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Abstract

The production and productivity of rice (Oryza sativa L.) are primarily influenced by the appli-

cation of the critical nutrients nitrogen (N), phosphorus (P), and potassium (K). However,

excessive application of these fertilizers is detrimental to the environment and increases the

cost of production. Hence, there is a need to develop varieties that simultaneously increase

yields under both optimal and suboptimal rates of fertilizer application by maximizing nutrient

use efficiency (NuUE). To unravel the hidden genetic variation and understand the molecu-

lar and physiological mechanisms of NuUE, three different mapping populations (MPs;

BC1F5) derived from three donors (Haoannong, Cheng-Hui 448, and Zhong 413) and recipi-

ent Weed Tolerant Rice 1 were developed. A total of three favorable agronomic traits

(FATs) were considered as the measure of NuUE. Analysis of variance and descriptive sta-

tistics indicated the existence of genetic variation for NuUE and quantitative inheritance of

FATs. The genotypic data from single-nucleotide polymorphism (SNP) markers from Tun-

able Genotyping-By-Sequencing (tGBS) and phenotypic values were used for locating the

genomic regions conferring NuUE. A total of 19 quantitative trait loci (QTLs) were detected,

out of which 11 QTLs were putative on eight chromosomes, which individually explained

17.02% to 34.85% of the phenotypic variation. Notably, qLC-II_1 and qLC-II_11 detected at

zero fertilizer application showed higher performance for LC under zero percentage of NPK

fertilizer. The remarkable findings of the present study are that the detected QTLs were

associated in building tolerance to low/no nutrient application and six candidate genes on

chromosomes 2 and 5 within these putative QTLs were found associated with low nutrient

tolerance and related to several physiological and metabolic pathways involved in abiotic

stress tolerance. The identified superior introgressed lines (ILs) and trait-associated genetic

regions can be effectively used in marker-assisted selection (MAS) for NuUE breeding

programs.
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Introduction

Ensuring global food security is a significant concern for the rapidly growing world population

that is expected to reach 9.8 billion by 2050 [1]. This situation concerning food security is even

gloomier in developing countries. To meet the global food demand mainly in Asia, there is a tre-

mendous need to increase rice production by 60–70% by 2050 [2]. At present, the core point of

attention for scientists and policymakers is to develop different strategies for improving average

yield productivity for sustainability. Plant breeders and biotechnologists follow various strate-

gies to develop varieties with biotic stress resistance, abiotic stress tolerance, and multi-nutrients

against malnutrition and cultivars with higher nutrient use efficiency, with the ultimate goal of

developing climate-smart rice varieties with higher grain production [3–6]. Several biotic and

abiotic stresses, decreasing arable land, labor unavailability, high cost of input fertilizers, water

scarcity, and deficiency of nutrient elements in the soil are the major limiting factors for the

development of multiple-stress-tolerant, input-use-efficient, and climate-smart rice cultivars

[7–11]. Since the beginning of the green revolution, the nutrient elements nitrogen (N), phos-

phorus (P), and potassium (K) are the key components that maintain nutritional status through

an oxidation process and they are significantly associated with increasing global crop productiv-

ity [12,13]. These major nutrients play a vital role in cellular mechanisms, enzyme synthesis,

and osmotic regulation, and represent several structural components for numerous metabolic

pathways to maintain proper plant growth and development [14,15].

Judicious application of fertilizers is the key for sustainable crop production. The improper

and unscientific application of fertilizers containing N, P, and K is not only a burden as an

extra cost for farmers but is also associated with environmental and human hazards [9]. To

date, extensive research in this area has confirmed that the application of higher input fertiliz-

ers can cause imbalances in nutrient status in the soil and hence damage soil fertility in a lon-

ger period [16,17]. Chinese farmers are applying a higher dose of N fertilizer, particularly in

Jiangsu Province. A higher dose of fertilizer of about 305 kg ha−1 is being applied to obtain

higher yield vis-à-vis the world’s average dose of N fertilizer at 180 kg ha−1 [18–20]. Recently,

Feng et al. [21] mentioned that released rice varieties in China had a greater yield potential, up

to 12 t ha-1 or even higher, under high input doses of fertilizer and water. However, a higher

dose of fertilizer applications leads to the risk of increased pests and diseases, consequently

increasing the cost of pesticide application [22]. To reduce the cost of production and address

the environmental safety issues associated with excessive fertilizer application, an appropriate

dosage is required to ensure higher yield. There are mainly two different management systems,

agricultural and integrated nutrient management systems that determine nutrient uptake, and

influences increase in the grain yield and minimize the environmental hazards [23–26]. Green

Super Rice (GSR) at the International Rice Research Institute (IRRI) has greatly contributed to

minimizing the excessive application of chemical fertilizers by developing rice varieties with

high NuUE and that perform better with integrated nutrient management. To date, 42 GSR

varieties have been released worldwide and are available for 11 countries in South Asia, South-

east Asia, and Southern and Eastern Africa. Furthermore, these GSR varieties not only showed

stable higher yield under low input environments but also showed tolerance of multiple biotic

and abiotic stresses [27–31]. More than 130 GSR breeding cultivars are currently undergoing

national varietal testing (www.isaaa.org), out of which 60 are being tested in different All India

Coordinated Rice Improvement Project (AICRIP) trials in India alone.

Systematic nutrient management studies, site-specific nutrient management, farmers’ fertil-

izer practices, real-time nitrogen management, fixed-time adjustable-dose nitrogen manage-

ment, integrated soil-crop system management, and optimal nitrogen management have been

tested to increase rice yield under low input conditions [19,20,32–35]. Importantly, a
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significant yield advantage of 1.51 t ha-1 was achieved by reducing the N fertilizer application

by 22.41% [20]. Hence, an organized and convenient procedure is required to establish a

stage-specific fertilizer dose application to improve the nutrient balance for increasing agro-

nomic advantages with the least environmental hazards. Three key favorable agronomic traits

(FATs), plant height (PH), tiller number (TN), and leaf chlorophyll content (LC), and other

yield-attributing traits contribute significantly to better plant architecture [36–39]. These traits

were highly influenced by the application of a combination of complete N, P, and K fertilizers.

Interestingly, these traits are controlled by the combined effects of several genes (polygenes)

with a large influence of environment. Hence, the dissection of these traits that follow non-

Mendelian segregation had become difficult and complex, especially when applying traditional

breeding tools and methodologies. Recent advances in molecular marker and genomics tech-

nology paved the way for dissecting the genetic basis of the complex inheritance of key agro-

nomic traits. Genetic analysis of quantitative trait loci (QTLs) can estimate and identify the

influences of different genes responsible for quantitative traits with high statistical power. Fur-

ther, the identified genes conferring these quantitative traits can be introgressed through pre-

cise MAS either singly or in combination with other useful traits/genes through marker-

assisted pyramiding approaches [21,40,41].

DNA-based molecular markers such as restriction fragment length polymorphism, ampli-

fied fragment length polymorphism, cleaved amplified polymorphic sequence, and simple

sequence repeats were used to generate genotypic information to determine the genetic char-

acteristics of the lines. However, the generation of information is time-consuming and labor-

intensive [42–44] as these markers are slower in work to provide accurate genotypic informa-

tion for predicting candidate gene loci due to the low resolution of QTL mapping, environ-

ment-dependent expression of QTLs, and gene epistasis [44,45]. Recently developed high-

throughput sequencing technologies are robust, accurate, and more informative for generating

millions of single nucleotide polymorphism (SNP) markers in a shorter period [43,46,47].

These SNPs are most promising to develop genetic linkage maps for QTL dissection of many

traits with higher chromosomal coverage [48–51]. To date, several QTLs have been reported

for N, P, and K deficiency tolerance traits by using different QTL mapping methods in differ-

ent genetic backgrounds of MPs such as recombinant inbred lines (RILs), backcross inbred

lines (BILs), introgression lines (ILs), doubled haploids (DHs), chromosome segment substitu-

tion lines (CSSLs), and BC2F3 families in rice [10,41,52]. According to a comprehensive litera-

ture survey and exploring information available in the Gramene database (http://archive.

gramene.org), more than 150 QTLs for N, 130 QTLs for P, and 15 QTLs for K have been asso-

ciated with deficiency tolerance traits in rice. These significant QTLs are located on eight chro-

mosomes (1, 3, 4, 5 7, 8, 9, and 12) for N [21,53–59]. Similarly, P deficiency tolerance QTLs

have been reported on five chromosomes (1, 2, 6, 11, and 12) [10,41,53,60–67]. K deficiency

tolerance QTLs are located on three chromosomes (3, 5, and 8) [68,69]. Notably, rather than a

deficiency of the individual nutrient, either N or P or K, the combination of the complete N, P,

and K deficiency has a significant impact on agronomic traits such as tillering ability, PH, and

LC, which are key contributors for determining total grain yield [70,71].

To the best of our knowledge, the identification of QTLs conferring individual N, P, and K

deficiency tolerance has been less explored. Interestingly, there was no comprehensive infor-

mation on QTL data regarding the effect of fertilizer application in different growth interval

(DGI) stages and during complete deficiency of N, P, and K fertilizers in rice. Hence, under-

standing the genetic information of N, P, and K deficiency tolerance of FATs under DGI stages

of fertilizer doses is crucial to finding suitable rice cultivars for N, P, and K use efficiency

(NuUE). In the current study, we used a set of early backcross MPs derived from a cross of

three donors, Haoannong (HAN), Cheng-Hui 448 (CH448), and Zhong 413 (Z413), with a
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recipient parent, Weed Tolerant Rice 1 (WTR-1), to study the genetic variation for deficiency

tolerance for N, P, and K at different stages. In addition, we detected genomic regions confer-

ring N, P, and K defficiency tolerance by using phenotypic evaluation under three different

doses of N, P, and K fertilizer, 338.90 kg ha-1 (100%), 271.10 kg ha-1 (80%), and 0 kg ha-1 (0%),

and genotyping by tGBS technology to detect the QTLs associated with the trait of low input

tolerance. The major objectives of the study were to (i) identify the FAT responses under three

different doses of fertilizer application, 100%, 80%, and 0% for N, P, and K conditions; (ii)

understand the genetic basis of FAT responses at DGI stages under three different doses of fer-

tilizer application through correlation and heritability estimation; (iii) identification of prom-

ising tolerant ILs; and (iv) detect the main-effect QTLs (M-QTLs) at DGI stages under

different doses of fertilizer by also estimating the additive effects of M-QTLs (v) enumeration

of the candidate genes within the major effect QTLs based on the in silico candidate genes

analysis using online databases.

Materials and methods

Plant materials and developing mapping populations

The parental line WTR-1 developed by using a novel Green Super Rice breeding strategy, was

used as the recurrent parent while HAN, CH448, and Z413 were used as donor parents [72–

74] for the development of MPs for the identification of the genomic regions controlling N, P,

and K use efficiency. A set of 120, 67, and 56 BC1F5 plants were generated from the HAN ×
WTR-1 (DP-1), CH448 × WTR-1 (DP-4), and Z413 × WTR-1 (DP-7) cross combinations to

make a total of 243 BC1F5 plants. The parental lines and their MPs along with four checks (Rc

222, SL8, Rc 192, and PSB Rc 82) for each trait underwent phenotypic evaluation to assess the

genetic variation and dissect the locus conferring the FATs at DGI stages of fertilizer applica-

tion under three different N, P, and K fertilizer doses.

Experimental layout

The introgression lines and their parental lines were seeded on the experimental farm at IRRI,

Los Baños, Philippines (14˚11N, 121˚15E), during the wet season of 2017. A total of six indi-

vidual plots separated by ridges were modified in a grid to maintain two replications. An alpha

lattice experimental design was followed to analyze the experimental significance of the laid-

out experiment. Each plot size was 245.76 m2 and each entry was planted in 0.4-m rows, with

0.2-m distance between rows and space of 0.2 m between adjacent plants. The 400-μm-thick

transparent polyethylene sheets were inserted into the soil to cover the individual plots. At 21

days after seeding, seedlings were transplanted in an area of 491.52 m2 in two replications. The

whole experiment was laid out with three different rates of N, P, and K fertilizer. The first rate

of fertilizer consisted of complete N, P, and K that is also a recommended dose of fertilizer des-

ignated as 100% (N-P2O5-K2O = 100:30:30 kg ha-1); the second rate is a suboptimal dose, des-

ignated as 80% (N-P2O5-K2O = 80:30:30 kg ha-1); and the third rate is zero fertilizer dose,

designated as 0% (N-P2O5-K2O = 0:0:0 kg ha-1). Furthermore, during crop growth, the fertiliz-

ers were applied in four DGI at 5, 20, 35, and 50 days after transplanting (DAT). Table 1 pres-

ents the detailed DGI at different fertilizer doses.

Phenotypic characterization of the MPs for FATs

The parental lines and their MPs along with checks were evaluated for the key traits PH, TN,

and LC. The trait PH was measured from the soil surface to the longest tip of the leaf within a

hill. TN was recorded as shoots with at least one noticeable leaf calculated as a tiller. The main
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stem tiller was counted as one tiller and included in the total tiller number, whereas LC was

measured in the middle leaf portion by using the portable, non-destructive chlorophyll meter

SPAD-502Plus (Konica Minolta, Japan). The mean LC value indicates the relative chlorophyll

content. The phenotypic data were collected from three plants selected from the middle of

each entry at four DGI stages every 15 days after fertilizer application. The first fertilizer appli-

cation was done at 5 DAT and was designated as stage-I. Similarly, stage-II, stage-III, and

stage-IV DGIs were designated for fertilizers applied at 21 DAT, 36 DAT, and 51 DAT. The

phenotypic data were expressed as mean values for each of the observations recorded. The

mean values were further used for the localization of genomic regions conferring these traits.

Genotyping

Genomic DNA was extracted from individual plants of the MPs along with the parental lines

using the DNeasy Plant Mini Kit (Quiagen, USA). The quality and quantity of the isolated

DNA were analyzed using a Nanodrop 2000 spectrophotometer (Thermo Fisher Scientific,

Waltham, MA) and sent to Data2Bio for tGBS analysis, in which all samples were sequenced

through 10 Ion Proton runs. Further, SNP calling and filtration of the generated sequencing

information were processed by adopting the methodology developed by Data2Bio, LLC

(https://www.data2bio.com), as described by Ali et al. [73]. For the SNP filtration, the thresh-

old of 50% missing rate (LMD50 = minimum calling rate) was set to filter out SNPs having

more than 50% missing rate across the MPs. The missing SNPs that were showing� threshold

missing rate were imputed using Beagle software ver. 3.3.2 [75]. Additionally, another level of

SNP filtering was performed to remove mono and hetero SNPs for the individuals of the MPs

using TASSEL ver. 5 and finally exported as HapMap format. The obtained HapMap format

SNP marker file was again processed in MS-Excel ver. 2010 to prepare an input file for the

QTL analysis [76]. The complete work-flow of tunable GBS data analysis and its use for QTL

mapping studies are represented in Fig 1.

Construction of linkage map and QTL analysis

The inclusive composite interval mapping (ICIM-ADD) method is available in QTL IciMap-

ping ver. 4.1 software [77] for scanning the FAT data at DGI stages from three cross

Table 1. Time and doses of fertilizer applications during the experiment.

Time of fertilizer application Type of fertilizer Fertilizer

NH4NO3 NaH2PO4.2H2O K2SO4 (kg ha−1)

Recommended dose (100%)

5 DATa (basal) 30 30 30 183.34

20 DAT 30 - - 66.67

35 DAT 30 - - 66.67

50 DAT 10 - - 22.22

Total 100 30 30 338.90

Suboptimal dose (80%)

5 DAT (basal) 24 24 24 160.00

20 DAT 23 - - 44.44

35 DAT 23 - - 44.44

50 DAT 10 - - 22.22

Total 80 24 24 271.10

aDays after transplanting.

https://doi.org/10.1371/journal.pone.0220066.t001
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combinations with different nutrient fertilizer doses (0%, 80%, and 100% N, P, and K fertil-

izer). Before construction of the linkage map, SNPs were analyzed for segregation distortion

using the Chi-square test at a significance of P = 0.05. The SNPs that were showing significant

segregation distortion and were co-located in the same physical position were filtered out

using the redundant marker removal feature of the software. The processed high-quality SNP

markers were used for constructing the genetic map to assign markers on each linkage group.

Kosambi mapping function was used to compute the genetic distance using recombination

fraction (cM) [78]. The precisely estimated phenotypic data of FATs at different DGIs for each

nutrient dose (0%, 80%, and 100% NPK) for each cross combination and high-resolution SNP

marker data were used for the QTL analysis. In order to identify the QTLs with high precision

and to declare significant QTLs, a 1000 permutation test at the 0.01 level of significance was

considered. The linkage map and QTL mapping were constructed for each MP derived from

each cross combination (DP-1, DP-4, and DP-7) separately. The detected QTLs which showed

>10.00% R2 value were considered as major QTLs.

Fig 1. A diagramatic representation of the work-flow of tGBS data analysis. (a) Trimming of nucleotide raw sequence reads, SNP discovery, SNP calling, and

removal of low-quality SNPs were performed by Ali et al. [73]. (b) The LMD50 SNP files (low missing SNP data rate of�50%) of three genetic backgrounds (DP-1, DP-

4, and DP-7 MPs) were filtered SNPs and converted to ABH format for QTL mapping studies.

https://doi.org/10.1371/journal.pone.0220066.g001
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Candidate gene analysis

To identify the candidate genes within the QTLs, the interval region of both flanking marker

positions was considered. The physical position of the SNP flanking markers was used to

determine the size of each QTL in kb. Publically accessible MSU Rice Genome Annotation

Project (Osa1) release 7 (http://rice.plantbiology.msu.edu/) and the Rice Annotation Project

(https://rapdb.dna.affrc.go.jp/) were explored to select the candidate genes residing in each

detected QTL. Further, in silico gene expression analysis carried out using the genome wide

expression-profiling database, RiceXPro (http://ricexpro.dna.affrc.go.jp). This is the repository

of the microarray profiling data of Nipponbare cultivar isolated from different growth and

developmental stages.

Statistical analysis

The phenotypic data of each trait at four DGI stages for the three fertilizer doses were analyzed

using analysis of variance (ANOVA) for assessing the significance of the experiments at the

level of significance P = 0.05. DMRT and Fisher’s t-test were used to ascertain the significant

difference between the genotypes and to compare with the check values. The correlation

between the traits at different fertilizer doses (0%, 80%, and 100% N, P, and K) was computed

by Pearson’s correlation analysis and the correlation matrix was visualized using corrplot pack-

age in R (https://github.com/taiyun/corrplot) [79]. The phenotypic mean values of all the traits

were prepared using MS-Excel ver. 2010 and the analysis was carried out using PBTools (Ver-

sion 1.4, http://bbi.irri.org/products). Chi-square goodness of fit was used to analyze the segre-

gation pattern of SNP markers before using these for the QTL analysis. The multiple

regression model of maximum likelihood was employed for the composite interval mapping.

Results

The genetic variation of phenotypic traits among different MPs

The early backcross MPs derived from three different genetic backgrounds were evaluated for

three FATs under 100% NPK (338.90 kg ha−1), 80% NPK (271.90 kg ha−1), and 0% NPK (0 kg

ha−1) treatments at four DGI stages (I, II, III, and IV). The segregation pattern of FATs was

determined based on the skewness and kurtosis values. For the MP DP-1, normal distribution

was observed for the trait PH at stage II under 100% fertilizer rate; at stages I, II, and III at 80%

fertilizer rate; and at stages I and II at 0% fertilizer rate. For the MPs DP-4 and DP-7, most of

the traits at different stages and different fertilizer rates showed normal distribution (Table 2

and S1 Fig). ANOVA showed significant variation existing in the three concentrations of N, P,

and K fertilizers at specific growth stages for each trait. The F-test statistic values showed the

existence of significant variation at the level of significance P = 0.05, indicating a large amount

of genetic variation among the MPs (Table 3). Among the MPs, DP-7 exhibited the highest PH

at two stages of PH-I and IV (40.51, 92.20 cm), TN at stage IV (43.22 cm), and for LC at two

stages, LC-II and LC-IV (44.55 and 45.71 cm, respectively), compared with the other donor

and recurrent parents under low input (0% NPK) conditions. The coefficient of variation (CV)

revealed the extent of phenotypic variation existing among the different traits for all of the

genetic backgrounds of ILs evaluated at DGI and different doses of fertilizer. The highest CVs

were observed for TN-III (37.58%), TN-IV (21.82%), and TN-IV (22.90%) in DP-1, DP-4, and

DP-7, respectively, under 100% NPK conditions. In contrast, in 80% NPK conditions, TN-IV

(32.47% and 38.36%) in DP-1 and DP-4, respectively, and TN-I (22.60%) in DP-7 showed the

highest CVs. Under 0% NPK conditions, the highest CV was observed for trait TN at stage III

(39.17% and 40.94%) in MPs DP4 and DP7, respectively, followed by CV of 32.84% at stage II
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Table 2. Descriptive statistics of three FATs at DGI stages in three different MPs.

Trait and stage of

application of fertilizer

FDa HAN × WTR-1 CH448 × WTR-1 Z413 ×WTR-1

Mean

±SDb
Range CVcac SKd KTe Mean

±SDb
Range CVc SKd KTe Mean

±SDb
Range CVc SKd KTe

PH-I (5 DAT) 100% 40.49

±4.04

32.00–

55.70

9.98 0.45 0.25 40.09

±2.87

34.25–

48.17

7.15 0.48 -0.18 40.14

±3.26

27.01–

47.17

8.12 -0.88 2.61

PH-II (20 DAT) 64.81

±6.80

49.53–

80.83

10.49 0.06 -0.81 62.64

±5.23

52.73–

76.23

8.35 0.13 -0.29 62.21

±5.07

47.41–

72.67

8.15 -0.68 0.35

PH-III (35 DAT) 83.05

±7.66

60.67–

105.00

9.22 0.14 0.09 78.09

±7.39

54.83–

97.93

9.46 -0.07 0.21 77.92

±6.49

62.63–

93.47

8.32 -0.39 -0.18

PH-IV (50 DAT) 93.89

±9.49

67.33–

122.33

10.11 0.41 0.56 86.54

±8.16

68.67–

107.01

9.43 0.25 -0.21 87.12

±6.12

76.50–

106.25

7.02 0.63 0.56

TN-I (5 DAT) 5.58

±1.48

1.33–

11.00

26.52 0.50 0.49 5.05

±1.02

2.67–

7.67

20.30 0.24 -0.04 5.27

±1.12

2.01–

8.11

21.49 0.62 0.74

TN-II (20 DAT) 11.46

±2.12

6.33–

17.67

18.50 0.32 -0.02 15.61

±26.38

7.45–

287.83

9.01 6.82 81.02 12.53

±1.96

7.50–

18.01

15.64 0.44 0.01

TN-III (35 DAT) 15.91

±5.98

7.33–

48.33

37.58 2.72 9.76 14.15

±2.61

10.87–

24.33

18.46 1.19 2.21 14.31

±2.74

8.67–

23.50

19.15 0.65 0.88

TN-IV (50 DAT) 16.11

±4.28

10.00–

34.33

26.58 1.47 2.95 15.14

±3.30

8.67–

25.56

21.82 0.48 0.07 15.23

±3.50

8.67–

26.33

22.98 0.84 1.32

LC-I (5 DAT) 41.16

±2.80

33.03–

48.00

6.80 -0.45 0.06 40.68

±2.95

31.03–

47.53

7.26 -0.36 0.48 43.27

±2.75

34.70–

48.43

6.36 -0.69 0.48

LC-II (20 DAT) 42.92

±2.14

37.17–

48.90

4.99 -0.31 -0.19 42.97

±2.51

36.68–

48.63

5.83 -0.03 -0.13 44.75

±2.27

38.37–

53.57

5.07 0.11 2.31

LC-III (35 DAT) 43.33

±2.82

33.67–

51.33

6.51 -0.35 0.29 39.76

±3.60

30.57–

49.27

9.05 0.10 0.01 41.12

±3.22

32.37–

48.27

7.83 -0.22 -0.26

LC-IV (50 DAT) 44.21

±3.40

30.17–

54.80

7.69 -0.55 1.81 40.78

±4.00

26.58–

54.97

9.81 0.01 1.72 42.81

±3.63

33.15–

50.47

8.48 -0.44 -0.38

PH-I (5 DAT) 80% 39.55

±3.64

29.00–

52.10

9.20 0.07 0.24 38.92

±3.79

29.01–

51.01

9.73 0.02 0.45 39.94

±3.58

31.73–

48.01

8.97 -0.27 -0.53

PH-II (20 DAT) 64.98

±6.41

48.30–

84.00

9.86 -0.04 0.21 65.03

±5.70

55.33–

81.30

8.77 0.83 0.24 65.85

±5.21

51.71–

76.70

7.92 -0.4 0.01

PH-III (35 DAT) 76.59

±7.93

57.00–

105.00

10.35 0.10 0.30 75.95

±7.80

60.24–

97.78

10.27 0.34 0.12 77.60

±6.86

62.71–

92.70

8.84 -0.15 -0.56

PH-IV (50 DAT) 87.81

±9.30

65.70–

120.70

10.59 0.39 0.61 85.61

±8.08

67.23–

105.49

9.44 0.11 -0.32 87.48

±7.85

57.72–

105.01

8.98 -0.58 1.53

TN-I (5 DAT) 5.13

±1.04

2.30–

8.70

20.29 0.40 0.51 4.83

±1.04

2.87–

8.45

21.47 0.07 1.28 5.23

±1.19

3.34–

10.11

22.66 0.88 2.02

TN-II (20 DAT) 11.54

±2.21

6.30–

19.70

19.18 0.27 0.23 11.07

±2.19

6.70–

17.00

19.83 0.15 -0.48 12.56

±2.55

7.00–

18.30

21.26 0.43 -0.01

TN-III (35 DAT) 15.82

±3.70

9.00–

30.00

23.35 1.05 1.79 15.03

±3.15

6.07–

24.05

20.94 0.22 1.00 15.78

±3.25

9.70–

26.70

20.62 0.93 1.06

TN-IV (50 DAT) 16.06

±5.21

8.30–

50.00

32.47 2.80 13.93 15.58

±5.98

9.30–

65.00

38.36 5.38 40.97 15.79

±3.45

9.11–

28.01

21.86 0.81 1.37

LC-I (5 DAT) 41.35

±3.53

27.60–

53.10

8.53 -0.68 1.74 40.60

±3.27

31.50–

47.40

8.06 -0.49 0.17 42.68

±3.77

30.5–

49.30

8.84 -1.09 1.68

LC-II (20 DAT) 42.50

±3.45

29.90–

77.10

8.13 4.44 46.70 41.91

±2.76

32.70–

47.90

6.59 -0.84 1.27 44.11

±2.19

37.4–

48.40

4.97 -0.29 -0.04

LC-III (35 DAT) 40.77

±3.33

21.50–

48.30

8.17 -1.20 5.33 39.54

±4.02

29.30–

49.90

10.16 -0.24 -0.19 41.64

±3.63

30.3–

54.10

8.71 -0.1 1.11

LC-IV (50 DAT) 41.76

±3.80

28.70–

61.90

9.09 0.30 3.50 40.92

±3.44

33.10–

48.60

8.41 -0.18 -0.75 42.87

±2.99

33.6–

47.70

6.97 -0.77 0.41

(Continued)
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in MP DP-1. As expected, the lowest CV values were recorded in the second stage of LC in

DP-1, DP-4, and DP-7 in all the different doses of fertilizer. The broad-sense heritability (H2b)
was estimated for each trait under different doses of NPK fertilizers at DGI stages. Under

100%,H2b ranged from 15% to 51%. The highest H2b was noted in TN-IV (51%), followed by

LC-II and PH-IV, being the same estimated value of 46%. Similarly, in 80% and 0% NPK con-

ditions,H2b ranged from 10% to 65% and 6% to 65%, respectively.

Pearson correlation matrix (PCM) analysis

The PCM was performed in DGI stages in three genetic backgrounds of MPs to assess the cor-

relation among the FATs (PH, LC, and TN). Most of the FATs were found to be significantly

positively correlated with each other. The highest significant positive correlation was observed

between PH-III and PH-IV (r = 0.68) in 100% N, P, and K. Interestingly, in 80% and 0% NPK

conditions, there was no significant positive correlation between the traits. The trait LC-II

showed the highest negative correlation with TN-II (r = −0.15) and TN-IV (r = −0.15) in 100%

NPK conditions, followed by LC-IV with PH-III (r = −0.17) at 80% NPK, and PH-II with

TN-IV (r = −0.23) at 0% NPK, as presented in Fig 2.

Table 2. (Continued)

Trait and stage of

application of fertilizer

FDa HAN × WTR-1 CH448 × WTR-1 Z413 ×WTR-1

Mean

±SDb
Range CVcac SKd KTe Mean

±SDb
Range CVc SKd KTe Mean

±SDb
Range CVc SKd KTe

PH-I (5 DAT) 0% 39.85

±3.06

25.83–

49.23

7.69 0.01 1.67 40.46

±3.23

32.70–

50.59

7.99 0.32 0.62 40.51

±3.61

32.17–

49.83

8.92 -0.15 -0.05

PH-II (20 DAT) 61.41

±5.74

46.90–

74.93

9.35 0.01 -0.22 67.43

±14.14

50.20–

205.30

20.97 8.09 78.98 64.97

±6.58

48.57–

83.37

10.13 -0.25 0.27

PH-III (35 DAT) 77.06

±7.32

51.83–

95.60

9.50 -0.25 0.08 82.28

±7.63

62.33–

100.67

9.27 0.12 -0.03 81.66

±7.63

61.17–

98.67

9.34 -0.14 -0.28

PH-IV (50 DAT) 86.78

±8.10

56.12–

112.00

9.33 -0.14 0.79 92.09

±8.70

67.33–

117.33

9.45 0.21 0.32 92.20

±8.17

77.67–

117.67

8.86 0.74 0.73

TN-I (5 DAT) 4.99

±1.21

1.33–

12.00

24.22 0.94 5.41 5.60

±1.31

2.67–

9.67

23.39 0.57 0.54 5.44

±1.32

2.67–

8.33

24.25 0.19 -0.35

TN-II (20 DAT) 12.61

±4.14

6.50–

65.00

32.84 9.62 120.16 11.52

±2.16

6.67–

17.33

18.73 0.11 -0.09 11.06

±2.04

7.11–

16.33

18.43 0.25 -0.18

TN-III (35 DAT) 14.48

±4.68

9.33–

55.67

32.30 5.51 42.99 16.46

±6.45

8.00–

46.33

39.17 2.74 8.79 15.97

±6.54

8.67–

47.14

40.94 2.84 9.78

TN-IV (50 DAT) 14.97

±3.69

8.33–

40.00

24.66 1.85 8.84 16.26

±3.91

7.67–

31.33

24.07 0.94 1.37 16.03

±5.56

9.33–

43.67

34.69 2.16 7.08

LC-I (5 DAT) 41.28

±2.40

34.13–

46.50

5.80 -0.21 -0.14 40.99

±2.96

30.07–

47.97

7.22 -0.58 1.42 43.22

±2.95

35.86–

49.13

6.83 -0.42 -0.24

LC-II (20 DAT) 43.62

±2.24

37.10–

48.80

5.15 -0.36 0.18 43.05

±2.33

37.83–

49.23

5.41 0.11 -0.35 44.55

±2.35

34.53–

50.43

5.28 -0.77 3.11

LC-III (35 DAT) 40.11

±3.83

28.93–

48.10

9.55 -0.46 -0.06 42.59

±3.19

33.40–

48.80

7.52 -0.51 -0.04 44.44

±2.74

37.93–

50.87

6.17 -0.28 -0.39

LC-IV (50 DAT) 41.92

±3.23

34.20–

50.05

7.70 -0.19 -0.17 43.58

±3.36

33.93–

54.50

7.71 -0.02 0.41 45.71

±3.75

37.37–

59.60

8.21 1.11 2.85

aFertilizer dose
bStandard deviation
cCoefficient of variation
dSkewness
eKurtosis

https://doi.org/10.1371/journal.pone.0220066.t002
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SNP discovery and construction of saturated linkage map

All the genotypes, including parental lines, underwent genotyping by using the advanced and

cost-effective genotyping platform tGBS. It was used for the extraction of SNP markers for the

localization of the genetic factors influencing FATs under different fertilizer doses. The

Table 3. Analysis of variance (ANOVA) and its components for all the FATs in DGI stages under different doses of fertilizer.

Fertilizer dose Components PH-I TN-I LC-I PH-II TN-II LC-II PH-III TN-III LC-III PH-IV TN-IV LC-IV

100% DF 243.00 243.00 243.00 243.00 243.00 243.00 243.00 243.00 243.00 243.00 243.00 243.00

SS 4302.66 370.93 2537.87 10817.20 1060.06 1501.87 16348.90 7816.03 2099.75 23329.00 5355.86 2960.64

MS 20.49 1.77 12.09 51.5 5.05 7.15 77.85 37.22 10.00 111.09 25.50 14.10

F value 1.49 1.17 1.87 1.70 1.41 1.86 1.64 1.28 1.23 1.85 2.06 1.37

Pr (>F) 0.00 0.13 0.00 0.00 0.01 0.00 0.00 0.04 0.07 0.00 0.00 0.01

H2b (%) 0.33 0.15 0.46 0.41 0.29 0.46 0.39 0.23 0.20 0.46 0.51 0.27

80% DF 243.00 243.00 243.00 243.00 243.00 243.00 243.00 243.00 243.00 243.00 243.00 243.00

SS 3490.61 255.74 2924.77 10295.80 1218.81 2383.19 16584.60 3332.20 2807.13 21903.40 4973.05 3191.20

MS 16.70 1.22 13.99 49.26 5.83 11.40 79.35 15.94 13.43 104.80 23.79 15.27

F value 1.75 1.43 1.33 2.16 1.51 1.31 2.31 1.41 0.97 2.83 1.32 1.47

Pr (>F) 0.00 0.01 0.02 0.00 0.00 0.02 0.00 0.01 0.60 0.00 0.02 0.00

H2b (%) 0.43 0.30 0.26 0.54 0.34 0.24 0.57 0.31 0.10 0.65 0.24 0.33

0% DF 243.00 243.00 243.00 243.00 243.00 243.00 243.00 243.00 243.00 243.00 243.00 243.00

SS 2619.52 899.32 1922.82 7728.10 862.94 1656.49 16616.30 2971.73 3131.77 19960.60 3029.76 3168.06

MS 12.53 4.30 9.20 36.93 4.13 7.93 79.50 14.22 14.98 95.51 14.50 15.16

F value 2.13 1.07 1.61 2.05 1.27 1.91 2.37 1.13 1.21 2.89 1.95 1.37

Pr (>F) 0.00 0.30 0.00 0.00 0.04 0.00 0.00 0.19 0.08 0.00 0.00 0.01

H2b (%) 0.53 0.06 0.38 0.51 0.21 0.48 0.58 0.11 0.20 0.65 0.49 0.27

SV = Source of variation; DF = Degrees of freedom; SS = Sum of squares; MS = Mean sum of square; Pr = Probability value-; F value- Significance level; H2
b (%) =

Broad-sense heritability.

https://doi.org/10.1371/journal.pone.0220066.t003

Fig 2. Heat map showing the PCM of FATs measured in response to different doses of N, P, and K fertilizer at DGI stages. PH = Plant height; TN = Tiller number;

LC = Leaf chlorophyll content.

https://doi.org/10.1371/journal.pone.0220066.g002
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genotyping platform tGBS yielded extensive sequence information from sequencing three

MPs. A total of 10,432, 14,117, and 7,865 raw reads were obtained from the MPs as DP-1, DP-

4, and DP-7, respectively (Table 4). A novel SNP calling and filtering method was followed to

eliminate missing values (�50 missing data, LMD 50) from the tunable GBS pipeline (Data2-

Bio, LLC) (https://www.data2bio.com), as reported in Ali et al. [73]. In the initial SNP filtering,

as many as 4,666, 5,957, and 3,147 SNPs were isolated from MPs DP-1, DP-4, and DP-7,

respectively, whereas, in the next level of filtering, 4,286 SNPs from DP-1, 3,622 SNPs from

DP-4, and 2,610 SNPs from DP-7 were isolated (Table 4). Notably, out of these SNP markers,

35.10% in DP-1, 44.64% in DP-4, and 47.67% in DP-7 were redundant and excluded before

further analysis. Finally, the SNPs were filtered out at the final level of filtering based on the

segregation distortion regions in the genetic linkage map. A total of 57.80% of the SNPs dem-

onstrated genetic distortion (P = 0.05) in the DP-1 population, followed by 44.63% in DP-4

and 38.72% in DP-7. The SNP markers obtained from all the filtration levels were used for

linkage map construction and linkage analysis. In total, a 953.71 cM chromosomal spanning

region was covered by 2,782 SNPs in DP-1, 1,398.42 cM by 2,005 SNPs in DP-4, and 834.11

cM by 1,361 SNPs in DP-7. In each population, an average of 230, 167, and 113 SNP markers

were distributed across all chromosomes. The highest number of polymorphic markers was

present on chromosome 1 (324 SNPs) while the lowest was on chromosome 9 (172) in DP-1,

whereas, in DP-4 and DP-7, the highest number of markers was located on chromosome 1

(279) and chromosome 2 (223). However, chromosome 9 (70) and chromosome 4 (11) had

the lowest number of polymorphic markers available in DP-4 and DP-7, respectively (Table 5

and Fig 3). The average distance of each SNP marker varied from 0.13 to 0.41 Mb, whereas the

longest distance recorded was 1.47 Mb on chromosome 4 in the population DP-7.

Molecular mapping of genomic regions conferring FATs

In order to locate the QTLs influencing the traits PH, TN, and LC at DGI stages under differ-

ent fertilizer doses, QTL analysis was performed using the ICIM-ADD methodology. A total of

19 main-effect QTLs (M-QTLs) were identified using the composite interval mapping model

of QTL IciMapping under LOD threshold of 3.00. The significant QTLs were identified on

chromosomes 1, 9, 10, and 12 in 100% NPK conditions; on chromosomes 1, 2, 3, 5, and 12 in

80% NPK conditions; and on chromosomes 2, 3, 4, 5, 6, 8, and 11 in 0% NPK conditions. The

detected M-QTLs explained phenotypic variation ranges from 1.89% to 34.85% with LOD

score ranges from 3.02 to 28.70. The number of QTLs per trait ranged from one to four, and

the highest numbers of QTLs (four QTLs) were associated with LC-II in populations DP-1,

DP-4, and DP-7 (S1 Table). A total of four QTLs were discovered for LC-II, TN-I and II, and

Table 4. Processing SNP markers for QTL analysis.

S. no. SNP calling MPs

HAN × WTR-1 CH448 × WTR-1 Z413 × WTR-1

1 Raw SNPs 10,432 14,117 7,865

2 Quality base filtering at LMD50 4,666 5,957 3,147

3 Removed heterozygous alleles in both parents 345 483 454

4 Removed mono-morphic alleles in both parents 35 1,852 83

5 SNP markers for QTL analysis 4,286 3,622 2,610

6 Exclusion of redundant markers 1,504 1,617 1,249

7 Number of markers used for linkage map construction 2,782 2,005 1,361

8 Removed markers with χ2 >6.0 of segregation distortion 1,608 895 527

9 Number of SNP markers used for ICIM-ADD 1,174 1,110 834

https://doi.org/10.1371/journal.pone.0220066.t004
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PH-III in 100% NPK; six QTLs for PH-I, III, and IV, TN-III, and LC-II in 80% NPK; and nine

QTLs for PH-I, LC-I and II, and TN-II, III, and IV in 0% of NPK conditions at DGI stages.

The highest number of QTLs (nine QTLs) was detected in 0% of NPK conditions, followed by

80% NPK (six QTLs) and 100% NPK (four QTLs). The majority of the negative additive effect

of the QTLs was contributed by the donor parental allele source. Among the total QTLs,

57.89% (11 QTLs) were contributed by donor alleles from HAN, CH448, and Z143, whereas

42.10% came from recurrent parent WTR-1. Two M-QTLs (qLC-II_1 and qLC-II_11) contrib-

uted highest to the PVE which ranged from 30.81% to 38.22% in DP-7. In all three NPK condi-

tions, five QTLs (four QTLs for LC-II and one QTL for LC-I) were significantly associated

with a single trait of LC on chromosomes 1, 2, 8, and 11. The negative additive effect of qLC-
II_80%_1 was contributed by Z143, whereas four other QTLs (qLC-II_100%_1, qLC-I_0%_2,

qLC-II_0%_8, and qLC-II_0%_11) were contributed by a positive additive effect from WTR-1.

Putative QTLs with high statistical power

To detect QTLs with higher statistical power, an extreme threshold parameter, 1000 permuta-

tion test at P = 0.01, was considered. A total of 11 putative QTLs (�15% PVE) were detected

for the three FATs at DGI stages under three different fertilizer doses (100%, 80%, and 0%

NPK). The QTL qPH-III_12 was the only one detected at 100% NPK for the FAT, PH at stage

III on chromosome 12 between the markers S12_852867 and S12_2965504. Under suboptimal

fertilizer dose, three QTLs for PH, qPH-III_2, qPH-IV_3 and qPH-I_5,were detected on chro-

mosome 2, 3 and 5, while another single QTL for LC (qLC-II_1) and TN (qTN-III_5), were

detected on chromosome 1 and 5. Simialrly in zero fertilizer conditions, five QTLs (qTN-III_3,

qPH-I_4, qTN-I_5, qLC-II_8 and qLC-II_11) for PH, TN and LC were detected on five chro-

mosomes 3, 4, 5, 8, and 11. However, the significant M-QTLs were identified only from MP

DP-1, except four QTLs detected in the cross combination CH448 × WTR-1 (DP-4) and

Z143 × WTR-1. The distribution of detected significant main-effect QTLs under three differ-

ent NPK conditions is depicted in Fig 4. Additionally, minor effects QTLs were also detected

Table 5. Distribution of SNP markers, coverage, and position of each chromosome.

Chr HAN × WTR-1 CH448 × WTR-1 Z413 × WTR-1

NSM CL

(Mb)

ADSM

(Mb)

NSM CL

(Mb)

ADSM

(Mb)

NSM CL

(Mb)

ADSM

(Mb)

1 324 42.53 0.13 279 43.03 0.15 79 41.56 0.52

2 179 30.97 0.17 125 35.90 0.29 223 35.85 0.16

3 242 35.83 0.15 234 33.55 0.14 174 35.35 0.20

4 194 33.72 0.17 173 33.41 0.19 11 16.27 1.47

5 231 29.54 0.13 115 28.81 0.25 181 27.66 0.15

6 257 30.61 0.12 212 30.04 0.14 163 30.61 0.18

7 216 29.21 0.14 87 28.25 0.32 24 26.57 1.10

8 265 28.07 0.11 179 28.05 0.16 119 27.61 0.23

9 172 21.04 0.12 70 21.03 0.30 65 15.77 0.24

10 231 22.57 0.10 105 20.12 0.19 88 19.87 0.22

11 240 27.75 0.12 259 28.76 0.11 124 26.38 0.20

12 231 26.08 0.11 167 27.26 0.16 110 23.77 0.21

Avg. 230.83 29.82 0.13 167.08 29.85 0.20 113.41 27.27 0.41

Total 2782.00 357.92 1.57 2005.00 388.06 2.41 1361.00 327.27 4.94

Chr = Chromosome; NSM = Number of SNP markers; CL = Chromosome length; ADSM = Average distance of SNP markers

https://doi.org/10.1371/journal.pone.0220066.t005
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Fig 3. Chromosome-wise distribution of SNP markers in three populations (DP-1, DP-4, and DP-7) extracted from novel tGBS genotyping platform.

https://doi.org/10.1371/journal.pone.0220066.g003

Fig 4. The genetic map representing the distribution of polymorphic SNP markers. Colored circles yellow, orange, and blue indicate 100%, 80%, and 0% nutrient

fertilizer doses, respectively. The QTLs highlighted on the genetic map are the major QTLs detected in the study possessing�15% phenotypic variation explained. QTLs

from different FATs with fertilizer doses are shown in colored circles.

https://doi.org/10.1371/journal.pone.0220066.g004
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for all the traits. The list of total minor effect QTLs including the information of flanking

markers along with their LOD score, PVE and the additive effect of parental source of the allele

are presented in S1 Table.

Traits associated with putative QTLs detected at 100%, 80%, and 0% NPK

fertilizer dosage

Across the three MPs, a single QTL (qPH-III_12) was identified at 100% NPK fertilizer dose

for the trait PH at stage III of fertilizer application. This QTL is located on chromosome 12

and it explained 23.60% of PV. The negative additive effect is contributed by donor parent

HAN. Under suboptimal conditions (80% recommended dose of fertilizer), five QTLs (qLC-
II_1, qPH-III_2, qPH-IV_3, qPH-1_5, and qTN-III_5) were detected on three chromosomes as

1, 2 and 3. Those QTLs were associated with PH, TN, and LC at DGI stages I, II, III, and IV.

Among the 11 main-effect QTLs, qLC-II_1 showed the highest PVE of 34.85%. Except for the

chromosome 1 QTL (qLC-II_1), all of them were identified in a single MP, DP-1 (S1 Table).

Similarly, QTL analysis under zero fertilizer dose revealed that a total of five main-effect QTLs

were detected for the traits of PH-I, TN-I and III, and LC-II. Three QTLs (qTN-III_3, qPH-
I_4, and qTN-I_5) were detected on chromosomes 3, 4, and 5 and they explained PV of

17.02%, 19.17%, and 28.44% at stages I and III of fertilizer application. Another two QTLs

(qLC-II_8 and qLC-II_11) were associated with a single trait (LC) at first stages of fertilizer

application. QTLs on chromosome 3, 4, and 5 were contributed by the negative additive effect

from donor alleles, whereas QTLs on chromosomes 8 and 11 were contributed by the positive

additive effect from the WTR-1 allele.

Exploring putative QTLs for candidate genes for future breeding programs

The putative QTLs detected from the extreme threshold parameters were further explored to

showcase the possible candidate genes within the loci to understand the molecular and physio-

logical mechanisms underlying the traits conferring NPK deficiency tolerance. A total of 19

M-QTLs were located on all chromosomes, except on chromosome 7. Further, the possible

candidate genes within the M-QTLs were filtered based on the SNP flanking marker positions

with a threshold score of�1 Mb interval regions of M-QTLs (Table 6). The lowest number (3)

and highest number (25) of candidate genes were associated with a single trait (TN at stages III

and IV) in the MP DP-1. A total of 120 genes were identified (S2 Table), of which 78.33% (94

genes) were functionally annotated while 21.66% (26 genes) were reported as hypothetical, ret-

rotransposon proteins, and expressed proteins. The 94 functionally annotated genes were clas-

sified into six biological functions related to cellular component (CC), biological process (BP),

and molecular function (MF) (Fig 5). Out of these 94 genes, 63 candidate genes were involved

Table 6. Putative QTLs (�1 Mb interval regions) at DGI stages for favorable agronomic traits.

Cross

combination

Fertilizer

dose

(% NPK)

QTL

designation

Chromosome Left marker Right marker Size of the

QTL (kb)

LOD

score

Additive

effect

R2

(%)

No. of candidate genes

detected within the

locus

HAN × WTR-1 80% qPH-III_2 2 S2_29072519 S2_28879120 193.40 3.65 2.86 18.12 15

HAN × WTR-1 0% qLC-I_2 2 S2_30451119 S2_30564762 113.60 3.04 0.64 10.79 12

HAN × WTR-1 80% qPH-I_5 5 S5_17801786 S5_17996757 195.10 3.59 1.21 15.61 16

HAN × WTR-1 80% qTN-III_5 5 S5_17859957 S5_17801758 58.20 26.77 3.62 28.98 3

HAN × WTR-1 0% qTN-IV_5 5 S5_17465069 S5_17801758 336.70 25.70 4.72 5.85 25

CH448 × WTR-1 0% qLC-II_8 8 S8_8206216 S8_8918154 711.90 5.26 1.37 22.85 30

HAN × WTR-1 100% qTN-I_9 9 S9_20844013 S9_20779092 64.92 3.11 -0.65 13.00 10

HAN × WTR-1 80% qTN-III_12 12 S12_6585982 S12_5905028 681.11 3.10 -1.00 1.89 9

https://doi.org/10.1371/journal.pone.0220066.t006
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in MF, CC, and BP, followed by 18 genes for BP and MF, 9 genes for BP and CC, 3 genes for

CC, and a single gene for BP.

Discussion

For the ever-increasing global population and to meet food demand, the development of rice

varieties with higher grain yield is essential [80]. The application of the key nutrients N, P, and

K either organically or through chemical fertilizer plays a foremost role in increasing yield and

sustaining soil fertility [81]. With the recent trends in crop breeding, higher rice productivity

has been successfully attained by applying high fertilizer doses [9,35,82,83]. However, without

knowledge of the correct stage, timing, and dose of fertilizer application, any assurance for

Fig 5. Functional classification of annotated genes (MF = Molecular function; CC = Cellular component; BP = Biological process; NGO = No gene ontology

classification).

https://doi.org/10.1371/journal.pone.0220066.g005

Genetic dissection of developmental responses of agro-morphological traits under different fertilizer doses

PLOS ONE | https://doi.org/10.1371/journal.pone.0220066 July 23, 2019 15 / 28

https://doi.org/10.1371/journal.pone.0220066.g005
https://doi.org/10.1371/journal.pone.0220066


increasing yield cannot be determined. The excessive use of fertilizer is a major contributor to

increasing soil, water, and environmental pollution, along with farm operation costs [9,18,33,

84]. China is leading in per hectare usage of fertilizer (300 to 350 kg ha-1 N in Jiangsu Prov-

ince), and this amount is around four times higher than the average world fertilizer consump-

tion for rice production [18,33]. Hence, it is crucial to undertake a systematic breeding

program involving identifying genotypes with higher input use efficiency and genomic regions

derived from these lines to improve elite varieties to assure sustainable crop production. This

would not only reduce environmental and human hazards but would also improve the liveli-

hood of farmers by reducing farm operational costs along with a higher expected grain yield.

Hence, in the present study, we have developed MPs generated from three different donors

(HAN, CH448, and Z413) and evaluated them under three different fertilizer doses, 100%

(222.23 kg ha-1 N), 80% (177.77 kg ha-1 N), and 0% (0 kg ha-1 N), to study the genetic variation

for low input use efficiency, especially for N, P, and K. Further, we identified the genomic

regions influencing FATs at DGI stages under different fertilizer doses while dissecting the

molecular genetic information.

Dissecting molecular genetics of nutrient deficiency tolerance in rice

ANOVA carried out using different MPs for FATs at different stages indicated the existence of

significant variation among all the MPs for the target traits. As expected, all the genotypes,

including parents of the MPs, showed a higher mean performance for all the AFTs at 100%

NPK, followed by 80% and 0% NPK. This trend observed mainly because of the higher doses

of the key nutrients N, P, and K, which are proven to enhance rice yield. Several researchers

also reported the similar effect of key nutrients on plant growth and yield-attributed traits [85–

88]. The variance components of FATs indicated that the segregation pattern at different DGI

stages under different fertilizer doses varied from normal to skewed distribution (Table 2).

This clearly confirmed the influence of few or many genes with a cumulative and additive

effect, which is difficult to dissect using traditional low-resolution genotyping platforms.

Hence, to understand the molecular genetic basis of the traits that influence the genomic

regions conferring FATs at different DGI stages under varied fertilizer doses, a high-resolution

and informative genotyping platform was employed. Numerous high-quality SNPs retrieved

from the advanced genotyping tool tGBS were used for the molecular mapping of the key

traits. A total of 19 M-QTLs were identified from three different MPs for the three FATs at

four DGI stages under three different fertilizer doses. Out of these QTLs, 13 QTLs from DP-1,

4 QTLs from DP-4, and 2 QTLs from DP-7 explained PV ranging from 1.89% to 28.98%,

7.74% to 28.44%, and 30.62% to 34.85%, respectively. With the extreme threshold parameters,

eight M-QTLs were considered as putative QTLs possess�1 Mb QTL regions, whereas the

remaining 11 QTLs possess�1 Mb genetic regions of QTLs (Table 6). The putative QTLs

qPH-III_2, qLC-I_2, qPH-I_5, qTN-III_5, qTN-IV_5, qLC-II_8, qTN-I_9, and qTN-III_12 sug-

gested that these are closely associated with the respective traits (PH, TN, and LC) at DGI

stages of fertilizer application. However, the majority of these QTLs on chromosomes 2, 5, and

8 were attributed to WTR-1 allele, whereas the QTLs on chromosomes 9 and 12 by HAN.

Potentiality of the putative QTLs and promising ILs

The mean performance of all the individuals of the MPs showed higher values than their

parents for all the FATs (Table 2; S1 Fig). This indicates a more positive response by ILs to fer-

tilizer application than their parents, even to suboptimal and zero fertilizer doses. The main

reason for the improved performance of the ILs is the existence of transgressive segregation

for all the FATs at all DGI stages under different fertilizer doses. The QTL qTN-I_9 detected
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under 100% NPK was found to be responsible for the transgressive segregation of the ILs for

the trait TN for the mapping population derived from DP-1. Similarly, QTLs qPH-III_2, qPH-
I_5, qTN-III_5, and qTN-III_12 contributed to the superior performance of ILs from the

MPs derived from DP-1. Most importantly, three QTLs, qLC-I_2, qTN-IV_5, and qLC-II_8,

detected on chromosomes 2, 5, and 8 at 0% NPK fertilizer dose, contributed solely to the better

phenotypic performance of the ILs in MPs DP-1 and DP-4. This finding has an immense

application in MAS through the introgression of the same QTLs in the background of elite

lines to give them more NuUE under zero fertilizer conditions. To date, very few rice cultivars

with tolerance of low inputs have been identified by using different doses of individual N, P,

and K fertilizers reported from various phenotypic screening methodologies [13,89–91]. How-

ever, in the present study, we could identify several ILs that showed transgressive segregation

even under suboptimal and zero fertilizer application, especially for LC. The genotypes of the

mapping populations DP-1 (LC-I and LC-II�24.10%, LC-III�80.83%, LC-IV�27.50%), DP-

4 (LC-I and LC-II�23.80%, LC-III�76.10%, LC-IV�23.80%), and DP-7 (LC-I�60.01%,

LC-II�34.52%, LC-III�80.01%, LC-IV�36.31%) have significantly exceeded the performance

of the parents and checks. However, a total of 11 ILs, two ILs from DP-1 (GSR-IR2-1-R11-L1-
L2, GSR-IR2-1-R12-L1-R2), four ILs (GSR-IR2-4-L7-Y1-L2, GSR-IR2-4-R4-S1-L2, GSR-IR2-4-
Y10-L1-Y2, and GSR-IR2-4-Y12-L1-Y2) from DP-4, and five ILs (GSR-IR2-7-L4-SU1-Y2, GSR-
IR2-7-L8-SU2-R2, GSR-IR2-7-R13-SU1-L2, GSR-IR2-7-Y11-SU3-R2, and GSR-IR2-7-Y11-
SU3-Y2) from DP-7, have been commonly identified as promising ILs that show constitutively

increased LC at DGI stages. These ILs, being highly responsive to fertilizer application, could be

an imperative source of NuUE traits for future breeding programs and also an excellent source

for the genetic dissection of tolerance of low inputs in rice. These potential ILs are highly useful

for medium to low input marginal farmers who may not incur much of their cost in buying fer-

tilizer for rice cultivation. Therefore, the area and production of rice would increase, which

could further help in ensuring food security and farmers’ livelihood. This is one of the remark-

able findings and applications of the present study and could be attributed to the contribution

of the putative QTLs detected from the potential genetic backgrounds.

Promising QTLs and comparison with previous QTLs related to deficiency

of N, P, and K fertilizers

The rice Gramene database (http://archive.gramene.org), QTL Genome Viewer (http://qtaro.

abr.affrc.go.jp), and previous reports from comprehensive literature surveys showed hundreds

of QTLs associated with morphological, physiological, and biochemical traits that influence

individual nutrient fertilizer deficiency in rice [10,41,52,92]. Among the 19 M-QTLs detected

in the present study, 14 M-QTLs were detected in the same genomic region that was previously

reported. These QTLs were significantly associated with more than 20 traits reported under N,

P, and K deficiency tolerance, and were located on all chromosomes except chromosomes 7

and 8. The remaining five QTLs were found to be novel (Table 7). Among the 14 QTLs associ-

ated with FATs under DGI stages, nine QTLs were related to PH-I, LC-I, and LC-II, and four

stages to TN on seven different chromosomes (2, 3, 4, 5, 6, 8, and 11) under deficiency of com-

plete fertilizer (0 kg ha−1). Six QTLs were related to PH-I, PH-III, PH-IV, TN-III, and LC-II

on five chromosomes (1, 2, 3, 5, and 12) under suboptimal fertilizer dose (177.77 kg ha-1 N),

and four QTLs were related to TN-I, TN-II, TN-III, and LC-II on four chromosomes (1, 9, 10,

and 12) under the recommended dose of fertilizer, 100% (222.23 kg ha−1 N). Some of these

QTLs were co-localized with low N, P, and K tolerance on chromosomes 2, 4, 6, 10, 11, and 12.

These QTL clusters might play an important role in NuUE in rice, and their related SNP mark-

ers could be useful for MAS in low input breeding programs.
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By comparing with the previously reported QTLs, most of the QTLs were sharing common

genetic regions at DGI stages in all populations. The QTLs were associated with other multiple

QTLs, ranging from one to 11 under N, P, and K deficiency tolerance (Table 7). In the zero

percentage of fertilizer condition, a total of three putative QTLs related to relative PH (cm)

(qRPH), relative shoot dry weight (g/p) (qRSDW), and relative potassium uptake (mg/p)

(qRKUP) shared the same genomic region with qLC-I on chromosome 2. Among the three

QTLs, qRPH had the highest phenotypic variation of 14.70%, with an LOD score of 4.04, iden-

tified by using 123 DH lines under low-K stress conditions [68]. On chromosome 3, six QTLs

related to N concentration in leaf sheaths plus stems (qNS%_3.1), N concentration in leaf

blades (qNL%_3.2), dry weight of roots (qDWR_3.3), grain density per panicle (qGD_3a),

number of filled grains per panicle (qFGP_3a), and number of spikelets per panicle (qSP_3b)

shared the same genetic region with qTN-III_3 at 29.07–28.88 Mb [58,93]. These QTLs were

responsible for nitrogen use efficiency (NUE) and were also associated with yield-attributed

traits under low nitrogen rates. Two genetic regions on chromosome 4 at 15.43–21.82 Mb and

31.28–32.42 Mb region of two QTLs (qPH-I_4 and qTH-II_4) were shared with three QTLs

related to shoot and root growth traits under low nitrogen and phosphorus tolerance and

another two of them were related to phosphorus transporters [57,67]. By using the F9-10 gener-

ation of 169 recombinant inbred lines (RILs) derived from a cross between IR64 (O. sativa L.

var. indica), and Azucena (O. sativa L. var. japonica), Thi et al. [93] identified 44 QTLs for 15

Table 7. M-QTLs sharing similar genomic regions with previously reported QTLs.

S.

no.

FDa (%

NPK)

QTL

designation

QTL region

(Mb)

Common region shared with earlier reported QTLs

QTLs Reference

1 0% qLC-I_2 29.07–28.88 qRPH ¥, qRSDW¥, and qRKUP¥ [68]

2 0% qTN-III_3 27.66–29.5 qDWR_3#, qNL_3.1#,qNL_3.2#, qaNUE_3#, qSP_3b#, qGD_3a#, and qFGp_3a# [58,93]

3 0% qTN-II_4 31.28–32.42 qRRN_4�, OsPTR5�, and OsPTR6� [98]

4 0% qPH-I_4 15.43–21.82 qSB_4# and qRRW_4� [57,67]

5 0% qTN-IV_5 17.8–18 qDWR_5#, agNUE_5#,qDWS#, qDM#, qFW#, qTN#, and qaNUE# [93]

6 0% qTN-I_5 17.80–17.86 qDWR_5# and qagNUE_5# [93]

7 0% qTN-II_6 2.37–10.28 qSP-6a,b#, qNCm6-12#, qNCD-6#, qPUP�, qRRDW_6.1�, qRSDW_6.2�, qRTDW_6.3�,
qRPUC_6.4�, qRRL_6.4�, and qRWRSR_6.6�

[53,58,64,67,94]

8 0% qLC-II_8 8.21–8.92 Novel -

9 0% qLC-II_11 3.07–19.65 qRRDW_11�, qPNP-11.1�, qRWRSR�, and qRRDW-11_1# [65,67,99]

10 80% qLC-II_1 6.15–24.88 qPN1.7�, qSPF� [67,98]

11 80% qPH-III_2 30.45–30.56 Novel -

12 80% qPH-IV_3 0.24–1.24 Novel -

13 80% qPH-I_5 17.53–18.57 Novel -

14 80% qTN-III_5 17.47–17.80 Novel -

15 80% qTN-III_12 0.85–2.97 qRTHK_12_1# and qRDW_12# [99,100]

16 100% qLC-II_1 29.88–33.6 qRRDW_1_1#, and qSRL_1_2# [99,101]

17 100% qTN-I_9 20.78–20.84 qDRW_9_5# [100]

18 100% qTN-II_10 4.70–14.56 qNAA_10# and qPUP� [53,102]

19 100% qPH-III_12 5.91–6.59 Novel -

aFertilizer dose
bPercentage of phenotypic variation explained by each QTL
#QTLs for nitrogen deficiency
�

QTLs for phosphorus deficiency
¥QTLs for potassium deficiency in rice.

https://doi.org/10.1371/journal.pone.0220066.t007

Genetic dissection of developmental responses of agro-morphological traits under different fertilizer doses

PLOS ONE | https://doi.org/10.1371/journal.pone.0220066 July 23, 2019 18 / 28

https://doi.org/10.1371/journal.pone.0220066.t007
https://doi.org/10.1371/journal.pone.0220066


agronomic and NUE-related traits on all chromosomes, except chromosome 9. Among these

traits, seven NUE-related traits such as agronomic NUE, number of tillers, total fresh matter,

dry weight of roots, total dry matter, dry weight of sheaths plus stems, and dry weight of leaf

blades were shared with the current study for two QTLs (qTN-I_5 and qTN-IV_5) on chromo-

some 5 at 17.80–17.86 Mb region and 17.80–18 Mb region, respectively. However, the highest

number of QTLs (11 QTLs) for low nitrogen and phosphorus tolerance were shared with

qTN-II_6 at the 2.37–10.28 Mb region on chromosome 6. Earlier, under low nitrogen condi-

tions, Hu et al. [94] identified three QTLs for nitrogen content in shoots by using 116 DH pop-

ulations, which have been developed through anther culture of F1 hybrids from indica rice

variety Taichung Native 1 (TN1) and japonica rice variety ChunJiang 06 (CJ06). One of the

main-effect QTLs, qNCm6-12 (nitrogen content in plant shoots at mature stage), is signifi-

cantly associated with the present QTL related to TN at stage II of fertilizer application. These

QTLs mapped between RM527 and RM3 and explained PV of 9.73%. In addition, Feng et al.

[58] identified 28 QTLs for yield-attributed traits on seven chromosomes under low N condi-

tions. Two QTLs (qPL-6a and qSP-6a) for panicle length and number of spikelets per panicle

explained PV of 15.58% and 6.40% from the analysis of 138 F14 RILs, which were derived from

a super hybrid rice (Xieyou 9308) in China. Another QTL related to absorbed NUE (qaNUE)

was also located in the same position [93]. The remaining seven QTLs were associated with

low P tolerance QTLs. Of these, qPUP_6 was associated with P uptake [95], four QTLs

(qRRDW, qRSDW, qRTDW, and qRPUC) for root traits and P uptake in rice [64], and two

QTLs (qRRL, and qRWRSR) for root growth and weight traits [67]. Interestingly, to date, there

are no reported QTLs matched to/shared with the currently identified major QTL qLC-II_8
(PVE of 22.85%) at the 8.21–8.92 Mb region on chromosome 8, which indicates that these

QTLs are novel loci controlling for LC. However, Shimizu et al. [62], Wang et al. [96], and

Tong et al. [97] reported 11 QTLs associated with LC on chromosomes 1, 2, 3, 4, 7, and 12

under low N and P conditions. As compared to the above studies, the current study identified

four QTLs for LC on chromosomes 8 and 11 that are novel genetic regions under zero fertilizer

conditions. The individual QTLs for LC had PVE ranging from 10.79% to 30.62%.The alleles

from WTR-1 were in the direction of increasing the LC. These results indicate that these DGI

stages of fertilizer application and cluster QTLs were significantly associated with low N, P,

and K tolerances in rice.

Under suboptimal doses of fertilizer, a total of six QTLs (qLC-II_1, qPH-III_2, qPH-IV_3,

qPH-I_5, qTN-III_5, and qTN-III_12) were associated with LC, TN, and PH located on five dif-

ferent chromosomes (1, 2, 3, 5, and 12), explaining an average PV of 19.09%. The smallest

genetic region of qPH-III_2 (0.11 Mb) was located on chromosome 2, and qPH-IV_3 (1 Mb)

was located on chromosome 3. Two QTLs, qPH-I_5 (1.04 Mb) and qTN-III_5 (0.33 Mb), were

located on chromosome 5, and those are not shared with any reported QTLs. Therefore, these

QTLs were considered as novel loci for DGI stages of fertilizer application. The remaining two

QTLs, qLC-II_1 on chromosome 1 and qTN-III_12 on chromosome 12, at 6.15–24.88 Mb

region and 0.85–2.97 Mb region, were shared. A total of three QTLs were related to low N and

two QTLs to low P tolerance traits. Three QTLs (qTNCS_1b, qSY_1b, and qGD_1a) under low

N on chromosome 1 shared the same genetic region with LC-II_1. The first two QTLs for total

nitrogen content of shoot and straw yield were noticed by Cho et al. [54] by using 166 F8 lines

derived from a cross between a Korean tongil type of rice, variety Dasanbyeo, and a Chinese

japonica variety, TR22183. Similarly, Feng et al. [58] identified three QTLs for grain density

(GD) per panicle by using 138 F14 RILs, under low N. One of the QTLs, qGD_1a (6.04% PVE)

located on chromosome 1, was shared with qLC-II_1. Two other QTLs (qRTDW_1 and

qRSDW_1) were shared with qLC-II_1 on chromosome 1. These two QTLs were associated

with low P tolerance. Lastly, chromosome 12 at the 0.85–2.97 Mb region showed the presence
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of two QTLs (qRTHK_12_1 and qRDW_12) for root thickness [100] and root dry weight [99]

by using RILs under low N conditions. On the other hand, for the recommended dose of fertil-

izer, four QTLs (qLC-II_1, qTN-I_9, qTN-II_10 and qPH-III_12) located on four different

chromosomes (1, 9, 10, and 12) had considerable association with earlier reports of several

QTLs related to low P and N tolerance in rice.

For yield-attributed and NUE traits related to QTLs under low N conditions, Lian et al.

[99] and Dai et al. [102] reported a total of 15 main-effect QTLs for root and shoot weight and

13 QTLs distributed on all 12 chromosomes. Of these, two QTLs, for relative root weight,

qRRW_1a [99], and seminal root length, SRL_1.2 [101], on chromosome 1 shared a common

genetic region with qLC-II_1. Similarly, a single QTL, qDRW-9.5 [100], on chromosome 9 was

shared with qTN-I_9 under low N conditions. The genetic region of 4.70–14.56 Mb associated

with qTN-II_10 is shared with two QTLs: for nitrogen accumulation amount, qNAA_10 [102],

and phosphorus uptake, qPUP_10 [53]. Lastly, chromosome 12 at the 5.91–6.59 Mb region is

associated with qPH-III_12 (PVE of 23.06%), which is not shared with any previous reports of

QTLs and is considered to be a novel locus. In summary, among all the shared genetic regions,

QTLs detected on chromosomes 1, 4, 5, 10 and 11 confer N and P deficiency tolerance, those

on chromosomes 3 and 4 confer N deficiency tolerance, those on chromosome 4 confer P defi-

ciency tolerance, and those on chromosome 2 confer K deficiency tolerance in rice. The clus-

ters of QTLs detected under different doses of fertilizer at DGI stages and novel QTLs are

valuable genetic resources to identify useful genes and introgression in elite lines to improve

rice in NuUE.

Putative candidate genes and functions

The development of highly nutrient-responsive genotypes for low nutrient application is

imperative during this era when the area and production of rice are under threat. MAS is one

of the main strategies for accelerating the process of developing lines with higher NuUE. Effec-

tive MAS using major-effect QTLs mainly depends on the highest co-segregation of the mark-

ers and trait. Understanding of the molecular mechanisms and gene structure of the loci

detected increases the efficiency of MAS. Hence, in the present study, we explored the candi-

date genes within the major-effect loci interval region (�1 Mb) and their predicted molecular

and physiological functions. A total of eight putative QTLs detected on five different chromo-

somes (2, 5, 8, 9, and 12) were explored for the candidate gene analysis survey (Table 7). A

total of 120 genes were identified in the promising QTL interval regions. Each QTL has a vari-

able number of underlying associated genes ranging from 3 genes (58.2 kb) on chromosome 3

to 30 genes (711.90 kb) on chromosome 8. In silico analysis revealed that 78.33% of the genes

are functionally annotated while the remaining genes are expressed and hypothetical proteins.

The list of all possible candidate loci and their functions is detailed in S2 Table and Fig 5.

These genes were functionally related to numerous physiological and molecular functions

such as photosynthetic rate, synthesis of chlorophyll precursors, phosphate transporters (pep-

tide transporter), zinc transporters, growth stimulators of auxin-responsive genes, abscisic

acid (ABA) signaling pathways, and activation of various transcription factors, all of which

were found within the promising M-QTL interval regions.

A QTL (qPH-II_2) located at 28.88–29.07 Mb on chromosome 2 associated with PH at

stage II of fertilizer application was neighboring the candidate gene Os02g46140, which

encodes for F-box protein domain involved in several biological functions, is related to phyto-

hormone signaling pathways, and regulates various developmental processes as a part of the

abiotic stress response mechanism [103]. Another candidate gene, Os02g46090, is associated

with calcium signaling pathways. Several families of calcium sensors have been reported and
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they have played major roles in nitrogen metabolism and abiotic and biotic stress response

mechanisms [104]. Recently, researchers identified a novel mutant of the calcium-dependent

protein-kinase-encoding gene, esl4, which is significantly expressed in roots, shoots, and

enzyme activity of several genes related to nitrogen metabolism [105]. Interestingly, two candi-

date genes, a tonoplast-localized low-affinity nitrate transporter, OsNPF7.2 [106], and a tran-

scriptional regulator, GROWTH-REGULATOR FACTOR 4 (OsGRF4), along with a growth

inhibitor of DELLA proteins [107], are located in the same genetic region on chromosome 2.

The hotspot region of the root-specific transporter plays a vital role in intracellular allocation

of nitrate in roots, especially in sclerenchyma, cortex, and stele, and ultimately leads to influ-

ences on plant growth. The interaction of GRF4 and DELLA proteins is involved in physiologi-

cal activities to regulate multiple genes for carbon and nitrogen metabolism, plays a significant

role in the homeostatic coordination of nitrogen metabolism, and also increases shoot biomass

and PH [107,108]. Overexpression and mutant analysis of OsNPF7.2 showed that the signifi-

cant expression of OsNPF7.2 caused an increase in TN by regulating the cytokinin and strigo-

lactone pathway [109]. Another QTL, qLC-I_2 at the 30.45–30.56 Mb region, was found to be

located on chromosome 2, adjacent to another candidate gene, OsGS1;1 (cytosolic glutamine

synthatase), which regulates nitrogen metabolic pathways and also influences plant growth

and development [110,111]. The GS1 proteins have a major role in generating glutamine,

which is the primary form of remobilized nitrogen during natural senescence in leaves for

long-distance transport [112]. In addition to that, qLC-I_2 is adjacent to the diacylglycerolace-
tyl transferase (OsDGAT) (Os02g48350) gene and interacts with OsTCP19 in regulating seed-

ling establishment by modulating stress signaling molecules and abscisic acid pathways in

various abiotic stresses [113].

Three QTLs, qPH-I, qTN-III, and qTN-IV (17.47–18.00 Mb), were found to be located on

chromosome 5 adjacent to Os05g30970, and they encode for copine-like protein. It is mainly

involved in the nutritional role of glutamate for aiding in seedling establishment under nitro-

gen deficiency [114]. In the same position are three other possible putative candidate loci:

Os05g30870 (OsRLCK185), for diverse roles in plant growth and development and stress

responses [115]; and Os05g30240, encoding for pentatricopeptide-repeat protein for upregula-

tion in salt stress conditions [116]. Hence, to overcome nutrient deficiency, balanced mineral

nutrients are essential for optimal plant growth and development. Each of these genes/loci

played a critical role in various physiological and molecular responses such as cytokinins nega-

tively regulating Pi (phosphate) starvation and also regulating metabolic changes under low N

[117,118], and phytohormones such as auxins and seconday metabolites that are involved in

the maintenance of homeostasis, root hair development, and signaling pathways under low

NPK tolerance mechansim [119,120]. Similarly, phytohormones, ABA, jasmonates (JA), and

their associated biosynthetic genes at vegetative and reproductive stages regulate various sig-

naling pathways, leading to adaptation to nutrient deficiency through the root architecture,

and maintaining N, P, and K homeostasis [121–123]. The in silico expression analysis was per-

formed for the candidate genes, Os02g46140, Os02g46090, and Os02g48350 on chromosome 2

and Os05g30970, Os05g30870, and Os05g30240 on chromosome 5 located within M-QTL

regions using RiceXpro [124]. The expression analysis indicated wide differential expression

pattern of these candidate genes (S2 Fig). The high level of expression was observed in ovary

development for the two candidate genes, Os02g46090 and Os05g30240, whereas for the other

genes high level of expression was noticed in spikelet hull (lemma and palea) during the early

stages of seed development and higher expression during roots and panicles development.

Hence, these candidate genes within the M-QTL interval region can be considered as the

promising putative candidate genes. However, further validation and developing functional

markers are necessary for their effective application in breeding programs.
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Conclusions

Genetic dissection of low N, P, and K tolerance at DGI stages of fertilizer application is an impor-

tant target area for modern breeding programs in rice. Hence, in the present study, we identified

the genomic regions that confer low N, P, and K tolerance for favorable agronomic traits at differ-

ent stages of fertilizer application and selected ILs possessing the highest tolerance of low NPK

using three different MPs derived from three donors (HAN, CH448, and Z413). ANOVA and

descriptive statistics indicated the existence of significant genetic variation among the FATs and

the predominance of non-Mendelian inheritance. To identify the genetic factors that influence

these quantitatively inherited traits, QTL analysis was carried out by using the precisely estimated

phenotypic values and high-quality SNPs derived from the tGBS genotyping platform. A total of

19 M-QTLs on different chromosomes were detected. Among these M-QTLs, eight QTLs were

considered as putative QTLs, with the smallest locus size (�1 Mb) contributing the highest toward

trait expression. Among the putative QTLs, qTN-I_92, qTN-III_5, qLC-I_2, and qLC-II_8 detected

under 100%, 80%, and 0% NPK were found to be responsible for transgressive segregation of the

ILs for the trait. Notably, qLC-I_2, qTN-IV_5, and qLC-II_8 detected at zero fertilizer application

showed higher performance for LC under 0% of NPK fertilizer. These QTLs not only help in

building a tolerance of low N, P, and K nutrient simultaneously but also improve genotypes to

make them highly responsive to lower nutrient application. This is one of the remarkable achieve-

ments of the current study, which helps low-input and marginal farmers to cultivate rice without

incurring high fertilizer cost and to eventually ensure food security and sustainable agriculture.

On the other hand, in silico functional annotation of candidate genes within the putative QTLs

indicated that two and five candidate genes found to confer tolerance of low N, P, and K and

related to several physiological and metabolic pathways were also found to be involved in abiotic

stress tolerance. However, additional investigation is needed for further confirmation to examine

the potential physiological and molecular mechanisms. These studies can help in understanding

the underlying complex genetic interactions involved in nutrient use efficiency and the identifica-

tion of more efficient breeding materials containing these genetic factors. Furthermore, the

detected genomic regions related to stage-specific tolerance of low fertilizer doses and promising

ILs can be useful for MAS and future breeding programs for low-input conditions.
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