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The hallmarks of renal cell carcinoma (RCC) are angiogenesis and immunogenic

tumor microenvironment. Over the past decades, treatment options for metastatic

RCC (mRCC) have been expanding, from the inhibition of vessel formation via

antiangiogenic agents (AAs) to the stimulation of immune system by immune checkpoint

inhibitors (ICIs). Since 2005, the introduction of antiangiogenic agents targeting vascular

endothelial growth factor (VEGF), its receptors (VEGFRs), and mammalian target of

rapamycin (mTOR) pathway have experienced moderate success in the therapeutics

of mRCC, but patient outcomes remain suboptimal. Recently, the development of ICIs

targeting cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) and the programmed

death-1/programmed death ligand 1 (PD-1/PD-L1) pathways has dramatically changed

the treatment landscape of mRCC. Expressly, the combination of ipilimumab and

nivolumab has been confirmed to improve clinical outcomes and approved as a standard

care for intermediate- or poor-risk mRCC patients. Nevertheless, innate or adaptive

drug resistance is observed within both treatment approaches, limiting overall clinical

benefit. This phenomenon will underscore the urgent need for new combinational therapy

strategies with different mechanisms of action, which can improve efficacy in an extended

patient population without severe toxic effects. In 2019, as the results of two critical phase

III trials came to light, FDA approved axitinib plus avelumab, or pembrolizumab as first-line

standard management for mRCC, which cements the combination of AAs plus ICIs and

advances the mRCC treatment field. This review summarizes current evidence on the

interplay and synergies between AAs and immunomodulating drugs in mRCC, focusing

on the theoretical background and the status of current clinical development.

Keywords: metastatic renal cell carcinoma, tumor microenvironment, vascular endothelial growth factor (VEGF),

antiangiogenic agents, immunotherapy, immune checkpoint inhibitors (ICI), immunomodulation

INTRODUCTION

Kidney cancer is amid the ten most common cancers in both men and women, with more than
400,000 cases worldwide in 2018 (1). RCC is the predominant type of kidney cancer, and 85%
of RCC is identified as the ccRCC histological subtype (2). In recent years, it was observed that
incidence rates of RCC have been climbing. Part of the reason is the incidental detection of renal
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masses during abdominal imaging among higher-income
settings. Though most detected tumors are small, the locally
advanced disease was still diagnosed in a striking proportion
of patients, with up to 17% of patients initially diagnosed with
distant metastases (3). RCC remains a poor prognosis, despite
the progress in RCC diagnosis and management over the past
two decades. Locally advanced and mRCC have historically
been challenging to treat, due to characteristically resistance
to standard chemotherapies, radiotherapies, and hormonal
therapies, with treatment options traditionally limited (4). Before
the development of targeted therapy, cytokine-based (IL-2 and
IFN-α) immunotherapy was approved as the standard care for
mRCC, despite the durable long-term responses and prolonged
survival in a tiny proportion of patients. These agents bring
about significant toxicity by activating the immune system in a
non-specific manner, and are unable to identify which patients
are likely to respond. Thus, the future widespread use has been
precluded (5–7).

As our basic knowledge on RCC tumorigenesis increased,
it has translated into the initially successful development
and application of targeted agents in RCC management. In
particular, VEGF-targeting antiangiogenic agents have been
most widely used in the first-line treatment setting. Sorafenib
gained FDA approval in 2005, quickly followed by others,
including sunitinib, pazopanib, axitinib, and cabozantinib (8–
12). Though antiangiogenic therapy can provide remarkable
short-term clinical benefits in objective response rate (ORR)
and progression-free survival (PFS), it commonly develops into
therapeutic resistance, and hence rarely produce enduring long-
term responses or survivals (13).

Based on a deeper understanding of T cell activation, the
establishment of ICI has brought a golden era in mRCC
therapeutic landscape (14, 15). The two main types of ICIs
target CTLA-4 and PD-1/PD-L1 (Figure 1). CTLA-4 is a
receptor present on T cells where it acts as a brake on T
cell activation. Thus, inhibition of CTLA-4 aims at a relief of
this kind of obstacle, and allowing the native immune system
to instigate antitumor immunity. PD-1 is also present on T
cells, leading to down-regulation of immune responses when
bound to its ligand PD-L1. Tumor cells often express PD-L1
to mediate this blockage. Thus, the strategy of inhibiting PD-
1 or PD-L1 is to prevent this down-regulation of antitumor
immunity (16). Nivolumab, a monoclonal antibody targeting
PD-1, was the first ICI approved in mRCC treatment, showing
longer overall survival (OS) of patients following antiangiogenic
therapy, and fewer grade 3 or 4 adverse events occurred
compared to everolimus (17, 18). Accumulating evidence,
however, demonstrates that not all patients may benefit from

Abbreviations: AA, Antiangiogenic Agent; CAR-T, Chimeric Antigen Receptor

T-Cell; CTLA-4, Cytotoxic T-lymphocyte-Associated Protein 4; DC, Dendritic

Cell; ICI, Immune Checkpoint Inhibitors; IMDC, International Metastatic

Database Consortium; MDSC, Myeloid-Derived Suppressor Cell; MHC, Major

Histocompatibility Complex; ORR, Objective Response Rate; OS, Overall

Survival; PD-1/PD-L1, Programmed Death-1/Programmed Death Ligand-1; PFS,

Progression-Free Survival; RCC, Renal Cell Carcinoma; TIL, Tumor Infiltrating

Lymphocyte; TKI, Tyrosine Kinase Inhibitors; Treg, Regulatory T cell; VEGF,

vascular endothelial growth factor.

single-agent immunotherapy, underscoring that combination
regimens can improve efficacy in broader groups of patients
without exacerbating toxic effects (19). Since then, multiple kinds
of research that explore various ICI combination regimens have
emerged (20).

The combination of nivolumab and ipilimumab was the first
step in this direction. In CheckMate 214 (21), a pivotal phase
III trial, a combination strategy, nivolumab plus ipilimumab,
indicated statistically superior median OS and higher ORR
in patients with intermediate- and poor-risk disease by
international metastatic database consortium (IMDC) criteria
compared with sunitinib, thus leading to the FDA approval as a
first-line treatment in 2018.

Current clinical investigations have focused on evaluating
combination regimens containing ICIs and VEGFR-directed
tyrosine kinase inhibitors (TKIs). Last year, three crucial phase III
trials released their preliminary result, and two of them shortly
got FDA-approval as standard treatment approaches for mRCC
in the first-line setting.

In this review, we discussed the appropriate use of
combination therapy (AAs plus ICIs) in mRCC, and purveyed
an overview of the mechanisms and preclinical rationale of this
strategy, including the potential role that AAs may play on tumor
microenvironment and host immunity. The progresses of clinical
trials, efficacy evidence and current controversies of combination
regimens were summarized and discussed also.

ANGIOGENESIS AND IMMUNE
SUPPRESSION IN RCC
MICROENVIRONMENT

ccRCC, the dominant histologic subtype of RCC, is closely
associated with mutation or inactivation of the von Hippel-
Lindau (VHL), tumor suppressor gene that encodes VHL
protein which is a key component of the cellular oxygen-
sensing pathway (22, 23). Specifically, VHL protein is a
crucial member of the ubiquitin ligase complex which
can degrade hypoxia-inducible factor (HIF) subunits HIF-
1α. When VHL gene is lost or inactivated, HIF-1α over
accumulates. Subsequently, HIF-1α over-accumulation drives
the cellular hypoxic response, resulting in transcription
of several target genes involved in angiogenesis, oxygen
transport, glucose uptake and metabolism, cell proliferation, and
chemotaxis, which leads to carcinogenesis eventually (24–26).
Enhanced angiogenesis, therefore, is one of the signatures
of clear-cell RCC. Meanwhile, this disbalance of pro- and
anti-angiogenic factors brings about numerous structural
and functional abnormalities in tumor vessels characterized
by irregular shape, tortuousness, hyperpermeability,
lack of pericytes. All these changes induce an abnormal
blood flow with resultant tumor cell extravasation, T
cell intratumoral infiltration, and altered antitumor agent
delivery (27).

On the other hand, it is widely regarded that RCC has
a unique immune microenvironment (28). Perhaps more
than any other solid tumor type, RCC is infiltrated with
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FIGURE 1 | (A) Anti-CTLA-4 agents enhance T cell activation. CTLA-4 has a higher affinity for B7 than CD28. CTLA-4/B7 ligation reduces CD28/B7 ligation and then

suppresses T cell activation. On the other hand, the interaction between CTLA-4 and B7 inhibits the stimulatory signals produced by TCR/MHC and CD28/B7

binding. Antibodies targeting CTLA-4 deplete CTLA-4 from the tumor microenvironment and thereby enhance T cell activation; (B) Anti-PD-1/PD-L1 agents enhance

the anticancer activity of T cells. PD-1/PD-L1 ligation inhibits T cell activation and TCR signal. Antibodies targeting PD-1 or PD-L1 can block the PD-1/PD-L1 pathway

to reactivate tumor antigen recognition as well as the proliferation, infiltration, and activation of cytotoxic CD8+ T cells.

immune cells of various phenotype and function (29, 30).
Mass cytometry has been used to comprehensively described
tumor resident T cell from 73 ccRCC patients with different
stages. T cells were the most common immune subset (50%)
followed by tumor-associated macrophages (25%), natural
killer cells (9%), B cells (4%) and other subsets (31). In
line with other evidence, tumor-infiltrating T cells were
predominantly CD8+ cells. However, the high levels of CD8+

T cell infiltration in RCC is associated with worse outcome,
which is in contrast to most other tumor types, indicating
that infiltrating CD8+ T cell pool is probably dominated by
nearly exhausted T cells (32, 33). This negative correlation
is likely attributed to the high expression of PD-1, CTLA-
4, other immune checkpoint proteins on these invading T
cells, and the impaired cytolytic function through interaction
with other cells in tumor environment, such as myeloid-
derived suppressor cells (MDSCs), which proved to suppress T
cell and dendritic cell (DC) function (34, 35). Indeed, many
studies on RCC microenvironment have reported defective T
cell with dysfunctional cytotoxicity and ineffective tumor cell
killing (36–39).

Taken together, the TME of RCC features high levels of

angiogenic mediators, chemokines, and incapacitated T cells

affected by checkpoint regulation or the immunosuppressive
effects of MDSCs.

BIOLOGICAL RATIONALE FOR COMBINED
AA AND IMMUNE-ACTIVATING THERAPY

There is a broad sense that tumor immune evasion closely relates
to angiogenesis, and, in turn, tumor angiogenesis highly depends
on immunosuppressive microenvironment, which is companion
processes in tumorigenesis (Figure 2) (40). Mounting evidence
now show that elevated level of VEGF in tumor lesion may
cause suppression in both innate and adaptive immune response,
and increased serum or tumor VEGF levels are associated
with unfavorable prognosis in mRCC patients (41). Reportedly,
VEGF can inhibit the innate immune system via hampering the
transcriptional program required for maturation of DCs, the
critical cells in immune activation, and increasing the presence
of MDSCs, which represent a heterogeneous population of cells
that accumulate in tumor-bearing hosts, characteristic by their
potent immune-suppressive activity against cytotoxic tumor-
infiltrating lymphocytes (TIL) (42–45). VEGF also inhibits the
adaptive immune system through blocking the differentiation of
progenitor cells into CD4+ and CD8+T cells (46). Additionally,
potent immunosuppressive factors, like inhibitory molecules on
T cells (PD-1) and immunosuppressive cytokines (IL-10, TGF β),
are also boosted by HIF-1α activation (47).

Multiple compelling data with promising insights into
the potentiality of AAs, especially targeting VEGFR, as
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FIGURE 2 | The interplay between the immune system and angiogenesis in renal cell carcinoma.

immunomodulators have been unveiled. Preliminary evidence
has indeed demonstrated that anti-angiogenesis, especially
targeting VEGF, might reverse the immunosuppression in tumor
microenvironment of RCC, potentially promoting the efficacy
of subsequent immunotherapy (48, 49). Initially, in clinic, the
synergy of AA, bevacizumab, plus immunotherapy (IFN-α),
although not by checkpoint inhibitors, has been demonstrated
by two large randomized phase III trials in previously untreated
mRCC patients, with improved PFS and ORR compared with
IFN-α alone, leading to FDA-approval as a first-line treatment
option in mRCC (6, 50). Permanently discontinued treatment
caused by treatment-related adverse events were frequently
observed in combined treatment groups.

At present, the development of ICIs provides us a new chance
to reconsider the balance between efficacy and toxicity.

A preclinical study in mice reported that tumor-associated
VEGF enhanced expression of PD-1 and other inhibitory
checkpoints involved in CD8+ T cell exhaustion, such as CTLA-
4, TIM-3, and LAG-3, and targeting VEGF reverted expression
of inhibitory checkpoints (51). Similarly, another preclinical
mice RCC model showed synergistic antitumor activity of the
combination of suntinib plus a murine anti-PD-1 antibody, with
greater numbers of tumor infiltrating lymphocytes than any other
controls treated with each agent alone (52). In 2008, for the
first time it was shown in 42 mRCC patients, that sunitinib
decreased the presence of regulatory T cells (Treg) and MDSCs
in the peripheral blood, accompanied by an improved Th1
response and reverses type-1 immune suppression in mRCC

patients (53). Consistently, in 2009, a study conducted by Ko
et al. indicated that sunitinib-based treatment has the potential to
regulate antitumor immunity by decreasing the absolute number
and percentage of circulating Tregs and MDSCs, demonstrating
reversal in immune suppression. In 23 mRCC patients receiving
to 50mg sunitinib daily for 28 days followed by 14 days of rest for
6 weeks (54). Research exploring microenvironmental immune
components demonstrated potential synergism of VEGF-TKI
and anti-PD-L1 treatment in a neoadjuvant setting (55). The
expansion of CD8+ TIL and reduction in MDSCs were observed
in tumor digests from RCC patients who received sunitinib
prior to the surgery, compared with those who were treatment-
naïve. These TIL products contained more PD-1 expressing TIL,
while the Treg infiltration was not altered. These data provide
a rationale for combining sunitinib with PD-1/PD-L1 blockade,
either synchronously, or sequentially.

Insight into how different AAs may vary in their competence
in regulating TME is still limited. Unlike sunitinib, the
detrimental effects of sorafenib on immune-modulating
have been reported. This TKI seems to interfere with the
progress of maturation and antigen presentation of DCs by
downregulating the expression of major histocompatibility
complex (MHC) and costimulatory molecules, as well as
declining production of immunostimulatory cytokines (56).
On the other hand, it was reported that sorafenib could
decrease the percentage of circulating and tumor-infiltrating
Tregs (57, 58), making the immune condition to a more
stimulatory setting.
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Regarding pazopanib, it was reported that it could
reduce the expression of VEGFR1 and VEGFR2 to offset
the immunosuppressive effects of VEGF, which affect DC
maturation, and restore property DC immune stimulation by
downregulating the Erk/β-catenin pathway (59, 60).

A small-scale study presented that pazopanib, but not
sunitinib, sharply improved the antigen-presenting function of
DCs, together with DC-maturation markers HLA-DR, CD40,
and CCR7 upregulated, in RCC patients (61). This phenomenon
may lie in the diversity of immune regulation effect and a similar
pattern of receptor recognition displaying different affinities for
VEGFR among agents (62). Besides, pazopanib decreases the
absolute number of MDSCs, Tregs and CD14+ monocytes and
triggers CD8+ lymphocytes and T cell memory Th1 response
(63). Conflicting data also exist, a multicenter phase II trial
showed a clear association between presurgical pazopanib and
declined CD8+ T cell infiltration and increased PD-L1 expression
by biomarker analysis from sequential tissue samples (64).

In terms of bevacizumab, data released by Wallin et al.
(65) demonstrated that enhanced trafficking of lymphocytes
and high CD8+ T cell infiltration had been found after
combination therapy of bevacizumab plus atezolizumab in
mRCC patients. Concomitantly, a related increase was observed
in intra-tumoral major histocompatibility complex-1 (MHC-I)
protein expression, Th1 and T-effector markers, and chemokines,
especially CX3CL1. More recently, in neoadjuvant treatment,
presurgical bevacizumab has been noted to reduce CD68+

macrophages in ccRCC patients, preventing macrophages cell-
mediated immune-suppression (66). Cabozantinib has also been
observed to increase intratumoral CD8+ T cell infiltration, as
well as decrease the number and activity of MDSCs infiltration in
several preclinical models which designed to explore the effects
of cabozantinib on the immune cells function and immune
microenvironment (67, 68).

CURRENT THERAPEUTIC LANDSCAPE

A series of clinical trials have been conducted to evaluate
the antineoplastic effects of ICIs and AAs combinations.
In this review, a systematic study collection was performed
from Cochrane Library, ClinicalTrials, MEDLINE and PubMed
databases up to April 10th, 2020. Search terms we used
included “renal cell carcinoma,” “nivolumab,” “pembrolizumab,”
“atezolizumab,” “avelumab,” “durvalumab,” “ipilimumab,” or
“immune checkpoint inhibitor” with “sunitinib,” “axitinib,”
“cabozantinib,” “apatinib,” “pazopanib,” “lenvatinib,” “sorafenib,”
or “bevacizumab,” and related and expanded MeSH terms. Also,
we expanded our search to recent reviews. Studies involving
concurrent intervention of ICIs and AAs were eligible. The
population of interest was patients histologically or cytologically
confirmed RCC with clear cell component or sarcomatoid
features. Trials were excluded when involving other cancer
patients or combining other kind of intervention unless outcome
could be isolated.

In 2019, results of two widely anticipated trials were unveiled
in the same issue of the New England Journal of Medicine.

KEYNOTE-426 study is an open-label phase III study designed to
assess the efficacy and safety of pembrolizumab plus axitinib vs.
sunitinib monotherapy in treatment-naïve patients with mRCC
(69, 70). After a median follow-up period of 12.8 months,
pembrolizumab plus axitinib seemed to be superior to sunitinib
only in ORR (59 vs. 35%) and mPFS (15.1 vs. 11.1 months; HR=

0.69, 95% CI 0.57–0.84) regardless of the risk groups. The most
promising data set was the OS: 89% of combination arm and
78.3% of sunitinib control arm were alive after 12-month follow-
up (HR for death, 0.53; 95% CI 0.38–0.74; p < 0.0001). Toxicities
were comparable between the two groups.

In a similarly designed randomized multicenter phase III
trial (Javelin Renal 101), 886 enrolled treatment-naïve patients
with advanced RCC were assigned to receive either avelumab
plus axitinib or sunitinib monotherapy (n = 444) (71). The co-
primary endpoints were PFS and OS in the PD-L1 positive (PD-
L1+) patients, which occupied 63% of the randomly selected
population. PFS analysis was in favor of the combination regimen
for PD-L1+ patients (13.8 vs. 7.2 months; HR = 0.61, 95% CI
0.475–0.790) and the overall population (13.8 vs. 8.4 months; HR
= 0.69, 95% CI 0.563–0.840). The confirmed ORR in avelumab
plus axitinib group and sunitinib group was 55.2 vs. 25.5%,
respectively, and, above all, the efficacy of combination arms was
consistent across the IMDC risk groups. As of the study reported,
OS analysis was still immature. Taken together, results from
these trials promoted recent FDA approvals of pembrolizumab or
avelumab plus axitinib in the first-line management of advanced
RCC, cementing the ICIs plus AAs strategy and improving the
therapeutic landscape of mRCC.

Another phase III IMmotion151 trial compared the
combination of atezolizumab plus bevacizumab to sunitinib as
first-line management for mRCC patients (72). In the subset
of patients who were PD-L1+ interim analysis confirmed that
combinational treatment group prolonged PFS (11.2 vs. 7.7
months, HR 0.74; 95% CI 0.57–0.96) and ORR (43 vs. 35%),
amid whom complete response reached 9%. Meanwhile, patients
received atezolizumab plus bevacizumab suffered fewer grade
3/4 adverse events compared to sunitinib only (40 vs. 54%,
respectively). Matured OS data are pending, and longer-term
follow-up is required to evaluate whether a survival benefit will
finally emerge (12).

It is worth mentioning that the tolerability and safety of
newer combination regimens should be carefully balanced to
that of monotherapies. CheckMate 016 (73) was the first clinical
trial to examine the tolerability and safety of combination
immunotherapy in advanced RCC. This multicenter phase I
study had 5 treatment arms, including the combination of
nivolumab with either TKIs, sunitinib, or pazopanib. This
combination did exhibit antitumor efficacy. The ORR was
54.5% in nivolumab plus sunitinib (N+S) group and 45%
in nivolumab plus pazopanib (N+P) group, but hepatic and
renal toxicity was much higher than expected. Reportedly, all
patients assigned to the ICIs plus VEGF–TKIs combination
arms experienced treatment-related adverse events, with 81.8 and
70% of patients developing grade 3–4 side events, in N+S and
N+P arm, respectively. The most common grade 3–4 adverse
events were hypertension, liver enzymes rise, hyponatremia, and
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TABLE 1 | Clinical trials investigating antiangiogenic therapy in combination with immune checkpoint inhibitors in patients with mRCC.

Clinicaltrials gov

number/trial name (if

applicable)

Phase ICIs AAs Primary

endpoint

Estimated study

completion date

Therapy lines

NCT02420821 (IMmotion151) III Atezolizumab Bevacizumab OS 2,021 First line

PFS

PD

NCT02853331

(KEYNOTE-426)

III Pembrolizumab Axitinib PFS 2,022 First line

OS

NCT02684006

(JAVELIN Renal 101)

III Avelumab Axitinib OS (PD-L1+) 2,024 First line

PFS (PD-L1+)

NCT02811861 (CLEAR) III Pembrolizumab Lenvatinib PFS 2,022 First line

NCT03937219 (COSMIC-313) III Nivolumab

ipilimumab

Cabozantinib PFS 2,024 First line

NCT03141177 (CheckMate

9ER)

III Nivolumab Cabozantinib PFS 2,024 First line

NCT03172754 II Nivolumab Axitinib ORR 2,024 First line

AEs

NCT03736330 II Pembrolizumab Axitinib ORR 2,021 First line

NCT02501096 Ib/II Pembrolizumab Lenvatinib MTD 2,020 Second line

DLTs

ORR

NCT03149822 I/II Pembrolizumab Cabozantinib ORR 2,020 First line

NCT02210117 I Ipilimumab Bevacizumab Safety 2,020 Neoadjuvant

Tolerability

NCT03680521 II Nivolumab Sitravatinib ORR 2,020 First line

AAs, Antiangiogenic Agents; ICIs, Immune Checkpoint Inhibitors; AEs, Adverse Events; DLTs, Dose-Limiting Toxicities; MTD, Maximum Tolerated Dose; ORR, Objective Response Rate;

OS, Overall Survival; PD, Disease Progression; PD-L1+, PD-L1 positive patients; PFS, Progression-Free Survival.

lymphocytopenia. Nearly one-third of patients in both groups
permanently discontinued treatment because of treatment-
related adverse events, although combined therapy brought
higher response rates compared to monotherapy. To our
knowledge, only one study, a phase I dose-escalation trial,
investigated antiangiogenic therapy (sunitinib) in combination
with tremelimumab, a monoclonal antibody against CTLA-4.
For nine of 21 patients evaluable for response, the ORR was
43%, and disease stabilization was 33%, but due to unexpected
and surprising toxicity, like acute renal failure and death, this
combination therapeutic strategy was not considered worthy of
further exploration (74). Another phase I/II trial (Keynote-018,
NCT02014636) examining the combination of pembrolizumab
plus pazopanib released its results at the American Society of
Clinical Oncology (ASCO) Conference in June 2017. Similarly,
these results suggested that this kind of combination is unsafe
and reported significant concerns with regard to hepatotoxicity,
despite improved response rates (75).

Multiple ongoing and future trials are exploring the role
of various drug combinations (Table 1). There are two other
keenly anticipated phase III trials in the pipeline, CheckMate 9ER
(NCT03141177) and KEYNOTE-581/CLEAR (NCT02811861).
As of right now, neither of them has mature data available.
CLEAR, a multicenter, open-label, phase III trial has three arms,
exploring pembrolizumab plus lenvatinib, or everolimus plus

lenvatinib, or sunitinib monotherapy in the first-line mRCC
setting. Its preceding phase II study unveiled that combination
of pembrolizumab and lenvatinib offered an improved median
PFS of 17.7 months as well as an improved ORR of 66.7% with
tolerable toxicity (76). The primary endpoint of this ongoing
phase III trial will be PFS with secondary endpoints as OS,
ORR, health-related quality of life (HRQoL), and safety profiles
and the estimated completion date will be in 2022. CheckMate
9ER, a two-armed phase III randomized study, is assessing
nivolumab plus cabozantinib vs. sunitinib monotherapy in 701
previously untreated mRCC patients (77). Revealingly, a phase
I trial focusing on the same combination strategy released
impressive antitumor efficacy with pretreated mRCC patients
enrolled (78). The last ICI and AA combinational regimen
brought together pembrolizumab and cabozantinib. Although
available data are from the phase I setting, these results are
promising with the chance to improve patient care in the
future (79). Enrollment of a phase II dose expansion is now
ongoing (NCT03149822).

SUMMARY AND FUTURE DIRECTIONS

The standard of mRCC management has experienced many
radical changes over the past decade, and is in a state of revisions
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at present. Although the strategy of combining ICIs with AAs
has a strong biological rationale, there is a lack of comparative
studies juxtaposing novel combination front-line options, most
of the available studies utilizing sunitinib monotherapy as a
comparator arm. Taking this into account, the selection of first-
line management for patients with mRCC should involve a
thorough discussion and a comprehensive comparison of both
efficacy and safety of available options.

In addition, rational and prospective trial designs with
more extended follow-up period are necessary to figure out
the remaining questions related to ICIs plus AAs approaches
in mRCC care. Taken together, clinicians will need to
confirm whether benefits of these agents are additive or
synergistic and whether similar results can be achievable
by sequentially using these agents. Clinicians also need to
confirm whether the combination approach is always preferred
or under what kind of circumstances can monotherapy
be better.

Finally, as systemic therapies continue to evolve, it will
be paramount to integrate multimodal approaches, including
cytoreductive nephrectomy, stereotactic ablative radiotherapy
and chimeric antigen receptor T cell (CAR-T) Immunotherapy,
into the current treatment paradigm. For example, it is
challenging to maintain peripheral CAR-T cell persistent. Early

evidence in hematological malignancy models showed that PD-
1 or PD-L1 might enhance CAR-T persistence (80). Local
radiotherapy has also been observed to improve the response
to ICI and AA in RCC (81, 82). In contrast to the shortage
of treatment approaches and overwhelming toxicities before,
treating mRCC is undoubtedly becoming increasingly complex
with multiple trials performed and ongoing, and clinicians are
faced with daunting challenges of staying abreast of the newest
developments and integrating them into the care algorithms.
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