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Abstract: Autism spectrum disorder (ASD) affects more than 1% of children, and there is no viable
pharmacotherapeutic agent to treat the core symptoms of ASD. Studies have shown that children with
ASD show changes in their levels of immune response molecules. Our previous studies have shown
that ASD is more common in children with folate receptor autoantibodies. We also found that children
with ASD have abnormal gut immune function, which was characterized by a significant increase
in the content of immunoglobulin A and an increase in gut-microbiota-associated epitope diversity.
These studies suggest that the immune mechanism plays an important role in the occurrence of ASD.
The present study aims to systematically assess gene mutations in immune mediators in patients
with ASD. We collected genetic samples from 72 children with ASD (2–12 years old) and 107 healthy
controls without ASD (20–78 years old). We used our previously-designed immune gene panel,
which can capture cytokine and receptor genes, the coding regions of MHC genes, and genes of
innate immunity. Target region sequencing (500×) and bioinformatics analytical methods were used
to identify variants in immune response genes associated with patients with ASD. A total of 4 rare
variants were found to be associated with ASD, including HLA-B: p.A93G, HLA-DQB1: p.S229N,
LILRB2: p.R322H, and LILRB2: c.956-4C>T. These variants were present in 44.44% (32/72) of the
ASD patients and were detected in 3.74% (4/107) of the healthy controls. We expect these genetic
variants will serve as new targets for the clinical genetic assessment of ASD, and our findings suggest
that immune abnormalities in children with ASD may have a genetic basis.

Keywords: autism spectrum disorder; immune mediators; HLA-B; HLA-DQB1; LILRB2

1. Introduction

Autism spectrum disorders (ASD) are a group of neurodevelopmental disorders which
affect around 1% of school-age children and which impose severe economic and social
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burdens on ordinary families and society [1–4]. Currently, there is no pharmacotherapeutic
agent to treat the core symptoms of ASD [5]. Genetic factors play an important role in
autism, and we have previously applied whole-genome sequencing to autism genetic stud-
ies and found autism-related mutations [6–8]; However, like the clinical heterogeneity of
autism, autism also has a complex genetic structure, and large-scale ASD genomic studies
have identified a large number of clinically relevant ASD variants; these variants involve
common and rare variants in more than 100 risk genes, from point mutations to copy
number variations, either inherited or de novo [9–13]. Recent studies have suggested an
association of MHC regional variation with ASD and neuropsychiatric diseases [14,15].
Our previous study showed that 77.5% (31/40) of children with ASD were found to be
positive for folate receptor autoantibodies (FRAA) [16]; this is consistent with the results
of Frye et al. [17,18]. Furthermore, Frye et al. found that exposure to FRAA in pregnant
rats was associated with behavioral deficits in offspring [19]; they also found that folinic
acid was associated with improvements in core and related symptoms of ASD [20,21].
A number of maternal autoantibodies that can serve as biomarkers for ASD have been
identified [22–25]; meanwhile, animal studies have confirmed the correlation between
continuous exposure to ASD-specific maternal autoantibodies throughout gestation in mice
and ASD-like behavior in offspring [26,27]. In short, these suggest a possible correlation
between autoimmune problems and the development of ASD, and it also suggests the
need for systematic research on the MHC region of ASD patients. Considering the im-
portance of the MHC region in mediating host immune responses and its inherent high
mutagenicity, high-throughput sequencing of the MHC region is necessary. Cytokines
have an important role in neurodevelopment [28,29], and studies have demonstrated that
peripheral cytokine profiles at birth are associated with ASD in later childhood [30–33].
Maternal immune activation (MIA) is an environmental risk factor for ASD, and MIA-
mouse offspring often exhibit ASD-like behavior. These mice are widely used as a model
of ASD [34]. Choi et al. [35] found that MIA-induced, ASD-like behavior is dependent on
maternal IL-17A and that this behavioral abnormality can be improved by blocking IL-17A.
There is increasing evidence that serum cytokine abnormalities are present in patients
with ASD [36]. Tsilioni et al. found that elevated serum IL-6 and TNF can define the ASD
subgroup, a group that benefits from treatment with the natural flavonoid luteolin [37].
A cross-sectional study by Al-Ayadhi of 45 children, aged 6–12 years, with ASD showed
that the serum levels of IL-17A were positively correlated with the severity of autism, and
nearly 50% of children with autism had elevated serum IL-17A levels. Of these, 67.9%
had severe ASD, and 17% had mild-to-moderate ASD [38]. The imbalance of the immune
system in patients with ASD was also characterized by an abnormal lymphocyte count, the
presence of serum brain-specific autoantibodies, and intestinal immune dysfunction [39].
Imbalanced immune responses in children with ASD may be affected by changes in gut
microbiota [40,41], and a large number of studies on ASD gut microbiota have been pub-
lished [42–47]; our previous studies have shown that abnormal intestinal or oral IgA is a
potential biomarker for ASD [48–50], and that abnormal gut microbiota structure, especially
an epitope-associated gut microbiota structure, is associated with increased IgA [51]. In
short, these studies suggest an abnormality in immune function in ASD. The aim of this
study was to systematically assess gene mutations in immune mediators of children with
ASD to determine if there are immune-related genetic defects in children with ASD.

2. Method
2.1. Study Participants

A total of 72 patients with ASD, 54 males (2–8 years old) and eighteen females
(2–11 years old) were recruited from the Department of Psychology at Shenzhen Chil-
dren’s Hospital. The specific process was as described in our previous study [50]. In
short, inclusion criteria were as follows: the patient must be age <14 years, must meet the
diagnosis of ASD, and must be classified as “requiring very substantial support” according
to the 5th edition of the Diagnostic and Statistical Manual of Mental Disorders. Furthermore, in-
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clusion was not limited by the sex of the patient. The exclusion criteria were as follow: The
patient must not (1) be suffering from other mental illnesses (such as obsessive–compulsive
disorder or ADHD); (2) be suffering from other neurodevelopmental disorders; (3) be suf-
fering from genetic metabolic diseases; (4) be suffering from serious neurological diseases
or have a history of brain injury or other major physical diseases; (5) be acutely physically
ill. Healthy controls totaled 107 individuals, 57 males (20–78 years old) and 50 females
(24–73 years old), from a previously published hepatitis B virus (HBV) cohort study. All
healthy controls were non-ASD individuals—adults who were not diagnosed with ASD in
childhood as determined by medical history examination, and the inclusion and exclusion
criteria are detailed in previously published articles [52,53]. All enrolled individuals were
informed of the study, and the enrolled individuals signed informed consent forms. The
study was approved by the Ethics Committee of Shenzhen Children’s Hospital.

2.2. DNA Extraction and Quality Control

A volume of 3 to 5 mL of whole blood was drawn and stored at−80 ◦C. Then, genomic
DNA was extracted from these whole-blood samples using a PureLink™ Genomic DNA
Mini Kit (Thermo Fisher, Foster City, CA, USA). The genomic DNA samples were quantified
and controlled for quality using NanoDrop ND2000 (Thermo Fisher). The total amount of
DNA was required to be above 1 µg; the purity ratio of A260/280 was required to be in the
range of 1.8–2.0; the main DNA band had to be clearly visible; and the fragment size had to
appear around 23 K Da, as measured by 0.3% agarose gel electrophoresis.

2.3. Library Construction

A DNA sample of 1 µg was fragmented into 150–250 bp-sized fragments using a
Bioruptor interrupter (Diagenode, Seraing, Belgium); then, the fragmented DNA was
subjected to end-filling, 5′ segment phosphate group repair, and 3′ segment plus A (Enzy-
matics Inc., Beverly, MA, USA) using an ABI 2720 type of PCR instrument (Thermo Fisher,
Hudson, NH, USA). Finally, a synthetic paired-end adapter (Thermo Fisher) suitable for
the Illumina HiSeq sequencer (Illumina, San Diego, CA, USA) was ligated using an ABI
2720 PCR machine (Thermo Fisher), and the ligation product was purified using MagPure
A3 XP beads (Magen, Guangzhou, China). For the purified ligation product, PCR pre-
amplification (KAPA Biosystems, USA) was performed using an ABI 2720 PCR machine
(Thermo Fisher), and a synthetic index sequence (Thermo Fisher) capable of distinguishing
individual samples was introduced. The parameters were as follows: 95 ◦C for 4 min,
98 ◦C for 20 s, 65 ◦C for 30 s, 5 cycles, 72 ◦C for 30 s, 72 ◦C for 5 min, and 12 ◦C hold.
A small-fragment sequencing library was obtained, and 1 µL of the small-fragment library
was subjected to quantification using a Qubit dsDNA HS Assay Kit (Thermo Fisher). The
concentration of the capture library was determined, and the standard of the qualified
library was measured to be greater than 3 ng/µL.

2.4. Targeted Region Sequencing

The panel, which targeted the coding region of 404 immune-response molecule genes,
included genes related to cytokines, receptors, innate immunity, and adaptive immunity
and was designed in our previous study [52]; target region sequencing of the 404 immune-
response genes was performed according to our published studies [54,55]. In brief, the
small-fragment library was mixed with a hybridization block (iGeneTech, Beijing, China).
Then, commercially acquired TargetSeq hybridization buffer (iGeneTech) was thawed at
room temperature, mixed, and placed in a 65 ◦C water bath to preheat until the solution
was completely dissolved. For each sample, 20 µL of the hybridization buffer was placed
in a PCR tube and incubated in a water bath at 65 ◦C. Before hybridization, 5 µL of RNase
block (Thermo Fisher) was also prepared and mixed with a single-stranded RNA probe to
prevent probe degradation. Hybridization captures were performed on an ABI 2720 PCR
machine (Thermo Fisher). The hybridization mixture was covered and incubated overnight
(8–16 h) at 65 ◦C. After the hybridization was complete, the resulting DNA–RNA hybrids
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were bound to the magnetic beads (Dynabeads MyOne Streptavidin T1, Thermo Fisher).
To remove non-specific binding, the magnetic bead–DNA–RNA complex was washed with
TargetSeq washing solution (iGeneTech). Finally, PCR enrichment was performed on an
ABI 2720 PCR machine (Thermo Fisher) for the target region obtained by hybridization,
with parameters as follow: 95 ◦C for 4 min, 98 ◦C for 20 s, 65 ◦C for 30 s, 16 cycles, 72 ◦C for
30 s, 72 ◦C for 5 min, and 12 ◦C hold. The PCR amplification reagent was commercially
purchased from KAPA Biosystems. The Nextflex primer was synthesized by Invitrogen,
China. The amplified target-region capture library was found to be greater than 3 ng/µL, as
determined by a Qubit dsDNA HS Assay Kit (Thermo Fisher). The constructed sequencing
library was sequenced on a HiSeq X Ten sequencer (Illumina, San Diego, CA, USA) PE150.

2.5. Bioinformatics Analysis

Previously published studies [7,8,16] provide complete details; a brief introduction is
as follows: The raw data were first filtered using Trimmomatic software [56] to filter the
linker sequences (GATCGGAAGAGCACACGTCT and AGATCGGAAGAGCGTCGTG-
TAGGGAAAGAGTGT) and low-quality sequences. Low-quality sequences were defined
as having a base quality value of less than or equal to 20, corresponding to an accuracy of
99%. Bases that did not satisfy the conditions in the sequence were removed, and sequences
having a length of less than 40 bp after base filtration were removed. Finally, FastQC soft-
ware (https://www.bioinformatics.babraham.ac.uk/projects/fastqc/ (accessed on 15 June
2022), version 0.11.9) was used to perform a quality assessment and ensure clean reads of
greater than 95%, with a quality value greater than 30. The clean reads were aligned to the
human reference genome (hg19, downloaded from UCSC) using BWA-MEM software [57]
to generate an aligned BAM file. To improve the accuracy of the final results the effects of
PCR, repetitions in the experiments were removed using Samtools [58] and Picard software
(http://broadinstitute.github.io/picard/ (accessed on 15 June 2022), version 2.26.5). Then,
a GATK (Genome Analysis Toolkit) [59] was used to detect mutations, such as SNP and
InDel, in the results of the alignment. Finally, the results of the detected mutations were
annotated with ANNOVAR software [60], and the sequencing depth and coverage were
also evaluated.

2.6. Association Analysis

The correlation analysis of point mutations and gene levels was completed with
reference to a previously published study [61]. In short, We first calculated the groups
carrying rare variants, including heterozygous or homozygous mutations, referring to the
gnomAD database [62] containing large-scale, whole exomes (123,136 samples, including
8624 people of East Asian ethnicity) and whole-genome sequencing samples. Variants with
an East Asian (EAS) allele frequency of less than 0.1 are considered rare. Then, Fisher’s
exact test was used to calculate the p value of each group; the variants with significant
differences were defined as characterized by: (1) both the discovery and validation stages
were significant (p value of less than 0.05), (2) the combined two-stage data were also
significant (FDR value less than 0.05 using Fisher’s exact test); (3) the gene-level association
was significant as performed using the SKAT-O method [63] (p value of less than 0.001).

2.7. Sanger Sequencing

To confirm the four rare variants, PCR was performed using the ABI9700 PCR system
(Thermo Fisher), and the PCR product was then sequenced in an ABI 3730 xl sequencer
(Thermo Fisher).

2.8. Other Analysis

The lm.fit() function in R software (version 4.0.4) was used to perform a linear fitting
analysis on the age and the total number of immune-gene variants in each sample. The
violinplot() function in the Python (version 3.7.5) package of Seaborn (version 0.11.1) was
used to draw the violinplot; the add_stat_annotation() function in the Python package

https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://broadinstitute.github.io/picard/
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statannot (version 0.2.3) was used for the statistical significance test, and the set parameters
were: test = ‘t-test_ind’, text_format = ‘star’, loc = ‘inside’, verbose = 2.

3. Results

As shown in Figure 1, the study was conducted in two stages: the discovery stage
and the validation stage. In the discovery stage, 37 patients with ASD and 55 healthy
controls were recruited. targeted region sequencing was performed using our previously
designed panel of 404 immune-response-molecule genes. The target region size was
approximately 500 Kbp, the average coverage depth was >1000×, and the 10× coverage
rate was >99%. A total of 7526 point mutations were detected, 285 of which differed
significantly between the ASD and the healthy control groups (p value less than 0.05,
Fisher’s exact test, Supplementary Table S1). During the validation stage, 35 patients with
ASD and 52 healthy controls were enrolled. Statistical analysis showed that 231 mutations
were significantly different between the ASD and healthy control groups (p value less than
0.05, Fisher’s exact test, Supplementary Table S2).
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Combining these two stages, a total of 61 ASD-related point mutations were found
(Supplementary Table S3), 4 of which were rare, functional mutations. These included the
missense mutation p.R322H and the splicing mutation c.956-4C>T of the LILRB2 gene, the
missense mutation p.S229N of the HLA-DQB1 gene, and the missense mutation p.A93G of
the HLA-B gene (Table 1). These 4 mutations were verified by Sanger sequencing with the
primers listed in Supplementary Table S4.

Table 1. Rare functional mutations in immune-response-molecule genes associated with ASD.

Gene Variants
“Risk” Allele

Carriers Variant Level p Value
FDR or SKAT-O Gene-Level

p Value
ASD HC Discovery Validation Combine

HLA-B p.A93G 11/72 0/107 3.26 × 10−3 8.79 × 10−3 2.73 × 10−5 4.48 × 10−3 Inf 3.05 × 10−6

LILRB2 p.R322H 15/72 2/107 4.15 × 10−4 2.71 × 10−2 2.75 × 10−5 4.48 × 10−3 13.63 1.53 × 10−8

LILRB2 c.956-4C>T 15/72 2/107 4.15 × 10−4 2.71 × 10−2 2.75 × 10−5 4.48 × 10−3 13.63 1.53 × 10−8

HLA-DQB1 p.S229N 15/72 4/107 3.16 × 10−2 3.21 × 10−3 3.81 × 10−4 3.95 × 10−2 6.70 2.30 × 10−3

The SKAT-O method, which considers both common and rare variants as risk factors
for disease, was used to evaluate the association between the 404 immune-response genes
and ASD. The results showed that the correlation p value of HLA-B and LILRB2 reached a
level of less than 1 × 10−5.



Genes 2022, 13, 1098 6 of 11

Considering that age is an important confounding factor, this controlled study in-
cluded adults without ASD as controls for individuals with ASD. To assess the potential
impact of age on immune-gene-variant counts, we used the lm.fit() function in R software
to perform a linear fitting analysis on the age and the total number of immune-gene vari-
ants in each sample (Supplementary Table S5). The calculated p value was 0.4556, and
R-squared was 0.0032 (Supplementary Figure S1), indicating that age effect on the number
of immune-gene variants is limited. In ASD individuals, the ratio of male:female was
extremely unbalanced, usually 3~4:1, or even higher. In this study, the number of male
ASD individuals was three times that of female ASD individuals, which is also typical.
Considering that gender is a potential confounding factor for ASD, we used gender as a
covariate to evaluate its effect on the four candidate ASD-related immune-gene variants,
showing that gender had no effect on these variants (Supplementary Figure S2).

4. Discussion

The imbalance of the immune response is considered to play a very important role in
ASD. Early studies focused on the discovery of ASD-specific cytokine profiles, lymphocyte
subsets, etc. [30,64]; in recent years, researchers have begun to focus on the discovery of
maternal autoantibodies [18,21–23,25,26] and understanding the role of gut microbiota
in it [65–67]. Genetic mechanisms are considered to play an important role in ASD, and
although a large number of studies have focused on the discovery of ASD-related clinical
variants [9–11,13,68,69], there is still a lack of systematic evaluation of ASD-related immune-
response-gene mutations. In the present study, we systematically evaluated mutations
in immune-response molecular genes, including HLA region genes and cytokine and
receptor genes, in patients with ASD. Maternal autoantibodies are potential biomarkers
for ASD [21,24]; the exposure to maternal autoantibodies during pregnancy is closely
related to the ASD-like behavior of the offspring [26,27]. Targeted intervention for ASD
patients with positive maternal autoantibodies is a potential treatment for ASD [20]. The
HLA system plays an important role in the recognition of autoantibodies; recent studies
have found that the HLA system is involved in the regulation of neural development
and neuroplasticity, especially through microglia regulation and synaptic pruning [15].
HLA Gene variants are associated with neurodevelopmental diseases such as ASD [70,71].
We found that the missense mutation p.A93G of the HLA-B gene from HLA Class I is
a risk factor for ASD, which supports the previously published findings that HLA-B*07
alleles are more common in patients with ASD [72] and that HLA-B gene polymorphism is
related to ASD [73]. We also found that the frequency of the missense mutation p.S229N
of HLA-DQB1 gene in ASD patients (15/72 = 20.83%) was significantly higher than that
in healthy controls (4/107 = 3.73%); it is well known that HLA-DQB1 is a susceptibility
gene for celiac disease [74]. Celiac disease is an immune enteropathy, mainly manifested by
gluten intolerance, and the symptoms of celiac disease are similar to the gastrointestinal
dysfunction prevalent in ASD [75]. Although there is no scientific evidence, the method
of intervening in celiac disease using a glutamate-free/casein-free diet is widely used in
ASD, and 20–29% of parents report significant improvement in ASD symptoms [76]. We
found that 20.83% of patients with ASD had a mutation in a genetic sequence associated
with celiac disease risk, which may provide theoretical support for gluten-free/casein-free
(GFCF) dietary interventions in patients with ASD; meanwhile, given the high prevalence of
gastrointestinal problems in ASD [77], the identified associated variants in HLA-DQB1 may
provide a more prevalent gastrointestinal phenotype than specifically gluten sensitivity in
the face of individuals with ASD and gastrointestinal problems. Furthermore, we found
that the 2 closely linked mutations, p.R322H and c.956-4C>T, from the LILRB2 gene had a
mutation frequency of 20.83% (15/72) in the ASD patient group, and that these 2 mutations
were rare in the control group (2/107 = 1.87%). The LILRB2 gene is an inhibitory receptor
gene of HLA Class I, and it was found that the LILRB2 gene encodes a neuronal cell-
surface receptor that is associated with occurrences of Alzheimer disease as a receptor for
β-amyloid [78]. The inhibition of the binding of β-amyloid to LilrB2 has become a potential
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pathway for the treatment of Alzheimer disease [79]. The results of this study suggest that
the LILRB2 gene may be a potential target for ASD therapy.

The 4 immune-response-gene mutations found in this study were present in 44.44%
(32/72) of the ASD patient group and are expected to serve as new targets for the clinical
genetic evaluation of ASD. The clinical genetic evaluation of ASD is usually performed
using a chromosome microarray combined with whole exome/genome sequencing, which
is costly, difficult for data interpretation, and has limited use for clinical genetic evaluation
in patients with ASD. The combined mutation frequency of the 4 mutations in ASD patients
was 44.44%, with a single mutation frequency of 20.83%. Whole-exome sequencing, whole-
genome sequencing, and robust bioinformatic analysis methods have successfully identified
high-confidence ASD candidate genes from a large number of de novo and inherited
variants [7–11,13,80]. However, despite great efforts, the genetic structure interpretation
of ASD using these candidate genes is still incomplete; high-throughput sequencing of
immune response genes is expected to complement the ASD genetic machinery.

To our knowledge, this is the first study to screen mutations in immune-response-
molecule genes in patients with ASD. This approach can prove helpful in answering
whether ASD immune dysfunction has a certain genetic basis. However, this study has
certain limitations. First, the genes of the immune-response molecules that we were
concerned with may not be comprehensive. This current study only covered cytokines and
receptors, HLA regions, and other genes. Second, although we have completely covered
the HLA gene-coding region, it does not cover the entire HLA region, and the haplotype of
the HLA region could not be obtained. Future studies are planned to evaluate more genes
of the immune-response molecule and to perform HLA haplotype detection. Finally, as
an exploratory ASD genetic research project, we did not collect detailed psychological or
behavioral assessment parameters when we included ASD individuals; the main reason
was that we included ASD individuals from several different institutions, and the criteria
used for detailed psychological and behavioral assessment of ASD vary from institution
to institution. In the future, we will further evaluate the association of immune-gene
mutations with psychological and behavioral assessment parameters.

In conclusion, our results suggest that immune dysfunction in patients with ASD may
have a genetic basis. The identification of these genetic mutations may also facilitate the
development of new genetic, clinical ASD assessment tools.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/genes13061098/s1: Supplementary Table S1. Significantly different
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