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Abstract: Recently we established a cell-free assay to evaluate “cholesterol uptake capacity (CUC)”
as a novel concept for high-density lipoprotein (HDL) functionality and demonstrated the feasibility
of CUC for coronary risk stratification, although its regulatory mechanism remains unclear. HDL
fluidity affects cholesterol efflux, and trans fatty acids (TFA) reduce lipid membrane fluidity when
incorporated into phospholipids (PL). This study aimed to clarify the effect of TFA in HDL-PL on
CUC. Serum was collected from 264 patients after coronary angiography or percutaneous coronary
intervention to measure CUC and elaidic acid levels in HDL-PL, and in vitro analysis using recon-
stituted HDL (rHDL) was used to determine the HDL-PL mechanism affecting CUC. CUC was
positively associated with HDL-PL levels but negatively associated with the proportion of elaidic
acid in HDL-PL (elaidic acid in HDL-PL/HDL-PL ratio). Increased elaidic acid-phosphatidylcholine
(PC) content in rHDL exhibited no change in particle size or CUC compared to rHDL containing
oleic acid in PC. Recombinant human lecithin-cholesterol acyltransferase (LCAT) enhanced CUC,
and LCAT-dependent enhancement of CUC and LCAT-dependent cholesterol esterification were
suppressed in rHDL containing elaidic acid in PC. Therefore, CUC is affected by HDL-PL concentra-
tion, HDL-PL acyl group composition, and LCAT-dependent cholesterol esterification. Elaidic acid
precipitated an inhibition of cholesterol uptake and maturation of HDL; therefore, modulation of
HDL-PL acyl groups could improve CUC.

Keywords: high-density lipoprotein (HDL); cholesterol uptake capacity (CUC); phospholipids (PL);
trans-fatty acids (TFA); elaidic acid; lecithin-cholesterol acyltransferase (LCAT)

1. Introduction

High-density lipoprotein (HDL) is a multifunctional lipoprotein that protects against
atherosclerosis. Although the detailed mechanisms are yet to be elucidated, a key func-
tion of HDL to protect cardiovascular events is suggested to be the efflux of cholesterol
from macrophages in the arterial wall, which could be measured as cholesterol efflux
capacity (CEC).

Previous studies have demonstrated a negative correlation between CEC and the
probability of coronary artery disease (CAD) independent of HDL cholesterol (HDL-C)
concentration [1–3]. However, since CEC assays require radiolabeled cholesterol and
cultured cells and time consuming procedures [4,5], application of CEC in clinical settings
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is challenging. To overcome the technical limitations related to CEC, we recently established
a simple, high-throughput, cell-free assay system to evaluate cholesterol uptake capacity
(CUC) as a novel concept for HDL functionality. We have reported an inverse association
between CUC and the recurrence rate of coronary lesions after revascularization in patients
with optimal control of low-density lipoprotein cholesterol (LDL-C) concentrations [6,7].
However, the regulatory mechanism of CUC remains unclear.

Several studies have shown that the ability of HDL to accept cellular free cholesterol
is related to the amount of phospholipids (PL) present in the particle [8,9], and that PL
containing unsaturated fatty acids in their acyl groups increase the fluidity of the HDL
surface and improve cholesterol efflux when incorporated into HDL [10]. In addition, we
recently reported that oral administration of purified eicosapentaenoic acid (EPA) generates
EPA-rich HDL particles, which exhibit cardioprotective properties via the production of
anti-inflammatory lipid metabolites and an increase in cholesterol efflux [11,12]. These
results indicate the importance of acyl groups of PL in HDL functionality.

Trans-fatty acids (TFA) are unsaturated fatty acids with at least one unsaturated double
bond in the trans structure, whose excess intake is considered to be associated with an
increased risk of cardiovascular disease (CVD) [13–17]. Previous studies have shown that
TFA taken orally are incorporated into PL in plasma [18], where they reduce the fluidity
of lipid membranes [19]. Considering that PL are the major lipid component of HDL [20],
these results indicate the possibility that TFA are incorporated into the PL of HDL and
affect its functionality. However, the relationship between CUC and TFA incorporated into
HDL phospholipids (HDL-PL) has not yet been investigated. Therefore, the present study
aimed to clarify the effect of TFA in HDL-PL on CUC.

2. Materials and Methods
2.1. Subjects

The Kobe Cardiovascular Marker Investigation (CMI) registry is a single-center reg-
istry of patients referred to Kobe University Hospital with cardiovascular disease, which
is used to identify blood-based biomarkers that are useful in predicting cardiovascular
disease. The study protocol was in accordance with the ethical guidelines of the 1975
Declaration of Helsinki. The study was approved by the Ethics Review Committee at Kobe
University (Japan) and was registered in the UMIN Clinical Trials Registry (identification
number 000030297). Written informed consent was obtained from all patients prior to
enrollment in the study.

Serum samples were collected from patients who underwent coronary angiography
(CAG) or percutaneous coronary intervention (PCI) and stored at 80 ◦C until measurement.
The inclusion criteria for this study were patients with a history of PCI and follow-up CAG
with or without revascularization between July 2015 and February 2019. Exclusion criteria
were patients who did not have frozen serum samples for any reason.

2.2. Preparation of the apoB-Depleted Serum

Serum samples were thawed on ice and incubated with the same volume of 22%
polyethylene glycol (PEG) 4000 to remove apolipoprotein B (apoB)-containing lipoproteins.
Briefly, each serum sample was mixed with a PEG solution and kept at room temperature
for 20 min. The samples were then centrifuged at 860× g for 15 min to precipitate all
apoB-containing lipoproteins, and the supernatant was collected as apoB-depleted serum.
A previous study that used gel filtration chromatography showed that cholesterol and PL
colocalized in the same fraction as HDL in apoB-depleted serum [21]. Therefore, we used
apoB-depleted serum for the HDL-PL analysis.

2.3. Clinical Variables

Serum levels of hemoglobin A1c (HbA1c), triglyceride (TG), total cholesterol (TC),
LDL-C, HDL-C, and high-density lipoprotein triglyceride (HDL-TG) were measured us-
ing a standard assay at the Clinical Laboratory of Kobe University Hospital. HDL-PL
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levels were assessed by measuring apoB-depleted serum diluted eight times in phosphate-
buffered saline (PBS) at SRL, Inc. (Hachioji, Tokyo, Japan) and calibrated using three-fold
serially diluted pooled serum.

2.4. CUC Assay

The development of the CUC assay has been described previously [6,7]. In this study,
the assay principle was applied to the HI-1000TM system (Sysmex, Kobe, Japan), which
is a fully automated immunoassay system for research applications. In brief, 5 µL of
apoB-depleted serum was diluted in a buffer containing PBS and 0.2% R1 reagent of the
HDL-C Reagent KL “kokusai” (Sysmex, Kobe, Japan) 200 times, and 10 µL of the diluted
apoB-depleted serum was incubated with 90 µL of 1 µM biotin-PEG-labeled cholesterol (the
preparation method is described in Appendix A) in reaction buffer (PBS containing 11%
glycerol, 1.1% Pluronic F-68 (Thermo Fisher Scientific, Inc., Waltham, MA, USA), 0.11 mM
methyl-β-cyclodextrin (Merck KGaA, Darmstadt, Germany), 0.055% liposome (Nippon
fine chemical, Tokyo, Japan), 0.0047% nonion-K230 (NOF, Tokyo, Japan), 0.37% SF08 (NOF,
Tokyo, Japan), and 0.009% oleamide (Kao, Tokyo, Japan)) at 37 ◦C for 1 min. Serum
HDL was captured by an anti-apolipoprotein A1 (apoA1) mouse monoclonal antibody
clone 8E10 (the preparation method is described in Appendix A) coated on magnetic
particles at 37 ◦C for 6 min. After washing the particles with wash buffer (HISCLTM line
washing solution containing 0.1% Pluronic F-68 and 138 mM sodium chloride), 100 µL of
alkaline phosphatase-conjugated streptavidin (Vector Laboratories, Burlingame, CA, USA)
in dilution buffer (0.1 M TEA (pH 7.5) containing 10 mg/mL BSA, 5 mg/mL Casein Na,
1 mM MgCl2, and 0.1 mM ZnCl2) was added and incubated at 37 ◦C for 10 min. After
washing the particles with wash buffer, the chemiluminescent substrate was added and
incubated at 42 ◦C for 5 min, and chemiluminescence was measured as a count. The CUC
assay was standardized using the pooled serum.

2.5. Measurement of Elaidic Acid Incorporated into HDL Phospholipids

One hundred microliters of 50 µM 1,2-dinonadecanoyl-sn-glycero-3-phosphocholine
(19:0 PC; Merck KGaA, Darmstadt, Germany) were added to 200 µL of apoB-depleted
serum as an internal standard, and total lipids were extracted using the Bligh and Dyer
method as described previously [22] and applied to InertSep SI columns (GL Sciences
Inc., Tokyo, Japan). The columns were then washed with 3 mL of chloroform and 3 mL of
acetone. PL were eluted from the columns using 6 mL of methanol, dried under N2, and
methylated with a commercially available kit (Nacalai Tesque, Kyoto, Japan) according to
the manufacturer’s protocol. The concentrations of methylated elaidic acid were measured
using gas chromatography-mass spectrometry (GC-MS). The GC-MS conditions used
for the measurements in this study were described in a previous study [13], except that
the split-less injection mode was adopted to increase the sensitivity, and each value was
standardized using pooled serum.

2.6. Preparation of rHDL

The rHDL particles were prepared using a previously described sodium cholate
dialysis method [12,23]. In brief, the required amounts of 1-palmitoyl-2-oleoyl-sn-glycero-
3-phosphocholine (POPC) (Merck KGaA, Darmstadt, Germany), 1,2-dioleoyl-sn-glycero-3-
phosphocholine (DOPC) (Merck KGaA, Darmstadt, Germany), or 1,2-dielaidoyl-sn-glycero-
3-phosphocholine (elaidic acid PC) (Merck KGaA, Darmstadt, Germany), and cholesterol
(FUJIFILM Wako Pure Chemical Corporation, Osaka, Japan) were mixed and dried under
an N2 gas stream. The dried mixture was dissolved in tris(hydroxymethyl)aminomethane
(Tris)-buffered saline (TBS; 8.2 mmol/L Tris-HCl, 150 mmol/L NaCl, pH 8.0) and supple-
mented with 19 mmol/L sodium deoxycholate until the solution was clear. ApoA1 from
human plasma (Merck KGaA, Darmstadt, Germany) was added to the solution to make a
final phosphatidylcholine (PC)–cholesterol–apoA1 molar ratio of 30:2:1. The mixture was
incubated at 37 ◦C for 1 h and dialyzed against TBS for three days to remove sodium de-
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oxycholate. The protein concentration was measured using the Bradford protein assay. The
samples were subjected to non-denaturing 4–20% gradient polyacrylamide gel (Bio-Rad,
Hercules, CA, USA) electrophoresis and stained with Coomassie Brilliant Blue to visualize
the rHDL particles. Particle size was assigned by comparison with protein standards using
a high molecular weight calibration kit (GE Healthcare, Madison, WI, USA).

2.7. CUC Assay for rHDL

rHDL was diluted in buffer to obtain a final apoA1 concentration of 1 µg/mL, and
the CUC assay was performed with the HI-1000TM system as described above. To evaluate
the effects of lecithin-cholesterol acyltransferase (LCAT) on the CUC assay, recombinant
human LCAT (rhLCAT) (Sino Biological Inc., Beijing, China) or rhLCAT preincubated with
2 mM N-ethylmaleimide (NEM) (FUJIFILM Wako Pure Chemical Corporation, Osaka,
Japan) at 30 ◦C for 30 min were mixed with rHDL to make a final rhLCAT–apoA1 molar
ratio of 1.5:1 or 4.2:1, respectively, and incubated at 37 ◦C for 5 min. The samples were then
diluted in buffer to obtain a final apoA1 concentration of 1 µg/mL, and the CUC assay
was performed. The quantification of apoA1 was conducted using the HI-1000TM system
and standardized using pooled serum. Briefly, an alkaline phosphatase-conjugated anti-
apoA1 mouse monoclonal antibody clone P1A5 (the preparation method is described in
Appendix A) was added to rHDL captured by an anti-apoA1 mouse monoclonal antibody
(8E10)-coated on magnetic particles and incubated at 37 ◦C for 10 min. After washing the
particles with wash buffer, the chemiluminescent substrate was added and incubated at
42 ◦C for 5 min, and chemiluminescence was measured as a count. To improve inter- and
intra-assay precision, the CUC per apoA1 value was used for CUC analysis of rHDL.

2.8. Fluorescence-Based Assay for LCAT Activity

A fluorescence-based assay for LCAT activity was developed according to a previous
study [24]. The rHDL particles containing POPC or elaidic acid-PC, BODIPY-cholesterol
(Avanti Polar Lipids, Alabaster, AL, USA), and apoA1 in a ratio of 30:2:1 were prepared and
used as proteoliposome substrates. The samples were subjected to non-denaturing 4–20%
gradient polyacrylamide gel (Bio-Rad, Hercules, CA, USA) electrophoresis and analyzed
with a ChemiDoc Touch MP (Bio-Rad, Hercules, CA, USA) set at 488 nm for excitation
and 520 nm for emission to detect BODIPY-cholesterol. The same gel was stained with
Coomassie Brilliant Blue to visualize the rHDL particles.

The rhLCAT or rhLCAT preincubated with 2 mM NEM at 30 ◦C for 30 min was mixed
with the proteoliposome substrates to make a final rhLCAT:apoA1 molar ratio of 0.5:1, and
incubated at 37 ◦C for 10–90 min. The lipids were extracted from the samples, dissolved in
30µL of chloroform, and applied to a thin-layer chromatography (TLC) silica gel 60 plate
(Merck KGaA, Darmstadt, Germany), which was then placed into a closed glass tank and
saturated with a developing solvent (petroleum ether, diethyl ether, and acetic acid in
mole portions of 230:60:3). After 25 min, the TLC plate was removed from the tank and
cholesterol spots and esterified cholesterol spots were detected using a ChemiDoc Touch
MP set at 488 nm for excitation and 520 nm for emission. For quantitative analysis of
cholesterol esterification rate, the TLC plate was exposed for 0.2 s and the fluorescence
intensities of both cholesterol spots and esterified cholesterol spots were quantified by
densitometry analysis using ImageJ® software (NIH, Bethesda, MD, USA). The cholesterol
esterification rate was calculated using the following formula:

% Cholesterol esterification rate = (Fluorescence intensities of esterified BODIPY-cholesterol spots derived from each
rHDL/Fluorescence intensities of BODIPY-cholesterol spots derived from rHDL without addition of rhLCAT) × 100.

For visual inspection, exposure time for detecting BODIPY-cholesterol and esterified
BODIPY-cholesterol spots were set to 0.2 and 3.0 s, respectively.
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2.9. Statistics

Statistical analyses of clinical subjects were performed using Stata 16.1 (StataCorp
LLC, College Station, TX, USA), and for rHDL, the GraphPad Prism software version 8.4.3
(GraphPad Software, Inc., San Diego, CA, USA). Categorical variables were expressed
as numbers and percentages, and the p value for differences between two groups was
determined using the Chi-square test. Continuous variables were expressed as mean ±
standard deviation (SD), unless otherwise specified. The p value for differences between
two groups was determined by an unpaired Student’s t-test or the Mann–Whitney test
according to the data distribution and normality. Differences between multiple groups were
determined by one-way ANOVA with Tukey’s or Dunnett’s multiple comparisons test, as
applicable. The relationships between the two numerical variables were investigated using
a simple linear regression analysis. We report Spearman’s rho with corresponding p values.
Statistical significance was set at p < 0.05.

3. Results
3.1. Baseline Patient Characteristics

From the Kobe CMI registry between July 2015 and February 2019, we enrolled 264
patients based on the inclusion and exclusion criteria. The baseline patient characteristics
and laboratory data are shown in Table 1.

Table 1. Baseline patient characteristics and laboratory data.

Variables n = 264

Age 70.8 ± 9.3
Male, n (%) 210 (79.5)

Hypertension, n (%) 204 (77.3)
Dyslipidemia, n (%) 221 (83.7)

Diabetes, n (%) 119 (45.1)
Smoking history, n (%) 180 (68.4)

Statin, n (%) 233 (88.2)
Laboratory data

HbA1c (%) 6.4 ± 1.0
TG (mg/dL) 128.8 ± 71.2
TC (mg/dL) 146.8 ± 31.2

LDL-C (mg/dL) 82.1 ± 26.3
HDL-C (mg/dL) 46.1 ± 12.6

CUC (A.U.) 94.8 ± 20.5
ApoA1 (mg/dL) 118.0 ± 19.3

HDL-PL (mg/dL) 78.0 ± 26.6
HDL-TG (mg/dL) 13.6 ± 6.6

Elaidic acid in HDL-PL (µM) 1.1 ± 0.50
Values are presented as mean ± SD. HbA1c, hemoglobin A1c; TG, triglyceride; TC, total cholesterol; LDL-C, low-
density lipoprotein cholesterol; HDL-C, high-density lipoprotein cholesterol; CUC, cholesterol uptake capacity;
ApoA1, apolipoprotein A1; HDL-PL, high-density lipoprotein phospholipid; HDL-TG, high-density lipoprotein
triglyceride; A.U., arbitrary units.

More than 80% of the patients were receiving statin therapy, and achieved a mean
LDL-C level of less than 100 mg/dL, which is the goal for secondary prevention of coronary
artery disease (CAD) in Japan [25]. The patients in the revascularization (Rev.(+) group had
a significantly higher incidence of diabetes than patients without revascularization (Rev.(–)).
Conversely, CUC and HDL-PL levels were significantly higher in the Rev.(–) patients than
those in the Rev.(+) group. Elaidic acid levels in HDL-PL also tended to be higher in the
Rev.(–) group than in the Rev.(+) group, although this trend was not statistically significant
(Supplemental Tables S1 and S2).
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3.2. The Proportion of Elaidic Acid in HDL-PL Inversely Correlates with CUC

As a first step towards understanding the effect of TFA in HDL-PL on CUC, we as-
sessed the relationship between CUC and HDL-PL and confirmed that CUC was positively
associated with HDL-PL levels (rS = 0.906, p < 0.001) (Figure 1A). Though CUC was also
positively associated with apoA1 levels (rS = 0.683, p < 0.001) (Figure S1A), the value of
correlation coefficient was smaller than that of HDL-PL levels, suggesting that the HDL-PL
level is an important factor in determining CUC.
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Figure 1. Correlations between CUC and the following: (A) HDL-PL levels (rS = 0.906, p < 0.001), (B) elaidic acid in HDL
PL/HDL-PL ratio (rS = −0.275, p < 0.001). CUC, cholesterol uptake capacity; A.U., arbitrary units; HDL-PL, high-density
lipoprotein phospholipid.

To analyze the effect of TFA incorporated into HDL-PL on CUC, we evaluated the
relationship between CUC and elaidic acid in HDL-PL and found that although there was
a positive correlation (Figure S1B); CUC was negatively associated with the proportion of
elaidic acid in the HDL-PL/HDL-PL ratio (rS = −0.275, p < 0.001) (Figure 1B). By contrast,
though oleic acid, a cis analogue of elaidic acid, in HDL-PL also correlated positively with
CUC (Figure S1C), no significant relationship was noted between CUC and the proportion
of oleic acid in HDL-PL (Figure S1D). These results indicate the possibility that elaidic acid
has a negative effect on CUC when incorporated into HDL-PL.

3.3. LCAT-Dependent Enhancement of CUC Is Suppressed in rHDL Containing Elaidic Acid-PC

To investigate the effects of elaidic acid in HDL-PL on HDL size and functionality,
discoidal rHDL containing various molar percentages of POPC and elaidic acid-PC (0–100%
of total PC) were prepared and particle size and CUC were assessed. Native PAGE analysis
showed that particle sizes did not differ significantly between rHDLs (Figure 2A).

Similarly, contrary to our expectation, the elaidic acid-PC content in rHDL did not
affect CUC (Figure 2B), although these results might have been due to the limitations of
CUC analysis using only rHDL.

Under physiological conditions, LCAT is known to bind discoidal small HDLs (pre-
β-HDL) [26,27] and is important for HDL maturation [28]. In peripheral tissues, free
cholesterol effluxes from cells by the ATP-binding cassette transporter A1 (ABCA1) to pre-
β-HDL and is esterified by LCAT. Due to their hydrophobic chemical properties, cholesterol
esters (CE) move to the core of the HDL [29], making it larger and more spherical mature.
Recently, it has been reported that rhLCAT increased CE and enhanced cholesterol efflux
and the maturation of HDL in vivo [30]. Therefore, we hypothesized that the addition of
rhLCAT to rHDL would enable CUC analysis under near-physiological conditions.
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To investigate the effects of LCAT on CUC, rHDL containing POPC was prepared and
the CUC assay was performed in the presence of rhLCAT or rhLCAT pre-incubated with
NEM, which inhibits LCAT activity [31–34]. The addition of rhLCAT to rHDL significantly
enhanced CUC, and LCAT-dependent enhancement of CUC was suppressed by NEM
(Figure 3A).
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Figure 3. LCAT-dependent enhancement of CUC is suppressed in rHDL containing elaidic acid-PC. (A) rHDL containing
POPC was prepared and a CUC assay was performed in the presence of rhLCAT or rhLCAT pre-incubated with NEM.
Values are expressed as the mean ± SD (n = 6). LCAT, lecithin cholesterol acyltransferase; apoA1, apolipoprotein A1; NEM,
N-ethylmaleimide; CUC, cholesterol uptake capacity; A.U., arbitrary units. *** p < 0.001. NS, not significant. Data analyzed
by one-way ANOVA with Tukey’s multiple comparisons test. (B) rHDL containing POPC, DOPC, and elaidic acid-PC
was prepared and a CUC assay was performed in the presence of rhLCAT. Values are expressed as the mean ± SD (n = 6).
* p < 0.05, ** p < 0.01. NS, not significant. Data analyzed by one-way ANOVA with Dunnett’s multiple comparisons test.
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Next, to investigate the effects of elaidic acid in HDL-PL on CUC in the presence of
LCAT, rHDL containing POPC, DOPC, and elaidic acid-PC were prepared and the CUC
assay was performed in the presence of rhLCAT. Although PL contain saturated fatty
acids mainly in the sn1 position [35–37], we used a PC containing elaidic acid in both
the sn1 and sn2 positions as elaidic acid-PC. To confirm the effect of sn1 substitution by
monounsaturated fatty acids, DOPC, which contains oleic acid in both the sn1 and sn2
positions, and POPC, which contains palmitic acid in the sn1 position and oleic acid in the
sn2 position, were used as controls. Although rhLCAT-dependent enhancement of CUC
was observed in all rHDLs, the CUC of rHDL containing elaidic acid-PC was significantly
lower than that of rHDL containing POPC or DOPC (Figure 3B). These findings indicate
that LCAT plays a crucial role in the enhancement of CUC, and elaidic acid has a negative
effect on CUC in the presence of LCAT.

3.4. LCAT-Dependent Cholesterol Esterification Is Suppressed in rHDL Containing Elaidic
Acid-PC

Previous studies have shown that conversion of free cholesterol on HDL to CE by
LCAT increases the capacity of HDL to remove additional cholesterol and maintains the
gradient for cholesterol efflux from cells [29,30]. Therefore, we speculated that elaidic
acid in HDL-PL inhibited LCAT-dependent cholesterol esterification on HDL and affected
CUC. To evaluate LCAT-dependent cholesterol esterification, a fluorescence-based assay
for LCAT activity was developed according to a previous study [24]. First, we prepared
rHDL containing both BODIPY-cholesterol and POPC as a proteoliposome substrate and
confirmed that the fluorescent signal was detected in the same size as rHDL by native
PAGE analysis (Figure 4A).
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Figure 4. Development of a fluorescence-based assay for LCAT activity. (A) rHDL containing both BODIPY-cholesterol and
POPC was prepared and native PAGE analysis was performed in a 4–20% polyacrylamide gel. Standard proteins of known
hydrodynamic diameters were used for the analysis. Samples (1.0 µg proteins) were separated by non-denaturing gel
electrophoresis and stained with Coomassie Brilliant Blue (left). The same Native PAGE gel was analyzed with a ChemiDoc
Touch MP (Bio-Rad) set at 488 nm for excitation and 520 nm for emission (right). (B) rhLCAT or rhLCAT pre-incubated with
NEM was incubated with rHDL containing BODIPY-cholesterol and POPC for 10–90 min at 37 ◦C. The extracted lipids were
dissolved in 30µL of chloroform and applied to the TLC plate. The TLC plate was placed into a closed glass tank, saturated
by a developing solvent (petroleum ether, diethyl ether, and acetic acid in mole portions of 230:60:3). After 25 min, the
plate was removed and the cholesterol spots (Position A) and esterified cholesterol spots (Position B) were detected using a
ChemiDoc Touch MP set at 488 nm for excitation and 520 nm for emission. In order to visualize spots clearly, cholesterol
spots were exposed for 0.2 s and esterified cholesterol spots were exposed for 3.0 s. (C) The TLC plate was exposed for 0.2 s
and cholesterol spots and esterified cholesterol spots were quantified by densitometry analysis using ImageJ® software.
Cholesterol esterification rate was calculated as the percentage of cholesterol esterified during HDL incubation at 37 ◦C in
10 min. Values are expressed as the mean ± SD (n = 5). ** p < 0.01. Data analyzed by unpaired Mann–Whitney test.
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Second, rhLCAT or rhLCAT pre-incubated with NEM was incubated with rHDL for
10–90 min, both BODIPY-cholesterol and esterified BODIPY-cholesterol were separated by
TLC, and fluorescent signals were detected. Fluorescent intensities of esterified BODIPY-
cholesterol increased depending on the incubation time in the presence of rhLCAT, and
this trend was suppressed by pre-incubation of rhLCAT with NEM (Figure 4B). Quanti-
tative analysis also showed that the LCAT-dependent cholesterol esterification rate was
suppressed by NEM (Figure 4C). We concluded from these results that the fluorescence
activity assay for LCAT developed properly.

Finally, to evaluate the effect of elaidic acid in HDL-PL on LCAT-dependent cholesterol
esterification, rHDL containing both BODIPY-cholesterol and POPC or elaidic acid-PC
were prepared as proteoliposome substrates and a fluorescence activity assay for LCAT was
performed. Although the fluorescent intensities of esterified BODIPY-cholesterol increased
depending on the incubation time in the presence of LCAT in both rHDLs (Figure 5A), the
cholesterol esterification rate of rHDL containing elaidic acid-PC was significantly lower
than that of rHDL containing POPC (Figure 5B), demonstrating that elaidic acid suppresses
esterification of cholesterol on HDL when incorporated into HDL-PL.
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Figure 5. LCAT-dependent cholesterol esterification is suppressed in rHDL containing elaidic acid-PC. (A) rHDL containing
both BODIPY-cholesterol and POPC or elaidic acid-PC were prepared and incubated with rhLCAT for 10–90 min at 37 ◦C.
The extracted lipids were dissolved in 30µL of chloroform and applied to the TLC plate. The TLC plate was placed into a
closed glass tank, saturated by a developing solvent (petroleum ether, diethyl ether, and acetic acid in mole portions of
230:60:3). After 25 min, the plate was removed and the cholesterol spots (Position A) and esterified cholesterol spots (Position
B) were detected using a ChemiDoc Touch MP. In order to visualize the spots clearly, cholesterol spots were exposed for 0.2
sec and esterified cholesterol spots were exposed for 3.0 sec. (B) The TLC plate was exposed for 0.2 sec and cholesterol spots
and esterified cholesterol spots were quantified by densitometry analysis using ImageJ® software. Cholesterol esterification
rate was calculated as the percentage of cholesterol esterified during HDL incubation at 37 ◦C for, 10–90 min. Values are
expressed as the mean ± SD (n = 5). * p < 0.05 ** p < 0.01. Data analyzed by unpaired Mann–Whitney test.

4. Discussion

In this study, we demonstrated that CUC, a novel indicator of HDL functionality, was
inversely associated with the proportion of elaidic acid in HDL-PL. In vitro analysis using
rHDL showed that rhLCAT enhanced CUC, and LCAT-dependent enhancement of CUC
was suppressed in rHDL containing elaidic acid in PC compared to rHDL containing oleic
acid, a cis analogue of elaidic acid. Moreover, we found that LCAT-dependent cholesterol
esterification was also suppressed by elaidic acid.

PL are major components of the HDL lipidome, accounting for 40–60% of total HDL
lipids, followed by cholesteryl esters (30–40%), triglycerides (5–12%), and free cholesterol
(5–10%) [20]. In the present study, we found that HDL-PL levels were strongly significantly
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correlated with CUC, which agrees with previous studies that showed a significantly posi-
tive correlation between CEC and HDL-PL levels [38]. In vitro analysis using rHDL also
showed that CEC at a fixed rHDL protein concentration increased in parallel with increas-
ingly enriched PL [39]. Since cholesterol interacts with PL [40], the latter are indispensable
components for maintaining cholesterol in lipid membranes. We believe that our results
reflect the intrinsic mechanism of the affinity between PL and cholesterol.

Previously, we showed that serum elaidic acid levels were elevated in middle-aged
patients with CAD and/or metabolic syndrome in Japan [13]. We also showed that elevated
serum elaidic acid levels were associated with the incidence of target vessel revasculariza-
tion (TLR) in the same-age Japanese generation with CAD [14]. Dietary TFA are reported
to be associated with increased LDL-C and TG, as well as reduced HDL-C [41], suggesting
that the adverse effects of TFA on lipoprotein quantity and function may contribute to the
increase in CVD events. Nevertheless, the effects of TFA on HDL functionality have not
been completely elucidated.

In this study, both CUC and HDL-PL levels were significantly higher in the Rev.(–)
group than in the Rev.(+) group. Accompanied by the increase in HDL-PL levels, the elaidic
acid levels in HDL-PL also tended to be higher in the Rev.(–) group than in the Rev.(+)
group. However, this trend was not statistically significant. To investigate the effect of the
elaidic acid composition of HDL-PL on CUC, we examined the relationship between the
proportion of elaidic acid in HDL-PL (elaidic acid in HDL-PL/HDL-PL ratio) and CUC,
and found a negative correlation. By contrast, oleic acid, a cis analogue of elaidic acid,
showed no such relationship. These results suggest that not only the amount of PL but also
the composition of PL is a factor in determining CUC, and that the increased proportion of
elaidic acid in HDL-PL has a negative effect on CUC.

In the present study, we found that the addition of rhLCAT to rHDL enhanced CUC,
and LCAT-dependent enhancement of CUC was suppressed in rHDL containing elaidic
acid in PC when compared to rHDL containing oleic acid, a cis analogue of elaidic acid.
A previous study showed that the incorporation of structurally linear elaidic acid into
PL reduces the fluidity of lipid membranes [19]. Therefore, elaidic acid could reduce the
surface fluidity of HDL and attenuate CUC in the presence of LCAT. Additionally, the
present study showed that LCAT was less reactive to PC containing elaidic acid than PC
containing oleic acid, and affected the efficiency of cholesterol esterification in rHDL. A
previous study showed that cholesterol esterification contributed to HDL maturation and
increased the capacity of HDL to remove cholesterol [29,30]. Therefore, elaidic acid may
affect the esterification of cholesterol in addition to membrane fluidity, thereby inhibiting
cholesterol uptake and maturation of HDL. Although the mechanism by which elaidic acid
affects LCAT reactivity has not been fully elucidated, considering that substrates of PL
need to move into the active site of LCAT from HDL through the path that is made by the
interaction between LCAT and apoA1 [42], elaidic acid may decrease the surface fluidity of
HDL and reduce the efficiency of providing substrates of PL to LCAT through the path.

In this study, we did not perform a detailed structural analysis to elucidate how rHDL,
which contains elaidic acid-PC, undergoes structural changes upon reaction with rhLCAT.
Recently, the binding mode of LCAT and HDL was analyzed using negative stain electron
microscopy (EM), validated with hydrogen–deuterium exchange mass spectrometry (HDX-
MS) and crosslinking coupled with mass spectrometry (XL-MS) [42]. Adaptation of these
techniques for rHDL analysis may reveal more detailed effects of elaidic acid-PC on LCAT-
dependent HDL maturation in the future.

Recently, much attention has been focused on restoring or regulating HDL function
to prevent atherosclerosis. Previously, we found that EPA enhanced CEC when it was
incorporated into HDL [11,12]. In the present study, we found that elaidic acid incorporated
in HDL-PL negatively affected CUC. In view of these results, modulation of the PL acyl
groups may be an effective strategy to improve HDL function. CUC was significantly
enhanced in the presence of rhLCAT. Recently, therapeutic concepts for coronary heart dis-
ease and atherosclerosis using recombinant LCAT protein or an LCAT activator have been



Nutrients 2021, 13, 3112 11 of 14

proposed, and dose-dependent increases in HDL-C along with the enhancement of choles-
terol efflux or in vivo reverse cholesterol transport (RCT) have been demonstrated [30,43].
Considering the enhancement of CUC in the presence of rhLCAT, as shown in this study,
CUC may change in response to these molecules, in a manner similar to cholesterol efflux.

Study Limitations

This study has several limitations. First, because CUC is determined by a cell-free
assay, CUC does not reflect the ABCA1 mediated cellular binding of apoA1 and the unidi-
rectional export of cholesterol and PL to lipid-free/-poor apoA1 [7], which is considered as
the first step of reverse cholesterol transport. Hence, the effect of elaidic acid in HDL-PL
on cholesterol efflux remains to be elucidated. Second, we assessed rHDL containing only
elaidic acid in PC for in vitro analysis. Since the concentrations of elaidic acid in vivo
are much lower than those of other fatty acids, HDL containing such a highly enriched
elaidic acid does not exist in vivo. However, considering the inverse association between
CUC and the proportion of elaidic acid in HDL-PL observed in the correlation study using
serum samples, we believe that our results reflect the intrinsic effect of elaidic acid on HDL.
Further elucidation is required to address this issue. Third, although we used PC, which
contains elaidic acid in both the sn1 and sn2 positions, as elaidic acid-PC, it is not consistent
with a previous study that showed that PL contains saturated FA at position sn1 and unsat-
urated FA at position sn2 [35–37]. However, a previous study that assessed the membrane
fluidity by steady-state fluorescence polarization of the probe diphenylhexatriene (DPH)
showed that lipid membranes made from trans-containing PC (trans-PC) were less fluid
than lipid membranes made from cis-containing PC (cis-PC), regardless of the position
of incorporation (sn1 only, or both sn1 and sn2 of the glycerol backbone) [19]. Hence, we
believe that the type of elaidic acid-PC used in our rHDL analysis did not affect the conclu-
sions of this study. Fourth, we assessed rHDL containing the same amount of apoA1 for
in vitro analysis. Since the interaction of LCAT to apoA1 enhances the enzymatic activity
of LCAT [42], the amount of apoA1 per HDL particle and post-translational modifications
of apoA1 such as nitration [44] may affect the LCAT-dependent cholesterol esterification
and CUC. To address this issue, a comprehensive analysis using rHDL containing different
amounts and qualities of apoA1 is needed.

Lastly, we did not assess the effects of polyunsaturated fatty acids, which may enhance
lipid membrane fluidity. Further studies, such as comprehensive lipid profile assessment
of HDL and analysis of rHDL composed of other types of phospholipids are needed to
generalize the present findings.

5. Conclusions

The present study revealed that CUC is affected by the HDL-PL level. Moreover, CUC
was negatively associated with the proportion of elaidic acid in HDL-PL, suggesting that the
composition of HDL-PL is also a determinant factor of CUC. In vitro analysis using rHDL
showed that CUC was positively affected by LCAT-dependent cholesterol esterification,
whereas the incorporation of elaidic acid in HDL-PL attenuated the cholesterol esterification
efficiency by LCAT in addition to decreasing the fluidity of the HDL surface as reported
previously, thereby inhibiting the process of cholesterol uptake and maturation of HDL.
Further analysis to elucidate the regulatory mechanisms of CUC will lead to new diagnostic
and therapeutic strategies for atherosclerosis and cardiovascular disease.
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Appendix A. Supplemental Methods

Appendix A.1. Generation of Mouse Monoclonal Antibody 8E10 and P1A5

Hybridoma cell lines were generated by immunizing C57BL/6 mice with recombinant
human apoA1 protein (Merck KGaA, Darmstadt, Germany). Mouse immunization and
generation of hybridoma cell lines were outsourced to the Cell Engineering Corporation
(Osaka, Japan). Hybridoma culture supernatants containing antibodies with the desired
binding specificity for equal recognition of non-oxidized and oxidized HDL were screened
by ELISA. In brief, 1µg/mL of recombinant human apoA1 protein or apoB-depleted serum
with an apoA1 concentration of 1µg/mL, diluted in PBS, were immobilized on 96-well
plates at 37 ◦C for 1 h. After washing the wells with PBS, PBS with or without hydrogen
peroxide (H2O2), sodium nitrite, and diethylenetriaminepentaacetic acid (DTPA) solution
(final concentrations of 1 mol/L, 200 µmol/L, and 100 µmol/L, respectively) were added
to the wells and incubated at 37 ◦C for 1 h. The wells were washed with PBS and blocked
with 2% BSA in PBS at 25 ◦C for 1 h. The plates were then incubated with hybridoma
culture supernatant at 25 ◦C for 1 h, followed by the addition of horseradish peroxidase
(HRP)-conjugated goat anti-mouse IgG (Dako, Glostrup, Denmark) at 25 ◦C for 30 min.
The wells were washed with PBS five times, SuperSignal ELISA pico chemiluminescent
substrate (Thermo Fisher Scientific, Inc., Waltham, MA, USA) was added to the wells, and
the chemiluminescence signal was measured using an Infinite F200 Pro microplate reader
(Tecan, Mannedorf, Switzerland). The mAb 8E10 and P1A5 were selected by screening for
equal recognition of lipid-free (recombinant protein) and lipidated (apoB-depleted serum)
apoA1 under native conditions, as well as after oxidation by exposure to H2O2/NO2

−. In
order to obtain sufficient antibodies for this study, mAb 8E10 was purified from the ascites
fluid of ICR nude mice by Protein A-Sepharose chromatography. Preparation of mouse
ascites fluid and purification of mAb 8E10 and P1A5 were outsourced to Kitayama Labes
(Nagano, Japan).

Appendix A.2. Synthesis of Biotin-PEG7-Cholesterol

Fifteen milligrams of 3β-Hydroxy-∆5-cholenic Acid (Wako) were dissolved in 500 µL
of N,N-dimethylformamide. Then, 7.7 mg of 1-Ethyl-3-(3-dimethylaminopropyl) carbodi-
imide, hydrochloride (Dojindo), 4.6 mg of N-hydroxysuccinimide (Merck KGaA, Darm-
stadt, Germany), 23.8 mg of Biotin-PEG7-amine (BroadPharm), and 8.4 µL of triethylamine
(Wako) were added, and the resulting solution was stirred at room temperature for 2 h.
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Silica gel column chromatography (10% methanol in chloroform) yielded Biotin-PEG7-
cholesterol as a clear solid (4% yield). LC-MS (m/z): 951.4 [M + H]+.
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