan, Linfen, Changzhi, Shijiazhuang,
Qinhuangdao, Baoding, Tangshan, Handan, Xingtai,

Chengde, Jinan, Dezhou, Yan’an, Baoji, Tianshui

Temperate grassland

The annual average temperature is −3–−9 ◦C, the
accumulated temperature of ≥ 10 ◦C is 1600–3200 ◦C, and
the average temperature of coldest month is −7–−29 ◦C.
The annual precipitation is 150–500 mm, mostly below

350 mm, mainly in summer.

Lanzhou, Pingliang, Altay, Hailar, Manzhouli,
Qiqihar, Fuxin, Dandong, Daqing, Xining,

Yinchuan, Tongliao, Yulin, Hohhot, Baotou,
Zhangjiakou, Jining, Chifeng, Datong, Xilinhot

Temperate desert

This climate belt is distributed mainly in Xinjiang. The
annual average temperature is 4–9 ◦C in northern Xinjiang
and 7–14 ◦C in southern Xinjiang. The average temperature

in January is −20–15 ◦C in northern Xinjiang and
−10 ◦C–5 ◦C in southern Xinjiang. Most of the annual

rainfall is below 50–100 mm, and the least is only 10–20 mm.

Urumqi, Shihezi, Karamay, Hami Kashgar,
Wuwei, Jiuquan, Yumen, Jiayuguan, Golmud,

Korla, Jinchang, Wuhai

2.2. Occurrence Collection

The fieldwork was conducted with the assistance of the Department of Forestry
Protection from May to October 2018–2019. According to the infected area, the county
forestry departments were regarded as the survey units. Along the edge of the Tarim
Basin, the fieldwork first started in Hotan and finally reached Dunhuang. The detailed
geographical locations of occurrence area are shown in Figure 2. The distance between the
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sampling sites was >20 km. When the distance between two or more occurrence points
was <20 km, we recorded only one occurrence. Due to the cryptic nature of the bark
beetle, traps were used to monitor beetle presence. The trap in this study consisted of six
identical black plastic funnels aligned vertically over a cup, similar to those commonly
used to collect bark beetles (Supplementary Figure S1). Generally, the attractant was hung
in the middle and lower part of trap. Then, each trap (W × H = 18 × 50 cm, YBQ-LD-004,
Geruibiyuan Technology Co., Ltd., Beijing, China) was vertically suspended from a manila
rope tied between two host trees at the forest edge and positioned more than 1 m from
the closest host tree. The lower end of the trap was 1.5 m away from the ground. The
traps were spaced at least 30 m apart. The components of the attractant included nonanal,
2–methylbutanal, decanal, 2–hydroxybenzaldehyde, (Z)−3–hexen–1–ol benzoate, methyl,
benzoate, methyl salicylate, and geraniol, based on the behavioral responses of T. klimeschi
to an olfactory stimulants trial [6]. Then, eight compounds were dissolved in solvent
hexane. Finally, the attractant was added into a 15-mL slow-release polyethylene vial
(Sino-Czech Trading Company, Beijing, China) at a release speed of 200 mg/day. Liquid
paraffin was used as a killing agent in the cups. Trapped T. klimeschi were collected weekly,
counted, and then stored in 70% ethanol. Location name, longitude, latitude, and altitude
were documented for all occurrence points. In addition, occurrence data were collected
by consulting the relevant literature. Those points without accurate location data were
excluded. For example, Kyrgyz Republic had a few records, but lacked coordinates. As a
result, there were only seven points obtained through the literature, and others were from
the field survey. Finally, we obtained 89 point-based occurrence records (Figure 1).

Figure 2. Main geographical locations and features of occurrence area.

We gathered data regarding the presence of P. alba var. pyramidalis via three methods.
First, we recorded P. alba var. pyramidalis in the field from 2016 to 2018. Similarly, raw data
were processed as for the T. klimeschi data. Second, we obtained P. alba var. pyramidalis
presence data from the GBIF (http://www.gbif.org (accessed on 11 March 2021)) and the
Chinese Virtual Herbarium (CVH, http://www.cvh.org.cn/ (accessed on 11 March 2021)).
Those records without coordinates and altitudes, including duplicates, were deleted. Third,

http://www.gbif.org
http://www.cvh.org.cn/
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we consulted the literature for P. alba var. pyramidalis records using a Chinese academic
website (https://www.cnki.net/ (accessed on 11 March 2021)). As a result, we discarded
31 occurrence records with incomplete geographic information. In total, 324 P. alba var.
pyramidalis occurrence records were used to generate its potential distribution via Maxent.

2.3. Environmental Variables

Nineteen bioclimatic variables, three terrain variables, and one host variable were
used to predict the potential distribution of T. klimeschi (Table 2). Nineteen bioclimatic
variables, with a spatial resolution of 2.5 arc minutes, were freely downloaded from
www.worldclim.org (accessed on 11 March 2021). Terrain variables were obtained from the
United States Geological Survey (USGS, http://edcdaac.usgs.gov/gtopo30/gtopo30.html
(accessed on 11 March 2021)). We used Arc-GIS v.10.2 (Environmental Systems Research
Institute Inc., Redlands, CA, USA) to convert all variable layers into ASCII format for
use with Maxent. We accessed the National Fundamental Geographic Information System
(http://www.ngcc.cn (accessed on 11 March 2021)) and downloaded the National Map as
the analytical base map.

Table 2. Description of environmental variables used for modeling.

Data Source Category Environmental Variables (unit) Abbreviation

WorldClim Bioclimatic

Annual mean temperature (◦C) Bio1
Mean diurnal range (◦C) Bio2

Isothermality (%) Bio3
Temperature seasonality (◦C) Bio4

Maximum temperature of warmest month (◦C) Bio5
Minimum temperature of coldest month (◦C) Bio6

Temperature annual range (◦C) Bio7
Mean temperature of wettest quarter (◦C) Bio8
Mean temperature of driest quarter (◦C) Bio9

Mean temperature of warmest quarter (◦C) Bio10
Mean temperature of coldest quarter (◦C) Bio11

Annual precipitation (mm) Bio12
Precipitation of wettest month (mm) Bio13
Precipitation of driest month (mm) Bio14

Precipitation seasonality Bio15
Precipitation of wettest quarter (mm) Bio16
Precipitation of driest quarter (mm) Bio17

Precipitation of warmest quarter (mm) Bio18
Precipitation of coldest quarter (mm) Bio19

USGS Terrain
Altitude (m) Alt.

Aspect (degree) Asp.
Slope (degree) Slop.

GBIF, CVH, Field
investigations Host P. alba var. pyramidalis distribution H

To determine the future distributions of T. klimeschi under different climate scenar-
ios, datasets on future climate from the Climate Change, Agriculture and Food Security
program (CCAFS, http://ccafs-climate.org/ (accessed on 11 March 2021)) were used.
Representative concentration pathways (RCPs) announced in the fifth Intergovernmental
Panel on Climate Change report include four greenhouse gas concentration trajectories,
representing scenarios in which the total radiative forcing in 2100 has reached 2.6 W/m

2
,

4.5 W/m
2
, 6 W/m

2
, and 8.5 W/m

2
(in excess of 1750 W/m

2
) [27]. The RCPs prescribe

levels of radiative forcing arising from different atmospheric concentrations of greenhouse
gas that lead to different levels of climate change. For example, RCP 2.6 is projected to
lead to global mean temperature changes of about 0.9 ◦C–2.3 ◦C, and RCP 8.5 to global
mean temperature changes of about 3.2 ◦C–5.4 ◦C [28]. There has been a 41% increase in
total radiative forcing since 1990. If the current trend in greenhouse gas concentrations
continues, mean annual global temperature is expected to increase between 1.8 ◦C and 4 ◦C
during the 21st century [29]. From the perspective of the global environment, all scenarios
are likely to occur. We used the BCC-CSM 1.1 climate system model, developed by the

https://www.cnki.net/
www.worldclim.org
www.worldclim.org
http://edcdaac.usgs.gov/gtopo30/gtopo30.html
http://www.ngcc.cn
http://ccafs-climate.org/
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Beijing Climate Center, China. After more than ten years of development, its performance
and functions have been effectively improved [30]. It has been widely used for climate
prediction. In this study, RCP 2.6, RCP 4.5, and RCP 8.5 were selected to model the future
distributions of T. klimeschi in the 2030s and 2050s.

To eliminate over-fitting of the models due to multicollinearity within environmental
variables, variables with higher maximum entropy gain and non-zero regression coefficients
according to the least absolute shrinkage and selection (LASSO) regularization method
were selected [31,32]. LASSO is a regression analysis method that performs both the
selection of variables and regularization, in order to enhance the prediction accuracy and
interpretability of the statistical model. The method regularizes model parameters by
shrinking the regression coefficients, reducing some to zero [33]. The feature selection
phase occurs after shrinkage; in this phase, every non-zero value is selected for use in
the model. This improves model accuracy because coefficient shrinkage reduces variance
and minimizes bias. LASSO was applied using the R package glmnet (http://www.web.
stanford.edu/~hastie/Papers/Glmnet_Vignette.pdf (accessed on 11 March 2021)).

2.4. Species Distribution Modeling

We used Maxent v.3.3.1 (http://www.cs.princeton.edu/wschapire/MaxEnt (accessed
on 11 March 2021)) to predict the potential distribution of T. klimeschi. Ten-fold cross-
validation was performed to train and validate the model. The occurrence dataset was
randomly divided into 10 equal-sized subsets. Of these, a single subset was retained for
model-testing; the remaining subsets were used as training data. For each subset, 90% of
the occurrence data were used to train the single model, and the remaining data were
used to test the predictive ability of the model. The cross-validation process was repeated
10 times, with each of the 10 subsets used once as validation data. The 10 results were then
be averaged to produce a single estimation [34]. All mathematical modeling process were
based on the maxnet function in the maxnet R package (https://www.rdocumentation.
org/packages/maxnet/versions/0.1.2 (accessed on 11 March 2021)). The area under the
receiver operator characteristic (ROC) curve (AUC) was used to evaluate the predictive
performance of each Maxent model. When the ROC curve is at 45◦ in the ROC space, the
AUC value is close to 0.5, indicating that the model is a random model with an accuracy
of 50%; at AUC > 0.5, the model is more accurate than a random model; at AUC < 0.5,
the model is less accurate than a random model. The closer AUC is to 1, the better the
model performance [35,36]. All R codes used for analysis can be obtained from GitHub
(https://github.com/RayLing88/Ninghang_SDM (accessed on 11 March 2021)).

The impact of sampling bias on species distribution modeling must be noted [37].
Sampling intensity varies between sites. Oversampling in some geographic spaces can
cause repetition in the ecological space when building the model; this affects the simulation
of the ecological needs of the species. This kind of sampling bias generally causes overfitting
of niche models to species requirements, thus reducing model transferability [38]. To
counter sampling bias, we randomly generated 1000 pseudo-absence points throughout
China, using Arc-GIS v. 10.2 [39].

The output layers were imported into Arc-GIS v.10.2 for further analysis, and the
final distribution map was generated. Using occurrence records from different sources
may cause some sampling bias. A tenth-percentile training presence logistic threshold was
adopted to define the minimum probability of a suitable habitat for T. klimeschi [40]. Based
on this, habitat suitability of T. klimeschi was divided into four levels: unsuitable (0–0.1),
poorly suitable (0.11–0.3), moderately suitable (0.31–0.6), and highly suitable (0.61–1). We
then calculated the suitable areas under the future climate scenarios by multiplying the
number of presence grid cells by their spatial resolution.

2.5. The Centroid Changes Using SDM Tool-Box

We used the SDM tool (http://www.sdmtoolbox.org (accessed on 11 March 2021))
to calculate distributional changes between two binary SDMs (i.e., the current and future
SDMs). Centroid analysis summarizes the core distributional shifts in many species’ ranges,

http://www.web.stanford.edu/~hastie/Papers/Glmnet_Vignette.pdf
http://www.web.stanford.edu/~hastie/Papers/Glmnet_Vignette.pdf
http://www.cs.princeton.edu/wschapire/MaxEnt
https://www.rdocumentation.org/packages/maxnet/versions/0.1.2
https://www.rdocumentation.org/packages/maxnet/versions/0.1.2
https://github.com/RayLing88/Ninghang_SDM
http://www.sdmtoolbox.org
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and reduces each species’ distribution to a single central point (a centroid); it then creates a
vector file depicting the magnitude and direction of the change over time [41].

3. Results
3.1. Model Performance and Variables’ Response Curves

The model prediction showed a good performance, as the AUC values from the train-
ing and test datasets were 0.898 and 0.876, respectively. Based on the regression coefficients
and percentage contributions of the environmental variables used in the model, the top
five variables—mean temperature of coldest quarter (Bio11; −0.8217, 36.3%), precipitation
of wettest month (Bio13; 0.5534, 25.1%), mean temperature of warmest quarter (Bio10;
−0.4035, 17.7%), mean temperature of driest quarter (Bio9; −0.1864, 9.6%), and mean
diurnal range (Bio2; −0.0569, 7.7%)—were selected as the important factors determining
the habitat suitability of T. klimeschi (Table 3).

Table 3. Ranking of the importance of variables for prediction of the distribution of T. klimeschi.

Rank Environmental Variables Regression Coefficients in LASSO Contribution (%) Probability of Selection

1 Mean temperature of coldest quarter −0.8217 36.3 1.00
2 Precipitation of wettest month 0.5534 25.1 0.98
3 Mean temperature of warmest quarter −0.4035 17.7 0.96
4 Mean temperature of driest quarter −0.1864 9.6 0.93
5 Mean diurnal range −0.0569 7.4 0.92

Response curves show the quantitative relationship between environmental variables
and the habitat suitability. According to the response curves (Figure 3), we obtained the
thresholds (existence probability > 0.3) for the five variables. Mean diurnal range ranged
(Bio2) from 11.7 ◦C to 16.4 ◦C, mean temperature of driest quarter (Bio9) ranged from
−12.3 ◦C to 2.6 ◦C, mean temperature of warmest quarter (Bio10) ranged from 12.6 ◦C to
26.7 ◦C, mean temperature of coldest quarter (Bio11) ranged from −14.8 ◦C to −4.2 ◦C,
and precipitation of wettest month (Bio13) ranged from 5 to 42 mm.

Figure 3. Cont.
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Figure 3. Response curves for dominant environmental variables.

3.2. Current Potential Distribution of T. Klimeschi

The current potential distribution of T. klimeschi is in South Xinjiang and northern
Gansu, amounting to 25.58 × 104 km

2
(Figure 4). The total areas for highly, moderately and

poorly suitable areas are 2.56 × 104 km2, 6.91 × 104 km2 and 15.35 × 104 km2, respectively.
As shown in Figure 2, the suitable area in South Xinjiang is distributed between the southern
edge of the Tianshan Mountains and the northern edge of the Tarim Basin, amounting to
20.36 × 104 km

2
. In northern Gansu, this beetle is distributed in Dunhuang. Two other

potential areas for this species are in or near the cities of Alaer and Korla. The highly
suitable habitats occur in discontinuous patches, and the moderately suitable habitats are
embedded in these patches.

Figure 4. Present habitat distribution suitability of T. klimeschi.

3.3. Future Potential Distribution of T. Klimeschi

Under future climate scenarios, the potential distribution of T. klimeschi is projected to
increase markedly over time (Figure 5a–f, Figure 6). The response was strongest under the
RCP 8.5–2050s climate scenario, with the area increasing to 36.7 × 104 km2, followed by
the RCP 4.5–2050s climate scenario. Compared with the current distribution, the highly
suitable area in Alaer still exists in this future scenario. However, the highly suitable area in
Korla will change to a moderately suitable area. Under all assumptions, Jiuquan in Gansu is
projected to become a suitable area for T. klimeschi in the 2030s. Then, T. klimeschi is expected
to enter western Inner Mongolia along the Hexi Corridor in the 2050s. In southeastern
Xinjiang, however, the suitable area in northern Ruoqiang and most of Korla is projected
to shrink.
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Figure 5. Future habitat distribution suitability of T. klimeschi. (a,b) future suitable habitats under RCP2.6 in 2030s and
2050s; (c,d) future suitable habitats under RCP4.5 in 2030s and 2050s; (e,f) future suitable habitats under RCP8.5 in 2030s
and 2050s).
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Figure 6. Predicted suitable areas for T. klimeschi under current and future climatic conditions (PS
represents poorly suitable; MS represents moderately suitable; HS represents highly suitable).

Under the RCP 2.6–2030s scenario, the suitable area in Dunhuang is projected to
expand. By the 2050s, the suitable area is projected to increase continually in Jiuquan.
However, the moderately and highly suitable areas in northern Ruoqiang, and most of
the area of Korla are projected to decrease persistently. Under the RCP 4.5–2030s scenario,
T. klimeschi will continue to expand along the Hexi Corridor. By the 2050s, the population
in Jiuquan is projected to spread to the junction of Inner Mongolia and Gansu Province.
Under the RCP 8.5–2030s scenario, T. klimeschi is expected to expand to most regions of
western Inner Mongolia. By the 2050s, T. klimeschi will gain the largest climatically suitable
space. Overall, in the near future, T. klimeschi will gain an increasingly suitable climatic
niche in northwest China.

3.4. The Distributional Centroid Changes

Distributional changes in T. klimeschi climate niches are shown in Figure 7. The current
distributional centroid is located in Alaer (81◦33’ E, 40◦57’ N), South Xinjiang. Under the
RCP 2.6 scenario, the population centroid will move northeast, to Bugur (84◦42’ E, 41◦44’ N)
by the 2030s, then southwest to Awat (80◦27’ E and 40◦47’ N) by the 2050s. Under the RCP
4.5 scenario, the centroid will move northeast to Hami, (93◦37’ E, 40◦59’ N) by the 2030s and
then southeast to Dunhuang (94◦14’ E, 40◦18’ N) by the 2050s. Under RCP 8.5 scenario, the
centroid will move southeast to Dunhuang (94◦54’ E, 40◦25’ N) by the 2030s, and southeast
to Jinta (98◦49’ E, 40◦14’ N) by the 2050s.
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Figure 7. The core distributional shifts of T. klimeschi (Black dot represents current centroid; Red dot
represents RCP 2.6 centroid; Bottle-green dot represents RCP 4.5 centroid; Bright-green dot represents
RCP 4.5 centroid).

4. Discussion

In northwest China, many P. alba var. pyramidalis stands are being destroyed by
T. klimeschi. Previous research on this beetle has focused on integrated control. However,
due to its effective concealment, measures to prevent and control outbreaks have not been
fully effective. Our current SDM analysis makes it possible to classify and monitor its
habitat in a targeted way, based on habitat suitability maps. This both reduces the need for
service staff, materials, and funding, and improves the efficiency of monitoring work.

The results showed that T. klimeschi occurs between the southern edge of the Tianshan
Mountains and the northern edge of the Tarim Basin. In other words, in south Xinjiang,
the southern edge of the Tianshan Mountains and the northern edge of the Tarim Basin
are the northernmost and southernmost boundaries of the geographical distribution of
T. klimeschi, respectively. In addition, Dunhuang in northern Gansu also provides a suitable
climate that supports the survival of this beetle. Furthermore, it is restricted to this area,
despite there being large numbers of hosts in northern China, because the climate of this
area is suitable for it. Under all of the climate scenarios that we studied, the suitable area in
northern Gansu is projected to expand continuously. Along the Hexi Corridor, T. klimeschi
could spread into western Inner Mongolia. Jiuquan will develop into the next center of the
spread. Although the scale of the changes in suitable areas varied among the scenarios, all
of the scenarios suggest difficulties for forest managers in the coming decades. To address
this, better monitoring and management are required in these areas. For instance, regular
surveys should be conducted to ensure early detection of outbreaks, and vulnerable forest
areas should be identified from maps of projected suitable distributions. Pest populations
should be carefully monitored, using both visual inspection and trapping systems; this
will help to determine when pest-control activity is needed. Robust forest monitoring and
reporting systems should be established, to ensure timely warnings of the effects of climate
change on pests and hosts, and to measure the effectiveness of management responses.
These procedures are an important step in developing management strategies that integrate
monitoring systems and projected climate change impacts when conducting vulnerability
and risk assessments.
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In this study, temperature and precipitation were selected as the variables that con-
strain the current distribution of T. klimeschi; the mean temperature of the coldest quarter is
particularly important. The complex relationships between temperature and physiological
processes affect species’ geographic distributions [42]. In particular, overwinter survival
is a dominant factor limiting the distribution of insects. T. klimeschi relies on larvae for
overwintering survival [6]. The ability to supercool is a key survival indicator for species
living at low temperatures. Among its life-cycle stages, the larvae are considered the most
tolerant to cold. It has been reported that −13◦C caused more than 90% larvae mortality [5].
Observations of field populations suggest that temperatures below −15 ◦C reduced larvae
survival [5,6]. For many species of bark beetle, synchronous adult emergence and life-cycle
timing are required to kill the host trees [43]. Synchronous adult emergence is an important
regulator of insect seasonality and synchrony, and ultimately of the mean fitness of the
population. To improve their chances of surviving adverse conditions such as extreme cold
or heat, vulnerable life-cycle stages must be synchronized with the appropriate seasons (the
phenomenon known as seasonality). The complex relationships between temperature and
the physiological processes involved in phenology affect bark beetle population dynamics
and distribution in many ways. Mechanisms promoting seasonality are critical to bark bee-
tle population growth and outbreak potential [44]. Trypophloeus klimeschi adult infestations
begin in mid-May and reach a peak from late May to mid-June, completing two genera-
tions per year [6]. During adult activity, the extreme variation of diurnal temperature and
scarce rainfall in summer (for instance, in the interior of Tarim Basin) are likely to affect its
seasonality. Disrupted synchronization can severely impact the growth and development
of the insect, even leading to death [45]. The climatic conditions between the southern
edge of the Tianshan Mountains and northern edge of the Tarim Basin, which support
the presence of this bark beetle, are unique to these areas. These specific temperature and
precipitation conditions constrain this species to this region.

Trypophloeus klimeschi is absent in most regions of Xinjiang, where P. alba var. pyramidalis
grows. The host trees in the vast northwest of China are distributed far more widely than
the beetle. The northward or southward expansion of the suitable habitat, especially in
Xinjiang, did not occur in our projections. The results indicated that the distribution of
the beetle is not limited to the host’s distribution. Considering the mean temperature of
the coldest quarter as the only limiting factor, the southward expansion of T. klimeschi is
likely to occur. However, the Tarim Basin in the south Xinjiang has the largest Taklimakan
Desert in China, where there is no water, and this limits the survival of the host trees. When
it comes to the northern limit of the beetle distribution, the Tianshan Mountains are the
natural geographical barrier prevent the beetle from spreading northward. Moreover, the
mean temperature of the coldest month in northern Xinjiang (−20◦C) might not allow the
overwintering of this beetle according to its cold resistance. Hence, intertwined factors
restrict the southward or northward spread of the beetle. Our findings are similar to those
reported for bark beetle species in North America. For example, the northward movement
of Dendroctonus frontalis in the United States was constrained by the minimum annual tem-
perature isotherm [46]. In western Canada, the distribution of Dendroctonus ponderosae, the
mountain pine beetle, was constrained by minimum winter temperature [47]. In the Sierra
Madre Occidental, Mexico, the Dendroctonus rhizophagus distribution was limited by the
maximum temperature isotherm [48]. Furthermore, the host tree distribution will respond
dynamically to climate change; forest trees may persist via migration, adapt to the new
conditions, or go locally extinct [49]. All three scenarios may occur in the host’s response to
climate change. However, due to the fact that P. alba var. pyramidalis is the most important
afforestation tree species in Northwest China, we believe that its distribution will continue
to expand. The range of T. klimeschi may change to track these environmental changes.
Although our results suggested alterations in the potential distribution of T. klimeschi, they
did not provide absolute predictions. So far, we have not found that this bark beetle
feeds on other host trees. We only considered the influence of P. alba var. pyramidalis dis-
tribution on T. klimeschi distribution. Therefore, there are still various uncertainties. For
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example, if the host species of the beetle become more diverse in the future climate, the
current projections may prove to be conservative. However, climate change will affect bark
beetle–host interactions in complex and nonlinear ways [50,51]. Therefore, future studies
should consider the impacts of climate change on the host trees when studying the effects
of climate change on the distribution of this bark beetle.

There are some limitations in our study. First, our occurrence data were relatively
small. Although the Maxent model has shown advantages in terms of predictive perfor-
mance for use with a small sample size, the sample size may still affect the accuracy of the
model results [52]. Second, only 23 variables were used to model the potential distribution
of T. klimeschi. The model is based on an ideal niche without considering the effects of biotic
factors such as dispersal, geographic barriers, competition, predation, and herbivory, which
often also play roles in determining species distributions, which is clearly a critical limita-
tion. Finally, despite the individual SMD model in this study showing a high prediction
accuracy, there are still some limitations in the precision of prediction. The accuracy and
performance of individual SMDs vary widely among methods and species [53,54]. Some
studies have showed that methods integrating multiple individual models provide robust
estimates of potential species’ distributions, providing a way to improve the accuracy
of models [54,55]. All of the above factors may cause differences between the predicted
distributions and actual distributions.

Maxent models describe the association between the occurrence of species populations
and environmental variables [23]. We found that bark-beetle-induced tree mortality was
correlated with the climate variables describing conditions during the mortality events.
Such analyses are usually retrospective, rather than describing the processes leading
to plant mortality [56]. Moreover, because these relationships are likely to be different
under future climatic conditions, ecosystem models must include phenology data if they
are to explain physiological changes in response to a changing climate. The effects of
temperature on insect physiology have been studied for decades, with the primary focus
being on how temperature affects development time and survival, and how photoperiod
and temperature affect diapause [57,58]. Phenological models are driven by the functional
relationships between physiological processes and temperature, rather than by statistical
relationships [59]. Models describing bark beetle phenology require detailed information
on the responses of individual beetles. Globally, there are at least 30 bark beetle species
that can cause landscape-scale plant mortality. Of these, sufficient data to model climate-
driven phenology are available for only six species, including D. frontalis, D. ponderosa, and
D. rufipennis [43]. Therefore, in order to model the phenology of T. klimeschi, we first need
to collect detailed physiological information for it. Using these data, we will be able to
use a phenological model to predict how temperature will impact life-cycle timing and
ultimately population success in this species, based on a quantitative description of the
physiological processes that are impacted by temperature.

5. Conclusions

Temperature and precipitation constrain the current distribution of T. klimeschi. With
climate change, the eastward expansion of its suitable area will occur. The impacts of
climate change will also increase over time. By the 2050s, the total area suitable for this
species under the RCP 8.5 scenario will reach 36.7 × 104 km2. More and more shelter forests
will be invaded by this beetle. Therefore, pest monitoring and control measures should be
taken to prevent it from spreading further eastward.
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