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ABSTRACT

Motivation: Fusion genes result from genomic rearrangements, such

as deletions, amplifications and translocations. Such rearrangements

can also frequently be observed in cancer and have been postulated

as driving event in cancer development. to detect them, one needs to

analyze the transition region of two segments with different copy

number, the location where fusions are known to occur. Finding

fusion genes is essential to understanding cancer development and

may lead to new therapeutic approaches.

Results: Here we present a novel method, the Genomic Fusion

Detection algorithm, to predict fusion genes on a genomic level

based on SNP-array data. This algorithm detects genes at the transi-

tion region of segments with copy number variation. With the applica-

tion of defined constraints, certain properties of the detected genes

are evaluated to predict whether they may be fused. We evaluated our

prediction by calculating the observed frequency of known fusions in

both primary cancers and cell lines. We tested a set of cell lines posi-

tive for the BCR-ABL1 fusion and prostate cancers positive for the

TMPRSS2-ERG fusion. We could detect the fusions in all positive

cell lines, but not in the negative controls.

Availability: The algorithm is available from the supplement.
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1 INTRODUCTION

1.1 Motivation

Genomic alterations are changes within the genomic sequence

due to deletions, amplifications, translocations and other gen-

omic rearrangements. These alterations can affect the balance

of gene regulation networks and thus the proliferation and sur-

vival of cells (Deng et al., 2011). In consequence, genomic alter-

ations are often observed in cancer (Rajagopalan and Lengauer,

2004), now widely accepted as a disease with a strong genetic

component based on the insight that cancer is almost always

accompanied by rather severe changes on the genetic level

(Mitelman et al., 2007). Research in the field of oncogenomics

focuses on such mutation events most likely to result in deregu-

lation (i.e. inactivation or activation) of genes. Inactivation of

tumor suppressor genes, for example, plays a major role in

cancer development (Mitelman et al., 2007).
The first detected functional fusion of two genes was found in

chronic myeloid leukemia (CML). It is a genomic translocation,
generated on chromosome 22 by a translocation of the long arm

of chromosome 9 to chromosome 22, causing a truncated

chromosome 22, the so-called Philadelphia chromosome, and
an elongated chromosome 9. The resulting fusion is named

after the two involved genes, BCR-ABL1. It was shown that
this fusion plays an important role in the development of

CML (Nowell and Hungerford, 1960). Even though the rele-

vance of translocation events in cancer development was pointed
out, it was widely assumed that this is a unique feature of leuke-

mia (Edwards, 2010). One reason for this was the lack of tech-

nologies to detect complex structural rearrangements within the
genome with high resolution. Hence, fusion genes remained un-

explored for some time.
This view changed with the decoding of the human genome

and the associated substantial progress in the development of
laboratory and bioinformatics methods (Chen et al., 2011;

Kearney and Horsley, 2005). The advent of high-throughput

methods like RNA-sequencing (RNA-seq) (Chen et al., 2011)
and high-resolution microarrays have enabled accurate descrip-

tions of structural changes within the genome. This advancement
in technology facilitated the detection of further fusions, e.g. the

EML4-ALK fusion (Soda et al., 2007) in lung cancer and the

TMPRSS2-ERG fusion (Tomlins et al., 2007) in prostate cancer.
Their identification and characterization led to the conclusion

that fusion genes also play an important role in solid cancers,
dramatically changing the interest in fusion genes (Cazzaniga

et al., 2001; Edwards, 2010; Graux et al., 2004). As a conse-

quence, the available information on cancer genomes and their
chromosomal aberrations has increased significantly in the past

few years, leading to drugs for inhibiting and diagnostic kits for
detecting them.

Pfizer, for example, developed Crizotinib, a drug to inhibit the
ALK part of the EML4-ALK fusion (Bang, 2011). Novartis AG

developed Imatinib (trade-name: Glivec), targeting the protein

encoded by BCR-ABL1 and inhibiting the activity of the tyrosine
kinase ABL1 (Ohm et al., 2012). Recently, it was shown that

Sorafenib (trade-name: Nexavar, developed by Bayer AG) also
inhibits BCR-ABL1 kinase activities, including the Imatinib-

resistant E255K and T315I mutants of this fusion (Kurosu

et al., 2009). The fusion of the TMPRSS2 gene with E-twenty
six (ETS) family genes like ETV1, ERG and ETV4 occurs in up

to 70% of all prostate cancers and is therefore a specific*To whom correspondence should be addressed.
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biomarker for prostate cancer diagnostics (Perner et al., 2007).
Companies like China Medical Technologies (http://www.china

meditech.com) and KREATECH (http://www.kreatech.com)
have developed kits to detect the fusion of TMPRSS2 with an

ETS family member, increasing the sensitivity of diagnosing
prostate cancer (Perner et al., 2007). The importance of research

in this field is shown by the high success rate of these drugs and
diagnostic kits.

1.2 Structural rearrangements

Structural or quantitative changes within the genome are

so-called genomic aberrations. Changes within a chromosome
are called chromosomal aberration. They can, for example, be

detected by examining copy number variations (CNVs). A CNV
is a change in the copy number (CN) of genomic segments

caused by evolutionary events like deletions, amplifications or
translocations (Conrad et al., 2010). Such kinds of aberrations

frequently occur during cancer development and are often unba-
lanced, meaning that there is a quantitative change in genetic

material caused by a mutation event (Johansson et al., 1996).
The transition region of segments with CNVs is defined as a

change in the CN of two neighboring genomic segments within
a chromosome. It is often referred to as a breakpoint (Ritz et al.,

2011). Notably, by this definition, a breakpoint is only found in
unbalanced fusion events. It has been proposed that balanced

events most likely occur as early changes, whereas later aberra-
tions in substantial tumors are typically unbalanced (Johansson

et al., 1996).
Genomic aberrations can be more complex than deletions or

amplifications. Consider as an example two genes at different
breakpoints, originally coding for two different proteins, merging

to a fusion. The resulting sequence contains the entire or partial
information of both genes, which may lead to a protein with

novel functions (Long, 2000). A fusion causes the change of
the physical genomic position therefore loss of the regulatory

elements of this gene. This may, for example, change the expres-
sion of the involved gene (Huang et al., 2012). The fusion gene

TMPRSS2-ERG, for example, results from a deletion of three
million base pairs. Due to the fusion event, the ERG gene is

regulated by the TMPRSS2 promoter, leading to overexpression
of ERG (Tomlins et al., 2005). However, most of the occurring

fusion genes are non-functional (loss of function of one or both
genes). The functionality of a fusion gene depends on certain cell

properties like the cell type (tissue specificity), the cell stage
(replication activity) and the mode of action of the translated

protein. In addition, the fusion gene has to fulfill certain proper-
ties to encode a functional mRNA, e.g. a cap structure for trans-

port into the cytoplasm, a poly-A tail for the translational
process and the ability to fold into a 3D structure (Salim et al.,

2011; Yanai et al., 2002).

1.3 Related works

Ritz et al. developed the algorithm ‘Neighborhood Breakpoint

Conservation’ (NBC) (Ritz et al., 2011), which uses the CNV in-
formation from array comparative genomic hybridization

(aCGH) (Pinkel and Albertson, 2005) to calculate breakpoints,
a required prerequisite for predicting fusion genes on DNA level.

The output of NBC comprises common breakpoints or pairs of

common breakpoints in a given sample calculated on the basis of

Bayesian statistics. The Bayesian statistic uses conditional prob-

ability to give evidence about the plausibility of an event. The

resulting pairs of common breakpoints can then be used for

fusion detection. The algorithm calculates all possible CNprofiles

(genomic segmentations), from which breakpoints could be

derived. Next, it calculates the probability of a breakpoint be-

tween two probes, considering all possible CN profiles of an indi-

vidual. In the final step, NBC combines the calculated

probabilities of all breakpoints from each individual to find re-

current breakpoints across all individuals. The results are split into

sets of either single breakpoints or pairs of breakpoints of a probe

or an interval. Ritz et al. use all identified CN profiles of an indi-

vidual to detect breakpoints with a certain probability. Owing to

this approach, the variability in the position of a breakpoint

within a gene or loci can be considered. Hence, pairs of

common breakpoints can be used to detect fusion genes with pos-

itional variability. The advantage of this method is the ability to

find functional and silent fusions. The main disadvantage of using

aCGH microarrays is their low resolution compared with other

technologies, e.g. RNA-seq. Given that CNVs can be located in

small regions of a few hundred base pairs, they will not be detect-

able bymethods relying only on low resolution (Perry et al., 2008).

1.4 Contribution

We present Genomic Fusion Detection (GFD), an algorithm to

detect fusion genes on DNA level based on segmentation data

from high-resolution Affymetrix Genome-Wide Human Single

Nucleotide Polymporism (SNP) Array 6.0 (SNP6) data. As

input, we use here segmentation data calculated with the previ-

ously published tool PICNIC (Greenman et al., 2010), based on a

Bayesian Hidden Markov Model (HMM). These data are then

processed within GFD in three steps. In the first step, breakpoints

are detected in the predicted segmentations. In the second step,

several constraints are applied to detect fusion genes with certain

properties. In the final step, all samples are scanned for common

fusion predictions to reduce false-positive predictions.

2 MATERIALS AND METHODS

2.1 Cancer cell lines

We use Affymetrix Genome-Wide Human SNP6 data of 13 cell lines

from three different tissues and different cancer subtypes and of 82 pri-

mary prostate samples. Cell line data were obtained from the Gene Ex-

pression Omnibus (GEO; http://www.ncbi.nlm.nih.gov/geo) (Accession:

GSE36138) and the Wellcome Trust Sanger Institute (http://www.sanger.

ac.uk). The datasets were divided into two subsets. The first subset (Sup-

plementary Table S1) is a collection of seven BCR-ABL1–positive CML

cell lines (BV-173, EM-2, K-562, LAMA-84, MEG-01, JK-1, KCL-22)

and one BCR-ABL1–negative AML cell line (KG-1) (fusion state accord-

ing to Mahon et al., 2000; Palsson and Masters, 2010). The second subset

(Supplementary Table S2) consists of 44 primary prostate cancer and 38

matched normal samples of two different ethnic backgrounds (39 Chin-

ese; 5 UK), of which one Chinese and four UK samples are

TMPRSS2-ERG–positive according to the source (Mao et al., 2010)

(GEO accession: GSE18333). As reference, six prostate cancer cell lines

(22Rv1, DU145, LNCaP, NCI-H660, PC3, VCaP) were included

(retrieved from the sources referenced above). Each sample is represented

by the data of the respective SNP6 experiment. RNA-seq data for cell line
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K-562 was downloaded from the NCBI SRADatabase (http://www.ncbi.

nlm.nih.gov/sra) (Accession: SRR018269).

2.2 deFuse

deFuse was developed byMcPherson et al. (McPherson et al., 2011). This

algorithm detects fusion genes in RNA-seq data. Beside clearly aligned

paired-end reads, ambiguously aligned paired-end reads (see e.g.

Fullwood et al., 2009; Hall and Quinlan, 2012; Maher et al., 2009 for

details on these concepts) are also considered and the most likely align-

ment position of such reads is calculated. deFuse is able to identify gene

fusions with boundaries between known exons as well as between intronic

or intergenic sequences. For validating fusions, several confidence meas-

ures estimating the correctness of each prediction are implemented.

2.3 Copy number prediction

Copy Number Analyzer for GeneChips (CNAG) (Nannya et al., 2005),

dChip (Zhao et al., 2004) and other tools (Korn et al., 2008; Wang et al.,

2007) predict CN (see the review by Pinto et al., 2011). Most of them use

normal tissue as baseline. However, CNV in cancer samples is typically

increased (Cappuzzo et al., 2005; Suzuki et al., 1997). Given this increase,

most available tools are not suited to detect CNVs in cancer samples

(Lamy et al., 2011; Li et al., 2010). In contrast, PICNIC (http://www.

sanger.ac.uk/genetics/CGP/Software/PICNIC/) considers the increased

CN in cancer and is therefore our method of choice (Greenman et al.,

2010).

2.4 Genomic Fusion Detection

2.4.1 Summary Our GFD algorithm consists of one pre-processing

and three main steps (Fig. 1). In the pre-processing step, SNP6 data are

processed by PICNIC (Release Nov 2010) to get the segmentation of

the data. Our algorithm takes this information from PICNIC as input

(Fig. 1A). It is used to predict fusion genes. The input data are processed

in three steps. In the first step, breakpoints are determined in the segmen-

tations, artifacts are deleted and genes located close to a breakpoint are

identified (Fig. 1B). Then, gene pairs fulfilling the required constraints are

detected (Fig. 1C). In the last step, the result for each sample is compared

with the results of all processed samples to find common fusion events

and reduce false-positive predictions (Fig. 1D). GFD is based on the ideas

of Ritz et al., extending them by the following features (see Supplemen-

tary Table S3 for details).

2.4.2 Filtering and selecting gene candidates In this step, the seg-

ments predicted by PICNIC are selected and the breakpoints on each

chromosome are detected. Segments represented by a single probe are

hard to discern from experimental or algorithmic artifacts. Hence, they

are removed to minimize prediction errors. An artifact is, for example,

characterized by adjacent probes belonging to larger segments with a

differing CN than their surroundings, but similar CN to each other.

For example, the artifact could have a CN of 5, but the respective seg-

ment a CN of 2.

2.4.3 Selecting genes closest to a breakpoint We define that a

fusion gene consists of a 50-part of the fusion (upstream gene, or 50-

gene) and a 30-part of the fusion (downstream gene, or 30-gene). The

Genome Reference Consortium Human Reference 37 (GRCh37,

Ensembl rev 65 of Dec 2011) was used for predicting fusions. Each

involved gene must be adjacent to a breakpoint. On the forward strand,

the 30-part of a fusion occurs downstream of a breakpoint and the 50-part

of a fusion occurs upstream and vice versa on the backward strand.

Intervals surrounding a breakpoint are scanned for genes out of a set of

21 991 unique Ensembl genes. Two cases are considered how a breakpoint

can be observed in respect to a gene. First, a gene can stretch across one or

more breakpoints, dividing the gene into subsegments. In this case, each of

the subsegments may yield a different CN. If two subsegments are

observed, each will be assigned to a 50-gene or a 30-gene. If there are

three or more subsegments, the most upstream subsegment will be classi-

fied as a 50-gene and the most downstream subsegment as a 30-gene,

whereas inner subsegments are assigned to both groups. Alternatively,

the sequences of two genes can be fused entirely. Here, it is defined that

the distance of each gene to the nearest breakpoint must be at most 10 kb.

Typically, the average distance of human introns is 5 kb with a standard

deviation of 4.7–24kb (Sakharkar et al., 2004). Therefore, a non-coding

sequence of at most 20 kb between both genes describing a fusion is feas-

ible. This ensures that the distance between both genes is statistically not

too long to enable function. Based on this constraint, all fusions not nearby

the two sides of breakpoints will be missed by GFD. This is based on the

biological assumption that ‘breakpoints point to the location of directly

cancer-relevant genes’ (Mitelman, 2005) and the technological limitation

that only unbalanced fusions are detectable by SNP6 (Greisman et al.,

2011). Genes fulfilling one of these criteria are considered for the next

steps. Once the most likely genes to enter a fusion have been selected,

they are analyzed for the most likely pairing for a fusion, as not any two

genes can form a functional fusion gene, e.g. two genes with opposing

orientation. Therefore, further required constrains are described next.

2.4.4 General required constraints Several features are considered to

identify the most likely gene pairs involved in a fusion. These features are

A

B

C

D

Fig. 1. (A) Pre-processing step: PICNIC normalizes and segments the

data. (B) Determine breakpoints within the predicted segmentation,

delete artifacts and find genes close to a breakpoint. (C) Find gene com-

binations, fulfilling the constraints. (D) Compare the results of each

sample with results of all processed samples to find common fusion events
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the maximal difference of the total CN, gene orientation, fusion side,

minimal and maximal length of a fusion and the tendency of probe

intensities in both genes.

The probe intensity values used to calculate a specific CN show high

variability. This fact is considered by the HMM in PICNIC. The transi-

tion between two CN states depends on the probability given in the

HMM, resulting in a sequence of CN states based on the probe intensity

values and the probabilities calculated for the transition. The CN se-

quence calculated by the Viterbi algorithm applied in the HMM returns

the most likely CN sequence, but there is no guarantee that the calculated

sequence is the true CN sequence. Thus, CNV depends on the probabil-

ities given by the HMM and is therefore not exact. We take this variabil-

ity into account. Still, because both genes of a fusion are physically

joined, their CN should only deviate by a small value. We allow a CN

difference of at most �1 here.

The gene end lying closest to the next breakpoint defines the fusion

side. Thus, the orientation of the strand at this position is another

constraint.

A further constraint is that the fusion gene must keep a certain length.

Therefore, both a minimal and a maximal acceptable length for a fusion,

described by the shortest and longest gene found in the gene collection are

set as minimal and maximal accepted length of a fusion, respectively.

If two genes are fused, they will be replicated together and we assume

them to be amplified together. This leads to a constraint, i.e. the trend of

intensities at the fusion region between the 50-gene and the 30-gene (border

of a fusion or crossover region). This region is described by seven probes

of each involved fusion subsegment (if a fusion subsegment has less than

seven probes, it is ignored). Intensity values of these probes in the cross-

over region have to be similar. A closer look at any gene interval reveals

that the variance of probe intensities increases proportionally to the CN,

i.e. the variance of the intensities can vary in-between CNs and samples

(Fig. 2). Hence, a simple comparison of average intensities is not possible.

Instead, we calculate smoothed intensities with loess normalization, pro-

ducing a smooth set of values from the intensity values with high vari-

ance. A window of pre-defined size is shifted across these and a

polynomial function is fitted at each data point within the window

(Mount, 2004).

Thus, our approach considers the difference in each gene interval’s

variance. To optimize the smoothing, the span is calculated individually

for each fusion candidate. The analysis performed here relies on the

small-sample-size corrected Akaike information criterion (AICC) because

it is robust and accounts for a bias in small datasets. The optimal span is

the minimal span that best fits the polynomial function of the loess nor-

malization. This optimization is done iteratively over an interval for 2%,

3%, and so forth, to 95% of the data points. The intensity trend in their

hypothesized border region for both candidate genes for a fusion is the

best indication for the feasibility of a fusion and can be described by

Pearson correlation. Given that the border interval is supported by

seven probes of each gene, Pearson correlation is comparable between

possible gene combinations. If the absolute correlation between both

intervals is 40.9, the gene pair is still a valid candidate. A gene pair

fulfilling all above constraints is reported as fusion candidate and will

be validated next.

2.4.5 Evaluation of likely fusion candidates The previous analysis

steps lead to a list of all possible fusion candidates for each sample. This

list is scanned for candidates common to at least two samples, termed

‘group’ hereafter. Every group will be evaluated separately. To ensure the

prediction of fusion genes with similar segment positions and sizes, the

subsegments of a fusion of each group are filtered for similar start and

end positions using the genomic positions of each fusion. Owing to vari-

ability of the segment positions within a fusion gene caused by break-

points (truncated gene) within intron regions, at least two positions have

to be equal, e.g. the start position of the 50-gene and the end position of

the 30-gene over all group members. Next, the variability of all other

positions is analyzed. Therefore, the Euclidean distance of the

non-conserved positions of a fusion subsegment is calculated for the re-

spective position across all group members. Hierarchical clustering with

complete linkage is applied on the distance matrix to either classify the

fusion into different subgroups, which are determined by the distance

among each other, or to discard a sample because it does not contain

the fusion. Additionally, the median sequence length of the group is

calculated. Each fusion event will receive an individual range from calcu-

lating the median sequence length of this particular fusion event across all

samples. Fusions with a distance440% of the median sequence length to

the other cluster members will be discarded. The threshold of 40% was

chosen to ensure certain variability in fusion length, considering variabil-

ity within the length of fusion genes resulting from breakpoints within

intron regions. Only subgroups of at least two samples will be considered

for further analysis (Fig. 3 for an example). The resulting groups and

subgroups are predicted as fusion genes.

The root mean squared difference (RMS) of the smoothed intensities

surrounding the fusion border is calculated as an additional feature. It

describes the distance between the smoothed border intensities from the

upstream and downstream gene partner of a fusion. If this value is close

to zero, a consistent crossover between both genes is observed. If a higher

RMS is observed, it may imply a false-positive fusion. However, the CNs

of both genes have to be considered for interpreting the RMS because the

intensity variance increases with increasing CN. Hence, if high CN is

Fig. 2. The variance of intensities within a CN state increases with the

CN. Exemplarily shown for (A) cell line MCF-7 and (B) cell line K-562

Fig. 3. The dendrogram shows a visualization of the ABL1-BCR fusion’s

hierarchical clustering. The horizontal line describes the threshold of 40%

of the median sequence length
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observed, a higher RMS can also imply a true-positive fusion yielding an

additional parameter for evaluating fusion genes.

3 RESULTS

The BCR-ABL1 fusion was predicted to exist in all BCR-ABL1–
positive cell lines (Table 1), but not in the BCR-ABL1–negative

cell line KG-1 (Supplementary Table S4), as there were no break-

points in BCR or ABL1 detected (Supplementary Table S5).

Both segments of the BCR-ABL1 fusion, within the BCR-

ABL1–positive cell lines differ in their CN. The CN of both

segments is inconsistent across the cell lines. Most of them

have a CN between two and five except K-562, which sets
itself apart from the others with a CN of 13 for the BCR part

and a CN of 12 for the ABL1 part. The absolute correlation

coefficient is 0.999 for the BCR-ABL1 fusion in all cell lines.

An RMS of 0.7 can be observed for the crossover region of

the BCR-ABL1 fusion in K-562 owing to the high CN. In the

other cell lines, the RMS is smaller. Given that the BCR-ABL1
fusion results from a translocation of the long arm of chromo-

some 9 to chromosome 22 and vice versa, there is a BCR-ABL1

fusion on chromosome 22 and an ABL1-BCR fusion on chromo-

some 9. The ABL1-BCR fusion was predicted in five of seven

BCR-ABL1–positive cell lines. The CN of all predictions is

between one and three with a correlation coefficient of at

least 0.98. It can be observed that the CN of both parts
from the ABL1-BCR fusion is continuously lower than in

the CML-characteristic fusion BCR-ABL1. This is especially

true for the CN of the ABL1-BCR fusion in K-562, which has

a CN of three for the ABL1 and two for the BCR part and a

RMS of 0.7.
The ABL1-BCR fusion was predicted in six cell lines shown in

Figure 3, but there are only two subgroups with three and two

members reported (Table 2) because the cell line KCL-22 is dis-

carded owing to the constraint that the distance between two
fusions of one group has to be at most 40% of the median se-

quence length.

Table 2 also shows that the start and end positions of this
fusion are conserved, whereas the positions within the fusion

border vary. The positions of BV-173, MEG-01 and K-562 lie

close together, whereas the positions of EM-2 and LAMA-84

differ from the other cell lines. This observation confirms the

clustering analysis in Figure 3. The main differences are in the

end position of the ABL1 part, leading to two groups of
ABL1-BCR fusions in the clustering.
To estimate the quality of SNP6-based fusion prediction, the

results of GFD are compared with deFuse, an algorithm detect-
ing fusion proteins in RNA-seq data. deFuse detected 11 fusions
in cell line K-562, but only the BCR-ABL1 fusion was detected

by both algorithms. The start and end position of the BCR seg-
ment differ �4kb and �87bp, respectively. The ABL1 segment
differs �119kb at the start position and �1.5 kb at the end pos-

ition. The fusion length is 258 798 bp for the GFD prediction and
144320bp for the deFuse prediction, which is a difference of
114478bp. deFuse did not find the ABL1-BCR fusion. Probe

intensities of the BCR and the ABL1 gene in K-562 are shown in
Supplementary Figure S1. The main parts of BCR (80 probes)
and ABL1 (245 probes) define the BCR-ABL1 fusion, whereas

the ABL1-BCR fusion is defined by the smaller remaining parts
[17 probes (ABL1) and 20 probes (BCR)]. Three other interchro-

mosomal fusions were found in two BCR-ABL1–positive cell
lines, but none in all (Supplementary Table S4). No common
intrachromosomal fusion was found. BCR-ABL1–negative

KG-1 has no fusion in common with any other cell line
(Supplementary Table S4).
We found the TMPRSS2-ERG fusion in NCI-H660, but not

in any other prostate cancer cell line (Supplementary Table S6).
In the primary prostate samples, we verified the fusion in all
fusion-positive samples (i.e. SH32, P9, P55, P68 and P98), but

not in any of the matched normal samples or in sample SH36
(Supplementary Table S6). The latter harbors a deletion in
21q22.3, but not across 21q22.2 and 22.3 required to constitute

the fusion (Fig. 4).
One of the primary prostate cancer samples is seen as outlier in

the clustering (Fig. 5) due to a violation of a constraint (440% of

the median sequence length and no other sample with a fusion of
similar length). Here, we found an atypical stretch of the fusion
across both genes not seen in any other sample.

4 DISCUSSION AND CONCLUSIONS

Here we present for the first time our novel development, the
GFD algorithm. This algorithm uses the high resolution of SNP6
microarrays for detecting gene fusions. The GFD algorithm de-

tects functional fusion genes from unbalanced mutation events in
cancer. We show that the algorithm’s accuracy is comparable
with deFuse, detecting fusion genes from RNA-seq data. The

comparison showed that the BCR-ABL1 fusion can be found
with both approaches. Differing start positions of ABL1 can

be explained by the missing intron sequences within the data
used by deFuse. From this, it follows that both approaches pre-
dict the same BCR-ABL1 fusion. The ABL1-BCR fusion was

only predicted by GFD because the ABL1-BCR fusion is typic-
ally not expressed (Uphoff et al., 1999). Owing to the fundamen-
tal differences in data types, it is not our scope to benchmark

DNA-microarrays against RNA-seq. Still, using a high-reso-
lution DNA-microarray enables predicting fusion genes that
are not expressed, i.e. not detectable by RNA-seq. Deep

next-generation sequencing may alter this situation, but the
cost-advantage of our approach is currently410-fold in contrast.
In addition, GFD is able to detect non-functional, silenced and

novel fusions.

Table 1. BCR-ABL1 fusion

Cell line RMS Correlation CN BCR CN ABL1

BV-173 0.4547 0.9994 3 2

EM-2 0.1439 �0.9995 5 4

JK-1 0.1974 0.9994 3 3

K-562 0.7057 0.9999 13 12

LAMA-84 0.3966 �0.9999 5 4

MEG-01 0.2731 �0.9996 4 4

KCL-22 0.2846 �0.9998 3 3

Prediction of the BCR-ABL1 fusion in cell lines. The 50-gene and 30-gene of the

fusion corresponds to the BCR and ABL1 segment, respectively.
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For evaluation, seven BCR-ABL1–positive CML cell lines

(Mahon et al., 2000; Uphoff et al., 1999) and one BCR-ABL1–

negative AML cell line (Hochhaus et al., 1996) were used. It was

shown that GFD predicts the BCR-ABL1 fusion in all

BCR-ABL1–positive cell lines. The breakpoint positions of

BCR-ABL1 within cell line K-562 on chromosome 22 and

chromosome 9 found by GFD are close to the published pos-

itions (Shibata et al., 2010). The ABL1-BCR fusion formed on

chromosome 9 was predicted in five of seven cell lines. There is a

chance that a gene will still be normally expressed even though it

participates in a fusion, owing to a second copy of the same gene

that is not involved in a fusion (Uphoff et al., 1999). This could

explain the CN difference within the segments of the BCR-ABL1

and ABL1-BCR fusions. In the EM-2 cell line, the CN of the

BCR part in both fusions is higher than CN of the ABL1 part in

both fusions. This can also be observed within the BCR-ABL1

and ABL1-BCR fusion in K-562. However, in this case, an RMS

of 0.7 is observed in both fusions. The difference in the border

region indicates least one BCR and one ABL1 gene expressing

normal transcripts.
As expected, TMPRSS2-ERG fusions could not be detected in

negative prostate cancer cell lines PC3, LNCaP, DU145 and

22Rv1, but rather unexpectedly also not in VCaP. This cell line

is known to harbor at least one normal TMPRSS2 and ERG

gene, making it difficult to study the fusion in vitro (Mertz et al.,

2007). In a clinical dataset of 82 primary prostate samples,

we could successfully identify all previously described fusion-

positive samples. One of these samples contains the typical dele-

tion, but also unusually long parts of both fusion partners,

rendering it an outlier.

We have shown that GFD is able to detect functional fusion

genes, deriving from unbalanced mutation events in cancer. In

addition, we have shown that GFD has a similar accuracy as an

approach to detect fusion genes based on RNA-seq. A future

application of GFD could be combined run with an

RNA-seq-based algorithm. In this case, one can distinguish be-

tween functional and non-functional fusions. Also, transcrip-

tional and translational position information of the fusion

could be gained. Thus, it would become possible to predict

Table 2. ABL1-BCR groups

Cell line Start position ABL1 End position ABL1 Start position BCR End position BCR Group

BV-173 133 592 718 133605 045 23633 005 23 650421 1

K-562 133 592 718 133605 045 23633 005 23 650421 1

MEG-01 133 592 718 133619 550 23632 191 23 650421 1

EM-2 133 592 718 133658 924 23635 685 23 650421 2

LAMA-84 133 592 718 133683 574 23633 005 23 650421 2

Prediction of the ABL1-BCR fusion subgroups. It should be noted that start and end positions are based on ENSEMBL version 65 and may change slightly in other genome

references without an effect on the prediction.

Fig. 4. Stretch across chromosome 21 showing deletions in two primary

prostate cancer samples. SH32 yields the characteristic deletion required

to form the TMPRSS2-ERG fusion, whereas SH36 has only a partial

deletion

Fig. 5. The dendrogram shows the TMPRSS2-ERG fusion’s hierarchical

clustering in primary prostate cancer samples and a cell line. The hori-

zontal line describes the threshold of 40% of the median sequence length.

Sample P98 deviates from this threshold and is therefore considered an

outlier
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post-transcriptional and balanced fusions as well as unbalanced,

silenced and non-functional fusions.
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