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Background. In crowded crowd images, traditional detection models often have the problems of inaccurate multiscale target count
and low recall rate.Methods. In order to solve the above two problems, this paper proposes anMLP-CNNmodel, which combined
with FPN feature pyramid can fuse the feature map of low-resolution and high-resolution semantic information with less
computation and can effectively solve the problem of inaccurate head count of multiscale people. MLP-CNN “mid-term” fusion
model can effectively fuse the features of RGB head image and RGB-Mask image. With the help of head RGB-Mask annotation
and adaptive Gaussian kernel regression, the enhanced density map can be generated, which can effectively solve the problem of
low recall of head detection. Results. MLP-CNNmodel was applied in ShanghaiTech and UCF_ CC_ 50 and UCF-QNRF.,e test
results show that the error of the method proposed in this paper has been significantly improved, and the recall rate can reach
79.91%. Conclusion. MLP-CNNmodel not only improves the accuracy of population counting in density map regression, but also
improves the detection rate of multiscale population head targets.

1. Introduction

At present, image-based crowd counting still faces many
problems: (1) Problems such as image clutter, uneven crowd
distribution, crowd overlap, and occlusion lead to low head
detection rates. (2) Pedestrians have different scales in the
image. Due to the difference in the distance between the
head and the camera, the head has different scales, so the
head with small scale is not easy to be detected. All these
reasons have created huge challenges for the further ad-
vancement of crowd counting [1–5].

Current crowd counting methods can be divided into
two categories: methods based on object detection and
feature regression [6–9]. Early work is to use some kind of
object detection model to detect individual objects. How-
ever, the detection architecture requires a lot of computa-
tional resources and cannot better solve the occlusion
problem and size feature extraction. When the head is small
or occluded, it usually cannot be detected. ,erefore, the

main problem is the low recall rate of the head. In real dense
crowd scenes, small heads are common. As a result, de-
tection-based dense crowd counting tends to be gradually
replaced by other methods due to underestimation [10–12].

In the past, head detection can only detect the size of a
crowd of dozens of people. When the size of the crowd
exceeds a few hundred people, the detection model is dif-
ficult to cope with due to the small size and serious oc-
clusion. In contrast, the regression method based on the
density map can more reliably obtain the overall charac-
teristics of the crowd and can effectively estimate the number
of the crowd [9, 13, 14].

Usually, the Gaussian kernel is generated with each head
as the center, but it does not match the size of the head, and
the density map is obviously interfered by the background
[15–17]. ,erefore, the density map thus generated also
suffers from significant deficiencies. As shown in Figure 1,
GT and ES are the real density maps and estimated density
maps generated by the MCNN model on the ShanghaiTech
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PartA dataset, and the density maps estimated byMCNN are
obviously distorted.

,e problem is that using density map regression can only
estimate the number but cannot locate the head position,
which severely limits the application of crowd counting in
video anomaly detection and pedestrian reidentification. As
shown in Figure 1, the head detection of the YOLO V4 model
cannot detect small-scale heads. In contrast, the RGB human
head annotation box provides more information about head
localization. If these head ROI pictures can be used as training
masks, it will help strengthen the head features and facilitate
the estimation of human head size. ,ere are currently
methods that utilize adaptive Gaussian kernels to generate
high-quality density maps [18, 19]. High-quality density maps
train more robust regression networks, providing prior
knowledge for crowd detection that is closer to the actual
distribution of crowds [20]. One of the reasons that previous
detectionmethods cannot detect small heads is due to the lack
of scale perceptron or the limitation of its own structure. For
those tiny heads, efficient scale-adaptive perceptrons should
be designed. Fortunately, RGB image and head RGB-Mask
image feature fusion can provide a prior for estimating head
size, which helps to set suitable scale fusion perceptrons for
different scales of human heads [21, 22].

Aiming at the shortcomings of the above methods, this
paper attempts to use the prior information provided by the
density map combined with the RGB-Mask labeled data to
achieve a high recall rate and high robustness based on the
density map guided detection.

,e contributions of our work are summarized as
follows:

(i) In the past, there was not much work to count and
detect people of different sizes by using multifeature

fusion. In particular, previous work has rarely fused
the RGB-Mask feature into the RGB feature. ,is
paper proposes a fusion scheme of “medium-term
fusion” between the RGB-Mask feature and the
RGB feature. ,e selection of “medium-term fu-
sion” can not only ensure the effective fusion of the
head RGB-Mask feature and the head RGB feature,
but also ensure that the head RGB-Mask
strengthens the role of local small target features in
the vgg16 small target feature extraction process.
,erefore, this part of the enhanced small target
head feature can be effectively connected with the
low-resolution semantic features in the subsequent
FPN feature pyramid.

(ii) ,rough the analysis of previous work, it is found
that the traditional FPN feature pyramid starts with
high-resolution semantic features, so there are in-
sufficient low-resolution semantic feature infor-
mation and low-resolution semantic feature map.
,e improved FPNmodel starts with low-resolution
semantic features and ends with low-resolution
semantic features after being fused with high-res-
olution semantic information features. In this way,
the feature map of low-resolution and high-reso-
lution semantic information can be fused with less
computation. It can take into account the high
semantic features with less information containing
small targets and the low semantic features with
more information containing small targets. Finally,
the feature layer of high semantic content is sampled
up and stacked down to ensure the characteristics
and information of small targets.

(a) (b)

(c) (d)

Figure 1: Traditional method density map and detection results. (a) Input image. (b) YOLO V4 crowd head detection results. (c) MCNN
ground truth density map. (d) MCNN estimated density.
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(iii) ,rough the analysis of previous work, it is found
that there are many methods to realize population
detection by using cross entropy loss or L1 and L2
loss functions alone. However, there is less literature
on themixed use of cross entropy loss and L1 and L2
loss functions. Because the cross entropy loss is only
effective for low-density pedestrian detection, it is
not suitable for dense crowd detection. ,erefore,
this paper attempts to combine cross entropy loss
with L1 and L2 loss functions and then realize small-
scale head detection with density map regression as
the guiding model.

2. Related Work

2.1. Detection-Based Counting. Early work on crowd
counting problems focused on detection counting methods.
,ese works count the total number of pedestrians by
detecting body, head, or shoulders [23–27]. Reference [23]
proposed a method based on skeleton detection to count the
total number of pedestrians in crowd scenes. Specifically, the
skeleton map is obtained by foreground segmentation, and
the moving target is detected by comparing the difference
between the skeleton and the background. ,e work [24, 25]
used a real-time skeleton detection model using OpenPose
to detect pedestrians. ,is method has achieved initial
success in sparse populations. However, in the case of oc-
clusion, the detection of multiple human skeletons is ab-
normal due to overlapping, which will lead to the problem of
wrong counts. However, occlusions are common in real-
world scenarios, so most pedestrian detection and counting
systems fail. To achieve efficient detection, head region-
based detection is an effective way to avoid occlusion
[26, 27].

In recent years, CNN-based head-and-shoulders pe-
destrian detection has been fully developed. For example,
RCNN [28], Fast RCNN [29], R–FCN [30], or Mask-RCNN
[31] can be applied in low-density crowd counting, but these
detection models are not very good in small object detection.
,e reason is that these models are not designed with an
effective head scale processing strategy to deal with small
target objects. For another group of methods such as
Overfeat [32], YOLO [33], or SSD [34], although these
frameworks can detect some objects with smaller scales, the
detection performance is poor, especially in small objects
with large detection errors. Although SSD has a good
performance in balancing computation time and accuracy,
the above methods are obviously unable to cope with dense
crowds with serious occlusion because no effective strategy is
designed.

Crowd counting is an extremely challenging job. Cur-
rently crowded images are divided into two categories:
crowded images that can be resolved and small-resolution
clumps that cannot be resolved. For discriminable crowded
crowds, crowd counting can be done using regression-based
methods. Much literature [35–39] uses regression methods
to implement the crowd counting problem. ,ese methods
first extract local edge features and texture features of crowd
images and then learn a regression function to estimate the

sum of all local counts in the image. A regression function is
used to build a mapping from local features to counts.
Commonly used regression functions include linear re-
gression [35], piecewise linear regression [36], ridge re-
gression [37], Gaussian process regression [38], and neural
networks [39].

A small head in an indistinguishable crowd image only
covers 10 to 20 pixels, so there is not enough information to
extract pedestrian features; Ji et al. [40] consider the diffi-
culty of learning such features and therefore use random
forest regression to learn the nonlinear mapping between
local patch features and density maps. Following this work,
Sadler et al. [41] used random forests to regress crowd
density, and the training efficiency was also greatly im-
proved. In [42], Mo mentioned a response of a Laws filter
convolved with mask to obtain a two-dimensional density
layer and finally realized the regression of difficult-to-dis-
tinguish crowd images, where mask is to create a mask by the
gray-scale restricted area growth method. In other words,
methods based on these regressions are more likely to fail in
crowd counting in image areas with high crowd density due
to the lack of deeper features. ,erefore, the counting
problem of visually indistinguishable crowded images
cannot be completely solved.

2.2. Density Map Regression. Methods based on regression
density maps have achieved a breakthrough in addressing
indistinguishable crowd counting [8, 43–49]. Powerful
CNNs play an important role in the density map regression
process, and Wang et al. [43] show that features extracted
from deep models are more effective than handcrafted
features. Compared with the regression-based method, the
density map regression-based method preserves a large
amount of spatial distribution information in the crowd
area, so the density map regression is more suitable for
analyzing small targets. ,e crowd counting process is to
first regress the density map of the crowd and then get the
count by integrating the density map.

Pai [44] et al. aim to achieve dense crowd counting in
visually indistinguishable crowded images. ,is method
convolves image patches with a Gabor filter and classifies the
responses of the Gabor filter with a support vector machine
(SVM). ,is method is effective for counting both high-
density crowd images and low-density crowd images in a
specific scene, but the counting effect of replacing it with
other scenes cannot take effect, and the migration perfor-
mance is not good.

In reference [44] proposed density map regression with
an adaptive Gaussian kernel, which can better handle density
map estimation in regions with different density levels.
Miangoleh et al. [45] attempted to learn various density
levels to integrate contextual information and generate high-
resolution density maps. Reference [45] also proposed to use
density map regression results to guide detection. Reference
[46] proposed a framework called Hydra-CNN, which
achieves the final density prediction by extracting a pyramid
of image feature blocks at multiple scales. Zhang et al.
adopted a CNN with geometric or perspective information
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to fuse scale-dependent contextual information to achieve
multiscale perception. Zhang et al. [48] fused features from
different counting network layers to obtain robust repre-
sentations for scale changes. Reference [49] proposed a Deep
Scale Purification Network (DSPNet) to extract multiscale
features and compensate for the loss of context. Sam et al.
[50] proposed Switch CNN, which trains an optimal re-
gressor for a specific input, thereby improving the counting
ability.

Density map regression based on deep learning [51–53]
has solved many dense crowd counting problems in the past
few years, but it also has some shortcomings: although it can
increase the location information of crowds in crowded
images, it cannot locate pedestrians border. ,is limits
further applications in surveillance domains such as pe-
destrian tracking and reidentification tasks.

2.3. Density Map Regression Guided Detection. In order to
simultaneously estimate the number of human heads and
detect bounding boxes when regressing the density map,
Zhong et al. [54] used the density map regression to improve
the head detection results. But that method does not work
for cross-scene counting. ,e research most relevant to this
paper is Hou et al.’s [55] using cross-modal data to achieve
crowd counting in RGB-D images with the help of a re-
gression guided detection network (RDNet). Leverage
density maps improve head detection rates in detection
networks. To improve the robustness of the method, the
detector directly classifies anchors into specific classes and
regresses bounding boxes in a dense manner. ,ese con-
volutional features usually only capture basic visual patterns
and lack strong semantic information, which may lead to
many false positive results.

3. Methods

,e overall architecture of the method described in this
paper includes two kernels, the head RGB-Mask head
perceptron and the adaptive Gaussian kernel density map
regressor. ,is section will deeply analyze the internal
mechanism of this method from the perspective of formula
principle and structure. ,e head RGB-Mask perceptron is
implemented with the help of MLP-CNN network. ,e
regression guided detection of the adaptive Gaussian density
map is realized with the help of the MR-CNN network. ,e
training data in this paper uses the head RGB-Mask
binarization and the mask head annotation box as the input
to strengthen the head supervision training.

3.1. Adaptive Gaussian Kernel Density Map. Adaptive
Gaussian kernel regression is able to produce density maps
that are closer to the true density map. ,e adaptive
Gaussian kernel can gradually approach the guide size of the
head mask through training. ,e density maps produced
with the help of regression can provide prior knowledge for
the head detection module of the MR-CNN network. ,is
prior can guide the location and size of the generated head
detection boxes.

3.1.1. Gaussian Density Map. Crowd estimation requires the
conversion of labeled head images into crowd density maps.
Assuming that an image has N heads, its original formula is
expressed as

H(x) � 
N

i�1
δ x − xi( . (1)

δ is the impulse function, xi is the position of the head in
the pixel, δ(x−xi) is the impulse response function of the
head position in the image, and N is the total number of
heads in the image.,e density map based on the traditional
Gaussian kernel can be expressed as

F(x) � 
N

i�1
δ x − xi( ∗Gσi

(x),

σi � βSi.

(2)

Among them, Si in formula (2) is the average distance of
the nearest m heads from the head of xi. In formula (2), Si is
approximately equal to the size of the head in a dense crowd.
Here the experimental parameter β is adaptively adjusted
according to the actual crowding degree of each image. ,e
size of the Gaussian kernel is variable.

3.1.2. Head RGB-Mask Adaptive Estimation. In order to
make the density map better correspond to the images of
different head sizes of dense crowds, the traditional Gaussian
kernel function is improved and a Gaussian kernel based on
head RGB-Mask geometric adaptability is proposed.

On the basis of the traditional Gaussian density map
formula, the prior knowledge is used to further enhance the
adaptability of the Gaussian kernel to the head RGB-Mask
features. Different from the prior knowledge of previous
algorithms, this paper proposes a new head RGB-Mask
perception prior knowledge, which further highlights the
target of the head RGB-Mask prior by considering the
position and size relationship of the head RGB-Mask geo-
metric constraints. ,is prior knowledge is represented by a
Gaussian model as

G x,y,d
i

  � exp −
x −μx( 

2

2σ2x
+

x −μy 
2

2σ2y
+

x −μdi( 
2

2σ2di

⎛⎝ ⎞⎠⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦.

(3)

Among them, µ indicates the position of the Gaussian
peak; σ controls the shape of the Gaussian curve; the smaller
σ is, the steeper the curve is; (xθ, yθ, di) is the coordinate of
the pixel θ in the normalized image coordinate system. ,e
XY plane corresponds to the image plane, and d i corre-
sponds to the head RGB-Mask size of the image.

,e density map regression module takes an image as
input and utilizes a CNN for density map estimation. ,e
density map generation strategy is to use the head RGB-
Mask adaptive Gaussian kernel to generate the density map.
Given a training set of heads with annotated boxes, if the
image contains a total of N heads, the adaptive Gaussian
kernel density map of the image can be written as
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F(x) � 
N

i�1
δ x − xi( ∗G x, y, d

i
 . (4)

G(x, y, d i ) is a 2D Gaussian kernel with adaptive
bandwidth, thus transforming the crowd counting problem
into the following problem: F : I(x)⟶F(x), which learns from
the image space I(x) to the density map space F(x) mapping.
When themapping function F(x) is established, a density map
for any given image can be obtained, and the integral over the
entire image is an estimate of the total head count.

3.2. Head RGB-Mask Perception Network. RGB-Mask Per-
ceptron. For the head RGB-Mask perceptron, the annotated
head RGB-Mask dataset was used to train MLP-CNN. MLP-
CNN includes multiple scalable submodules, and each
submodule unit consists of a VGG16 network. In order to
find a reasonable structure of the MLP-CNN variant, here
each VGG16 unit of the MLP-CNN is connected in series
and parallel. Among them, the RGB-Mask features are
captured by the first ten convolutional layers of VGG16.
Finally, the RGB-Mask information features of MLP-CNN
will enter the RGB feature network from the mid-end entry
and finally complete the feature fusion of head RGB and
head RGB-Mask.

RGB feature network. ,e RGB network model contains
4 convolutional layers (convs1-convs4). Conv1 has 32
7× 7× 64 filters, conv2 has 32 7× 7×128 filters, conv3 has 32
7× 7× 256 filters, and the last convolutional layer has 64
5× 5× 512 filters device. ,e convolutional layer uses a max-
pooling layer with a kernel size of 2× 2. Fully connected
layers (fc5, fc6, and fc7 not shown in Figure 2) rapidly reduce
the spatial resolution.

=e Head RGB-Mask and RGB Fusion Network. As
shown in Figure 2(a), different entrances are used to fuse the
head RGB-Mask and RGB model. ,e head RGB and head
RGB-Mask inputs can be directly concatenated, resulting in
a new first convolutional layer. It is called early fusion. ,e
scores of the head RGB network and head RGB-Mask
branch can also be concatenated at the end of the network
and then use 1× 1 convolution as the classifier. It is called
late fusion.

=is Paper Adopts Mid-Term Fusion. Although early
fusion is more expressive than mid-level fusion, it can fully
exploit the correlation between features. However, the larger
the amount of data expressing the power, the higher the
required training cost. ,e benefit of late fusion is that most
of the network initialization weights can be reused directly
without readjusting the network weights based on additional
inputs. Unfortunately, it does not allow the network to learn
about such high-level interdependencies between individual
input modalities, since only the resulting scores at the
classification level are fused.

Finally, the scores of the head RGB-Mask branch can be
merged before a max-pooling layer of the RGB network
followed by a 1× 1 convolutional layer.,e number of MLP-
CNN modules used in this mid-level fusion method is de-
termined by the desired spatial dimension in the RGB

network. ,erefore, these models realize the optimal design
according to the number of VGG16 of MLP-CNN module,
taking into account the training cost and the high-level
interdependence between various input modes.

FPN (Feature Pyramid Network). In order to achieve
multiscale target processing, a feature pyramid structure is
added here, as shown in Figure 2(b). ,e purpose of using
feature pyramid is to increase the processing power of CNN
for head scale transformation.

,emodel on the left side of the feature pyramid is called
bottom-up. ,e network first performs the traditional
bottom-up top-down feature convolution (left side of the
figure), and then the feature map on the left side of the FPN
fuses adjacent feature maps from top to bottom. ,e model
on the right is called top-down, and the horizontal arrows
are called lateral connections. ,e purpose of this is that the
high-level feature semantics is more, and the low-level
feature semantics is less but with relatively more location
information.

,e specific method is that the higher-level features of
the two feature layers use the interpolation method to
complete the 2-fold upsampling; that is, on the basis of the
original image pixels, the interpolation algorithm is used to
insert new pixels between the pixels, and the feature size is
doubled. ,e lower-level features are changed by 1× 1
convolution to change the number of channels of the lower-
level feature, and then the corresponding elements of the
result after upsampling and 1× 1 convolution are simply
added. ,e horizontal connection should use 1× 1 convo-
lution to change the number of channels, so that the
channels of each level processing result are 256-d, which is
convenient for classifying the added features later.

With the improved FPN network structure, head RGB-
Mask annotation is used as a priori under feature training,
and head RGB-Mask plays a role in strengthening local small
target features in the VGG16 small target feature extraction
process. ,erefore, this part of the strengthened small target
head features can be effectively connected with low-reso-
lution semantic features. Starting from the low-resolution
semantic features, after fusion with the high-resolution
semantic information features, it ends with the low-reso-
lution semantic features. It can fuse the feature map with
strong low-resolution semantic information and the feature
map with weak high-resolution semantic information but
rich spatial information under the premise of less compu-
tation.,e improved FPN network can take into account the
high semantic features with less information containing
small targets and the low semantic features with more in-
formation containing small targets. Finally, the feature layer
of high semantic content is sampled up and stacked down to
ensure the features and information of small targets.

Density Map Generator. First, the frame coordinates of
the human head in the original image should be calibrated,
and the density function should be obtained with the help of
the Gaussian kernel function. However this assumes that
each Gaussian kernel is independent in the sample space. In
fact, head pixels are inconsistent in scale in different distance
regions due to scale variation. Also, in practice, it is im-
possible to obtain the size of the head accurately due to the
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occlusion of the human head, so it is difficult to find the
relationship between the size of the head and the density
map. ,erefore, in the same scale area, the average distance
of adjacent heads is used as a parameter, so the difference
between the generated density map and the real density map
is large, as shown in Figure 2.

RGB-Mask Perceptron. In order to accurately estimate
the population density, it is necessary to consider adding the
head RGB-Mask perception parameter to the adaptive
Gaussian kernel function. Due to the consideration of image
distortion, usually the geometry of the head cannot be de-
termined in the original scene, because the original image
lacks the spatial constraint information of the head pixels. In
order to obtain the spatial constraint information of the head
pixels, the perceptron fused with the head RGB-Mask image
information is used as the head range constraint informa-
tion. Human heads of different scales can give the reasonable
range of the head RGB-Mask for the geometrically distorted
part. ,e parameter σ of the adaptive Gaussian kernel is
determined for each head size.

MR-CNN Detector.,e detection network takes the fea-
tures of human heads of different scales as input. Estimate the
center point of each scale head object. ,en, the head mask
reinforcement learning is used to close the head center point
to the reinforcement feature boundary and finally represent
them with detection boxes, as shown in Figure 2(c).

4. Experiments

4.1. Dataset Selection Training Configuration

4.1.1. Dataset Introduction and Evaluation Criteria. ,e
crowd counting method in this paper has been evaluated
experimentally on three standard datasets, ShanghaiTech,
UCF_CC_50, and UCF-QNRF, as shown in Table 1.
ShanghaiTech contains part_A_Final and part_A_Final
two parts; this paper uses three datasets for model training
and testing. ,e feasibility and applicability of our pro-
posed method are verified by experimental comparison.

,is paper first gives the relevant parameters of the three
datasets used in the experiments. ,en, the comparison
results between the method used in this paper and the
current state-of-the-art crowd counting methods under
these datasets are given, and the crowd detection results
with high recall rate are given. Finally, this paper conducts
ablation experimental studies to demonstrate the inde-
pendent effectiveness of each method unit in our com-
prehensive approach.

Metrics. Mean absolute error (MAE), mean squared
error (RMSE), and cross entropy are used to evaluate crowd
counting work. MAE loss is also known as L1 loss; RMSE
loss is also known as L2 loss:

MAE �
1
N



N

1
Ni − ni


,

RMSE �

�������������

1
N



N

1
Ni − ni( 

2




.

(5)

N is the total number of test images, Ni is the actual
number of people in the ith test image, and ni is the esti-
mated number of people in the ith image.

L �
1
N


i

Li

�
1
N


i

− yilog pi(  + 1 − yi(  · log 1 − pi(  .

(6)

y i represents the label of sample i. Head class is 1,
nonhead class is 0. pi represents the probability that sample i
is predicted to be head class.

4.1.2. Advantages of Cross Entropy Loss Combined with L1
and L2 Loss. MAE and RMSE generally depend on the
assumption of Gaussian distribution. ,erefore, L1 and L2

... ... ...

...

...

...

conv1×1

conv1×1

conv1×1

conv1×1

density map
generator Deep-MLP Detector

...

f L

f1

f2

f3

f4

convs
3×3×64

convs
3×3×128

convs
3×3×256

convs
3×3×512

VGG16

VGG16

VGG16

VGG16

VGG16

VGG16

∑ people count1 ∑ people count2 ∑ people count3

(a) (b) (c)

Figure 2: Overview of the proposed network. (a) Each input image is first processed byMLP-CNN. (b),e extracted features are fed to FPN
for obtaining representations with spatial context information from different depths of the network and predicting density maps. (c) ,e
spatial context representation is sent to MR-CNN to detect the final crowd.
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loss are more suitable for regression problems. ,erefore,
the common regression density map method can better
complete the counting of dense population, but it is difficult
to meet the problem of dense population detection at the
same time. Because L1 and L2 loss cannot be applied to
dense crowd images with non-Gaussian distribution under
the classification task, the detection effect will be very poor,
and small-scale head can not be detected. Cross entropy does
not rely on the assumption of Gaussian distribution.
,erefore, the combination of cross enterprise in classifi-
cation detection can make up for the problem that L1 and L2
loss cannot be fully detected in dense population distribu-
tion. Another reason is that, relative to L1 and L2 loss, the
cross entropy loss is monotonic as a whole. ,e greater the
loss, the greater the gradient. It is convenient for gradient
descent backpropagation and optimization. ,erefore, for
classification problems, cross entropy is often used as loss
function.

Since the model of this paper is a technical route of
density map regression guided detection, from the per-
spective of training, density map regression based on
Gaussian distribution is the primary task of our work, and
the use of head density points in density map is a favorable
premise for guided detection. ,erefore, our work is to
complete the training based on adaptive Gaussian regression
model and then complete the head detection based on head
enhancement feature learning. Here, L1 and L2 loss are used
for the training of adaptive Gaussian regression model, and
cross enterprise completes the training of head detection
model on this basis. ,erefore, cross entropy combined with
L1 and L2 loss can be competent for the overall training of
density map regression guided detection model.

4.1.3. Dataset Parameter Setting and Training.
Preprocessing. ,e acquisition of the head RGB-Mask needs
to go through two preprocessing steps. ,e following pro-
cesses are all implemented by programming, as shown in
Figure 3. ,e rectangular RGB image of the head is cropped
by the head annotation frame in the dataset. Pixels outside
the head annotation are replaced with RGB-Mask. ,e RGB
image is converted into small head images, which are used to
highlight the mask feature of the head and finally convert it
into an RGB image.

MLP-CNN Training Settings. MLP-CNN is trained end-
to-end. ,e initial value of Gaussian parameter in MLP-
CNN is set to 0.5, and the standard deviation is set to 0.02. In
our experiments, MLP-CNN chooses stochastic gradient
descent (SGD) with momentum and uses a small learning
rate for ShanghaiTech dataset, UCF_CC_50 dataset, and
UCF-QNRF dataset to train the model, the initial learning

rate is set to 0.005, and the momentum is set to 0.85. After
this setting, the training convergence speed is faster, as
shown in Figure 4. ,e implementation of our method is
completed under the Pytorch framework. In terms of
hardware, three NVIDIA 1080 Ti GPU graphics cards and
four Intel(R) Xeon(R) E5-2630 v4 CPU are used to ensure
the performance requirements of graphics cards and com-
puting units.

4.2. Comparison with State-of-the-Art Methods

4.2.1. Crowd Counting. Experimental data were collected on
the state-of-the-art methods in crowd counting from 2015 to
2021, give the performance of these methods on these dif-
ferent datasets, and give the results of the comparison be-
tween the methods used in this paper and the current state-
of-the-art crowd counting methods. From Table 2, it can be
found that the performance of the advanced method
gradually improves as the method approaches as the year, so
this paper only compares the results of the method closest to
ours in 2021, as shown in Table 2.

ShanghaiTech Dataset. Our method is compared with
other state-of-the-art methods on PartA and PartB of the
ShanghaiTech dataset.,e specific performance is as follows:
for PartA on the ShanghaiTech dataset, our results achieve
an 8.89/6.01 improvement in MAE and RMSE metrics
compared to the state-of-the-art method Partial Annota-
tions in 2021. In particular, our results are 46.3/67.6 better
than SFCN in 2019 and 0.9/1.9 better than MCNN in 2016,
which is a clear improvement over the PartA count on the
ShanghaiTechA dataset, as shown in Figure5(a). For PartB of
the ShanghaiTech dataset, our method achieves 2.45/6.11
improvements in MAE and RMSE metrics compared to the
state-of-the-art method Partial Annotations in 2021. In
particular, our results are 1.12/3.41 better than ic-CNN in
2018 and 16.82/28.71 better than the classic MCNN in 2016,
and analyzing the qualitative results shows that our method
performs well in databases with different degrees of
crowding, as shown in Figure 5(b). At the same time, the
density map and the density map of ground truth are more
prominent than the crowd Gaussian boundary. Compared
with MCNN, the saliency of the human head part is more
obvious, as shown in Figure 6.

UCF-QNRF Dataset. ,e performance results of our
method on the UCF-QNRF dataset are shown in Table 2.
From the results, it is found that our method achieves a
24.52/49.36 improvement in MAE and RMSE metrics
compared to the state-of-the-art method Partial Annota-
tions in 2021. In particular, our results are 1.99/11.81 better
than DUBNet in 2020 and 173.39/257.31 better than the

Table 1: Summarizations of crowd counting datasets for evaluation.

Dataset Part Resolution Number of images Max Min Avg Total

ShanghaiTech PartA Different 482 3139 33 501.4 241677
PartB 768×1024 716 578 9 123.6 88488

UCF-QNRF All Different 1535 12895 49 815.4 1251642
UCF_CC_50 All Different 50 4543 94 1279.5 63974
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classic MCNN in 2016. ,is performance is also a clear
improvement in the count of the UCF-QNRF dataset, as
shown in Figure 5(c). ,e density map is compared with the
density map of ground truth. ,e crowd Gaussian boundary
is more prominent. Compared with MCNN, the saliency of
the human head part is more obvious, as shown in Figure 7.

UCF_CC_50 Dataset. ,e performance results of our
method on the UCF_CC_50 dataset are shown in Table 2.
From the results, it is found that our method achieves 55.36/
125.81 improvement in MAE and RMSE metrics compared
to the state-of-the-art method Partial Annotations in 2021.
In particular, our results are 5.17/12.02 better than DUBNet
in 2020. Our results are 138.97/191.82 better than the classic
MCNN in 2016. ,is performance is also a significant

improvement in the count of the UCF_CC_50 dataset, as
shown in Figure 5(d). ,e density map and the ground truth
density map are more prominent than the crowd Gaussian
boundary. Compared with MCNN, the saliency of the hu-
man head part is more obvious, as shown in Figure 7.

Analysis of the overall qualitative results shows that our
method performs well in databases of varying degrees of
crowding. ,e main reason is that our proposed network
learns more head RGB-Mask spatial context information,
which is consistent with our original motivation. ,e results
verify the effectiveness of our method.

,e conclusion after comparison is that this method is
applied in UCF-QNRF. ,e performance of UCF-QNRF
dataset is better than that of DFN, SS-CNN, and RPNs

(a) (b) (c)

Figure 3: Head RGB-Mask preprocessing process. (a) Original image; (b) RGB-Mask of heads; (c) RGB of heads.
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Figure 4: ,e training process. (a) Learning rate setting curve. (b) Time variation curve of training and saving weights. (c) Loss function
variation curve. (d) Total training time variation curve.
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Table 2: Comparison of the different state-of-the-art methods on ShanghaiTech (SHA&SHB), UCF-QNRF (UQF), and UCF_CC_50 (U50)
dataset.

Method Year MAE
(SHA)

RMSE
(SHA)

MAE
(SHB)

RMSE
(SHB)

MAE
(UQF)

RMSE
(UQF)

MAE
(U50)

RMSE
(U50)

1 Crowd CNN [56] FSL 181.8 277.7 32 49.8 ∗ ∗ 467 498.5
2 MCNN [57] FSL 110.2 173.2 26.4 41.3 277 426 377.6 509.1
3 CMTL [58] SSAL 101.3 152.4 20 31.1 252 514 322.8 341.4
4 Switch CNN [50] FSL 90.4 135 21.6 33.4 228 445 318.1 439.2
5 CP-CNN [59] FSL 62.4 102 20.1 30.1 ∗ ∗ 298.8 320.9
6 IG-CNN [56] FSL 72.5 118.2 13.6 21.1 ∗ ∗ 291.4 349.4
7 ic-CNN [60] FSL 68.5 116.2 10.7 16 ∗ ∗ 260.9 365.5
8 PACNN [61] FSL 62.4 102 7.6 11.8 ∗ ∗ 241.7 320.7
9 CAN [62] FSL 62.3 100 7.8 12.2 107 183 212.2 243.7
10 SFCN [63] USL 64.8 107.5 7.6 13 102 171 214.2 318.2
11 ANF [64] FSL 63.9 99.4 8.3 13.2 110 174 250.2 340
12 DM-count [65] FSL 85.6 95.7 7.4 11.8 85.6 148.3 211 291.5
13 DUBNet [66] FSL 64.6 106.8 7.7 12.5 105.6 180.5 243.8 329.3
14 SDANet [67] FSL 63.6 101.8 7.8 10.2 ∗ ∗ 227.6 316.4
15 UEPNet [68] FSL 54.64 91.15 6.38 10.88 81.13 131.68 165.24 275.9
16 SDNET [69] SSL 53.6 84.4 ∗ ∗ 79.2 134.8 169.4 243.6
17 Gen.loss [70] SSAL 61.3 95.4 7.3 11.7 84.3 147.5 ∗ ∗

18 P.Annotations
[71] PAL 72.79 111.61 12.03 18.7 128.13 218.05 293.99 443.09

19 DFN [72] SSAL 77.58 129.7 14.1 21.10 218.2 357.4 402.3 434.1
20 SS-CNN [73] FSL — — — — 115.2 175.7 229.4 325.6
21 SD-CNN [74] FSL — — — — — — 235.7 345.6
22 RPNs [10] FSL — — — — 112 173 — —
23 Ours SSAL 63.9 105.6 9.58 12.59 103.61 168.69 238.63 317.28
Statement: USL (Unsupervised Learning), FSL (Full Supervised Learning), SSL (Semisupervised Learning), SSAL (Semisupervised Active Learning), PAL
(Partial Annotations Learning).
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Figure 5: Continued.
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models. ,e performance of UCF_CC_50 dataset is better
than that of DFN model, but the error performance is worse
than that of SS-CNN and SD-CNN models, as shown in
Table 3.,e reason is that SS-CNN and SD-CNN have made
a lot of contributions in the multiscale sensing mechanism,
but in the too dense crowd, the method in this paper only
uses the improved PFN to judge the head size of small targets
which has certain limitations. In addition, in ShanghaiTech
dataset, the method error used in this paper is slightly better
than DFN.

In addition to the design characteristics of each method,
the form of dataset training and annotation will directly
affect the counting accuracy of the model for dense pop-
ulations. Generally, SSL uses labeled and unlabeled data to fit
the model, but unlabeled data may make the model worse.
FSL performs best because it completely labels all samples,
but the labeling cost is too high. Although SSAL can reduce
the labeling cost, using some fully labeled images for net-
work training will lose the head posture, illumination, image
perspective, and other information of unused labeled im-
ages. Pal can maximize the retention of the head posture,
illumination, image angle, and other information of the
pictures in the dataset, while using less annotation to achieve
more accurate full annotation to complete more accurate
crowd calculation. ,erefore, pal is generally better than
SSAL.

4.2.2. Model Complexity and Processing Time Experiment.
At UCF_QNRF dataset, this method compares the most
advanced counting networks in terms of model parameters
(Params) and processing time (Time/s) in order to verify the
model’s complexity and time consumption. Model param-
eters (Params) are used to measure the complexity of the
model, and processing time (Time/s) is used to measure the
time-consuming performance of the model. ,rough
comparison, it is found that the method described in this
paper adds FPN and fusion mechanism to the model, so
there are many parameters. However, too many model
parameters increase the image processing time, so some
time-consuming performance is sacrificed. For mlp-cnn,
Params� 14.25×106, and Time� 2.39 s, as shown in Table 3.

4.2.3. Crowd Detection. At present, the head detection of
dense crowds cannot be detected according to the human
head scale, and most detection methods are powerless for
small pixel heads. ,e estimation and detection of head
position points are particularly important in reflecting the
distribution of the crowd. ,e dense crowd dataset gives the
coordinates of the center point of the crowd head annotation
box. First, the center point of the head from the real point is
marked (the green point is the center point of the rectan-
gular annotation frame), as shown in Figure 7(a). ,en the
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Figure 5: Visualization error results of ShanghaiTech PartA, ShanghaiTech PartB, UCF-QNRF, andUCF_CC_50 datasets. (a) ShanghaiTech
PartA error curve; (b) ShanghaiTech PartB error curve; (c) UCF-QNRF error curve; (d) UCF_CC_50 error curve.
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ShangHaiTechPartA-2

ShangHaiTechPartB-12

GT Count : 1111 MCNN-Est. : 1085 OURS-Est. : 1093

Input image GT MCNN Ours

GT Count : 514 MCNN-Est. : 499 OURS-Est. : 504

UCF-QNRF-35 GT Count : 1018 MCNN-Est. : 994 OURS-Est. : 1010

UCF-CC-50-24 GT Count : 1566 MCNN-Est. : 1542 OURS-Est. : 1559

Figure 6: Visualization results of ShanghaiTech PartA, ShanghaiTech PartB, UCF-QNRF, and UCF_CC_50 datasets. From left to right:
input image, ground truth density map, MCNN results, and results of our recommended method.

(a) (b)

Figure 7: Continued.
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method of this paper extracts the head center point (red
point) in the density map, as shown in Figure 7(b). ,e
localization performance of our method on the Shang-
haiTech dataset is evaluated by evaluating the precision and
recall between the extracted estimated location points (red
points) and ground truth annotated head center points
(green points), as shown in Figure 7(c).

Before using cross entropy loss, our method has the
problem of missing detection in detecting small-scale hu-
man heads, as shown in Figure 8(b).,ere are various crowd
scale of the estimated location points, as shown in
Figure 8(c). With the help of the cross entropy loss, heads
with different scales can be well detected, especially small
heads. ,e positioning result is shown in Figure 8(d).
Compared with current more sophisticated feature extrac-
tion detection frameworks, the method results in out-
performing other methods in terms of precision and recall.
,is is because the spatial context information of the head

RGB-Mask image can constrain the size range of the
adaptive Gaussian kernel. In density map head classification,
cross entropy can avoid the decline of learning rate of mean
square error loss function, the assumption of Gaussian
distribution, and the gradient explosion problem caused by
L1 and L2, which can effectively improve the validity of the
detection results.

4.3. Ablation Study

4.3.1. Effectiveness of the Head RGB-Mask Adaptive Gaussian
Kernel. In this part, the ablation experiment is carried out
on the RGB-Mask adaptive Gaussian kernel. As shown in
Table 4, four different variables were selected for qualitative
analysis; namely, the Gaussian kernel function G(X), the
density function H(X), the multivariate Gaussian function
G(Xn), the difference of the head RGB-Mask perceptron
combinations are evaluated. From the results, it can be seen
that the density function H(X) using the Gaussian kernel
function G(X) has a large error in the counting result. It is
worth noting that the density function H(X) of G(X) does
not converge. ,e reason is that G(X) cannot obtain the
boundary constraints of head spatial context information
from different dimensions and is not suitable for the con-
vergence of denser crowds. ,e degree function H(X) using
the multivariate Gaussian kernel function G(Xn) is more
suitable for the parallel processing of crowd counting results
in terms of counting results, and the processing time is
shortened. ,erefore, the introduction of the head RGB-
Mask perceptron can constrain the edge expansion of each
Gaussian kernel, and the convergence time is shortened.,is
means that the combination of multivariate Gaussian kernel
function G(Xn) with perception of head RGB-Mask infor-
mation helps crowd counting with smaller MAE and RMSE
errors.

,is part is the ablation study of variables in MLP-CNN.
As shown in Table 4, three different MLP-CNN variants are
explored, RGB-Mask-VGG16 is an MLP-CNN variant with
only one VGG16, RGB-Mask-VGG16 (series) is an MLP

(c) (d)

Figure 7: Localization results on the UCF-QNRF dataset. (a) Green points represent ground truth; (b) red points represent estimated
positions; (c) detection results; (d) local method renderings.

Table 3: Detailed information comparison of the error, complexity,
and time consumption of the state-of-art on the UCSD dataset.

Method
MAE
(UCF_
QNRF)

RMSE
(UCF_
QNRF)

Params Times (s)

MCNN [57] 277 426 0.13×106 0.02
CMTL [58] 252 514 2.68×106 0.45
Switch CNN [50] 228 445 1.543×106 0.25
CAN [62] 107 183 4.68×106 0.78
SFCN [63] 102 171 5.87×106 0.98
ANF [64] 110 174 4.67×106 0.78
DM-count [65] 85.6 148.3 16.28×106 2.73
DUBNet [66] 105.6 180.5 5.69×106 0.95
UEPNet [68] 81.13 131.68 4.68×106 0.78
SDNET [69] 79.2 134.8 13.25×106 2.22
Gen.loss [70] 84.3 147.5 10.17×106 1.70
P.Annotations
[71] 128.13 218.05 8.89×106 1.49

RPNs [10] 112 173 2.15×106 0.36
Ours 103.61 168.69 14.25×106 2.39
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containing two concatenated VGG16-CNN variants, and
RGB-Mask-VGG16 (parallel) is an MLP-CNN variant
containing two parallel VGG16s. From the results the MLP-
CNN variant head RGB-Mask perceptron actually improves
the counting results (except that RGB-Mask-VGG16 (series)
does not converge). Furthermore, the MLP-CNN variant of
RGB-Mask-VGG16 (parallel) is more efficient than using
only one VGG16 because the parallel input of two Mask1
and Mask2 in the head RGB-Mask perceptron helps to

strengthen the head ROI head characteristics of the region. It
is worth noting that RGB-Mask-VGG16 (series) does not
converge. ,e reason is that the Mask1 and Mask2 feature

(a) (b)

(c) (d)

Figure 8: Cross entropy loss improves the detection rate of dense crowds. (a) Input image; (b) detection result of ours method; (c) location
point estimation; (d) detection result of ours method.

Table 4: Effectiveness analysis of different RGB-Mask model
combinations (C.1∼C.6) in PartA of ShanghaiTech University; √ is
choice, and × is not choice.

Component C.1 C.2 C.3 C.4 C.5 C.6 Ours
G(X) √ × √ × × × —
H(X) √ √ √ √ √ √ —
G(Xn) × √ × √ √ √ —
RGB-Mask-VGG16 × × √ √ × × —
RGB-Mask-VGG16
(parallel) × × × × √ × —

RGB-Mask-VGG16
(series) × × × × × √ —

MAE — 115.9 88.3 79.9 72.5 — 63.9
RMSE — 186.6 138.8 124.9 116.7 — 105.6

Table 5: Comparison between VGG16 and more complex encoder
results (C.7∼C.11); √ is choice, and × is not choice.

Component C.7 C.8 C.9 C.10 C.11
RGB-Mask-VGG16 √ × × × ×

RGB-Mask-VGG19 × √ × × ×

RGB-Mask-inception V1 × × √ × ×

RGB-Mask-inception V2 × × × √ ×

RGB-Mask-inception V3 × × × × √
MAE 63.8 63.1 63.9 62.8 55.9
RMSE 105.5 104.9 105.6 103.1 98.5

Table 6: Different feature fusion (C.1∼C.4) and normalization
methods on ShanghaiTech PartA; √ is choice, and × is not choice.

Component C.1 C.2 C.3 C.4 Ours
RGB √ × √ √ —
RGB-Mask × √ √ √ —
Adaptive Gaussian kernel √ √ × √ —
MAE 111.6 83.79 79.6 72.7 63.9
RMSE 175.6 136.61 125.9 116.2 105.6
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modules of the head RGB-Mask obtain the head RGB-Mask
features from the same dimension at the same position, and
the spatial context information can effectively learn the
difference of the head region. However, the concatenated
structure of the head RGB-Mask feature loses the corre-
sponding relationship of this feature, which will lead to
ambiguity in the selection of the same feature. Important
information of the crowd count RGB-Mask may be lost.

As shown in Table 5, the reason for choosing VGG16 as
encoders: after comprehensively considering a variety of
encoders, it is found that VGG16 can effectively improve the
processing efficiency of Google inception V1, while VGG19

and inception V2 and V3 models can finally extract more
effective features, but too complex network models may
bring overfitting and training pressure to training.

4.3.2. Effectiveness of the Head RGB-Mask Feature Fusion
Method. ,is part also discusses how to use the head RGB-
Mask information in the adaptive multivariate Gaussian
kernel. Four different feature fusion combination schemes
are tried, and the results are shown in Table 6. From the
results, the feature fusion results using only RGB and head
RGB-Mask are not as good as the density map regression

Table 7: Comparison of different classification detection results on ShanghaiTechA dataset; √ is choice, and × is not choice.

Component C.1 C.2 YOLO V4 YOLO V5 Ours (&L1) Ours (&L2) Ours (L1&L2)
L1 loss × √ — — √ — √
L2 loss × √ — — — √ √
Cross entropy √ × — — √ √ √
Precision (%) 80.29 95.62 86.51 87.79 95.58 96.23 97.75
Recall (%) 71.39 75.48 72.68 73.74 75.59 76.98 79.91

(a) (b)

(c) (d)

Figure 9: Comparison of detection results of different detection methods. (a) Cross entropy loss only. (b) YOLO V4 test results; (c) YOLO
V5 test results; (d) our (L1&L2) test results.
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using only adaptive Gaussian kernels.,is is because there is
a certain feature coupling relationship between RGB and
head RGB-Mask. However, compared with the adaptive
Gaussian kernel, the adaptive Gaussian kernel can reflect the
spatial interaction of multihead RGB-Mask features. ,e
feature fusion of RGB and head RGB-Mask can only identify
complex channel features. Neither of the individual channels
used in combination with the adaptive Gaussian kernel is
comparable. ,e reason is that the coupling degree of local
features of channel information or head RGB-Mask feature
information is still not optimal. Using the fusion feature of
RGB and head RGB-Mask, the head RGB-Mask channel
features of the adaptive Gaussian kernel can be mined.

Invalid iterations to predict the final crowd density map can
be suppressed. ,erefore, the combination of adaptive
Gaussian kernel and multimodal feature fusion of RGB and
head RGB-Mask is the best combination for crowded
counting networks.

4.3.3. Effectiveness of Dense Crowd Object Detection Based on
Cross Entropy Loss. ,is method discusses the ablation
experiment of the combination of cross entropy loss and L1
and L2 loss, so as to guide more accurate crowd head de-
tection and complete effective crowd positioning. ,erefore,
different combination schemes were carried out, and the
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Figure 10: Precision-recall curves for all object classes. (a) Average precision-recall curves of our object classes. (b) Average precision-recall
curves with mask. (c) Average precision-recall curves without mask. (d) Average precision-recall curves with Yolo VX detector series and
AGK.
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results are shown in Table 7. As can be seen from the results,
the use of cross entropy loss alone makes it impossible to
identify crowd with large scale differences, as shown in
Figure 9(a). Cross entropy loss is only effective for pedestrian
detection with low density and is not suitable for dense
crowd detection. From Figures 9(b) and 9(c), YOLO V4 and
YOLO V5 cannot identify people with smaller scales.
,erefore, cross entropy loss is necessary to use the density
map regression generated after L1 and L2 loss training as a
priori guidance for detection. ,e combination of cross
entropy loss and L1 and L2 loss can realize small-scale head
detection, as shown in Figure 9(d).

In the above cases, the combination of H(x) +RGB-
Mask+AGK+Cross entropy loss + L1 and L2 loss has the
best detection results for people with large density differences.
From the comparison of precision-recall curves in all cases in
Figures 10(b) and 10(c), it highlights the progressiveness of
using the mask method. ,e combination of cross entropy
loss and L1 and L2 loss method used in this paper has the
largest precision and recall rate. Figure 10(d) shows the
analysis of the detection results of four target detection
frameworks. No matter which detection framework is used
alone, it is not applicable to the detection of dense population.
If the head detection of dense population is completed, the
help of the combination of H(x) +RGB-Mask +AGK+cross
entropy loss + L1 and L2 loss is needed in this method.

5. Conclusions

In this paper, this method proposes a population counting
and detection model. Our MLPNet uses the first ten layers
of VGG-16 for feature extraction; our proposed MLP-
CNN uses a fusion network based on RGB and head RGB-
Mask to extract image channel features and uses an
adaptive Gaussian kernel model to extract image spatial
edge constraints features and estimates crowd density
maps. Cross entropy combined with L1 and L2 loss
functions ensures the accuracy of density map regression

guided detection model and improves the results of dense
population counting and small head detection. Experi-
ments are conducted on ShanghaiTech dataset,
UCF_CC_50 dataset, and UCF-QNRF dataset, and our
method achieves equally satisfactory results in crowd
counting as other state-of-the-art techniques. Detection
network can detect uneven scale, noisy, multidensity
crowd.,is improves localization performance for smaller
populations in the crowd.

MLP-CNN has certain limitations in detecting crowd
counts in too dense areas. When the crowd scale is too dense
and there are too many small-scale heads, there will be large
errors in crowd detection and counting. For example, Fig-
ure 11 shows the crowd detection results in ShanghaiTech
PartA dataset, Figure 11(a) shows the ground truth anno-
tation of the crowd, and Figure 11(b) shows the actual de-
tection results. It can be clearly seen from Figure 11(b) that, in
the most crowded part of the crowd, head detection can only
detect a small number of heads with obvious characteristics,
but the detection rate of heads without obvious characteristics
in overcrowded people is very low. In areas with relatively low
congestion, the detection rate is very high. Although the PFN
scale pyramid and mask fusion module included in the
method used in this paper can improve the detection accuracy
of some small-scale heads, when the crowd is too dense, the
occlusion problem of high-density people is serious, the head
resolution is low, and the head features are confused.
,erefore, in practical application, this method is largely
limited by congestion, resolution, and occlusion. ,ese
problems need to be solved in the future.

6. Discussion

,e comparison of visualization results also demonstrates the
effectiveness of our method for crowd detection in complex
scenes. In the future, wewill extend our approach to video crowd
counting and detection, in particular, the effectiveness of the
algorithm in improving the overall real-time processing power.

(a) (b)

Figure 11: Crowd detection in ShanghaiTech PartA dataset. (a) Ground truth. (b) Real detection.

16 Computational Intelligence and Neuroscience



Data Availability

,e ShanghaiTech dataset, UCF_CC_50 dataset, and UCF-
QNRF dataset used to support the findings of this study are
available from the corresponding author upon request.

Conflicts of Interest

,e authors declare that there are no conflicts of interest
regarding the publication of this paper.

Acknowledgments

,is paper was supported by the National Natural Science
Foundation of China (nos. 61179019 and 81571753).

References

[1] V. A. Sindagi and V. M. Patel, “A survey of recent advances in
CNN-based single image crowd counting and density esti-
mation,” Pattern Recognition Letters, vol. 107, pp. 3–16, 2018.

[2] H. Bai and S. H. G. Chan, “CNN-based single image crowd
counting: network design, loss function and supervisory
signal,” Article ID 15685, 2020.

[3] Z. Qiu, L. Liu, G. Li, W. Qing, X. Nong, and L. Liang, “Crowd
Counting via Multi-View Scale Aggregation networks,” in
Proceedings of the 2019 IEEE International Conference On
Multimedia And Expo (ICME), pp. 1498–1503, Shanghai,
China, July 2019.

[4] S. D. Khan, “Congestion detection in pedestrian crowds using
oscillation in motion trajectories,” Engineering Applications of
Artificial Intelligence, vol. 85, pp. 429–443, 2019.

[5] J. Li, Y. Wang, C. Wang, Y. Tai, Q. Jianjun, and Y. Jian, “Dsfd:
dual shot face detector,” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pp. 5060–5069,
Beach, CA, USA, June 2019.

[6] J. Pang, C. Li, J. Shi, X. Zhihai, and F. Huajun, “R2-cnn: Fast
tiny object detection in large-scale remote sensing images,”
IEEE Transactions on Geoscience and Remote Sensing, vol. 57,
no. 8, 2019.

[7] Z. Tian, C. Shen, H. Chen, and H. Tong, “Fcos: fully con-
volutional one-stage object detection,” Article ID 01355, 2019,
https://arxiv.org/abs/1904.01355.

[8] Y. Gao and H. Yang, “Crowd Counting via Multi-Level Re-
gression with Latent Gaussian Maps,” in Proceedings of the
ICASSP 2021-2021 IEEE International Conference On
Acoustics, Speech And Signal Processing (ICASSP), pp. 1970–
1974, IEEE, Toronto, ON, Canada, June 2021.

[9] C. Liu, Y. Huang, Y. Mu, and Y. Xiaoming, “DRENet: Giving
Full Scope to Detection and Regression-Based Estimation for
Video Crowd Counting,” International Conference On Arti-
ficial Neural Networks, pp. 15–27, Springer, Cham, 2021.

[10] S. D. Khan and S. Basalamah, “Scale and density invariant
head detection deep model for crowd counting in pedestrian
crowds,” =e Visual Computer, vol. 37, no. 8, pp. 2127–2137,
2021.

[11] J. Liu, C. Gao, D. Meng, and G. Alexander, “Decidenet:
counting varying density crowds through attention guided
detection and density estimation,” Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
pp. 5297–5206, Salt Lake City, UT, USA, June 2018.

[12] T. Ma, Q. Ji, and N. Li, “Scene invariant crowd counting using
multi-scales head detection in video surveillance,” IET Image
Processing, vol. 12, no. 12, pp. 2258–2263, 2018.

[13] Y. Shi, J. Sang, J. Tan, W. Zhongyuan, C. Bin, and S. Nong,
GC-MRNet: Gated Cascade Multi-Stage Regression Network
for Crowd Counting, pp. 53–66, Springer, Cham, 2021.

[14] S. K. Teoh, V. V. Yap, and H. Nisar, “Fast Regression Con-
volutional Neural Network for Visual Crowd Counting,” in
Proceedings of the 2021 International Conference On Computer
& Information Sciences (ICCOINS), pp. 131–135, IEEE,
Kuching, Malaysia, July 2021.

[15] B. Li, H. Huang, A. Zhang, P. Liu, and C. Liu, “Approaches on
crowd counting and density estimation: a review,” Pattern
Analysis and Applications, vol. 24, no. 3, pp. 853–874, 2021.

[16] X. Liu, J. Yang, W. Ding, W. Tieqiang, W. Zhijin, and
X. Junjun, Adaptive Mixture Regression Network with Local
Counting Map for Crowd counting, pp. 241–257, Springer,
Cham, 2020.

[17] D. Lian, J. Li, J. Zheng, L. Weixin, and G. Shenghua, “Density
map regression guided detection network for rgb-d crowd
counting and localization,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pp. 1821–1830, Beach, CA, USA, June 2019.

[18] J. Wan and A. Chan, “Adaptive density map generation for
crowd counting,” Proceedings of the IEEE/CVF International
Conference on Computer Vision, pp. 1130–1139, 2019.

[19] H. Madani, M. Kooshafar, and M. Emadi, “Compressive
strength prediction of nanosilica-incorporated cement mix-
tures using adaptive neuro-fuzzy inference system and arti-
ficial neural network models,” Practice Periodical on
Structural Design and Construction, vol. 25, no. 3, Article ID
04020021, 2020.

[20] S. Zhang, H. Li, and W. Kong, “A cross-modal fusion based
approach with scale-aware deep representation for RGB-D
crowd counting and density estimation,” Expert Systems with
Applications, vol. 180, Article ID 115071, 2021.

[21] S. Jiang, X. Lu, Y. Lei, and L Liu, “Mask-Aware networks for
crowd counting,” IEEE Transactions on Circuits and Systems
for Video Technology, vol. 30, no. 9, pp. 3119–3129, 2020.

[22] H. Y. Yao, W. G. Wan, and X. Li, “Mask guided gan for
density estimation and crowd counting,” IEEE Access, vol. 8,
pp. 31432–31443, 2020.

[23] J. A. T. Olivero, C. M. B. Anillo, J. P. G. Barrios, M. Montoya,
G. Julianan, and d. Zamora, “Comparing State-Of-,e-Art
Methods of Detection and Tracking People on Security
Cameras video,” in Proceedings of the 2019 XXII Symposium
On Image, Signal Processing And Artificial Vision (STSIVA),
pp. 1–5, IEEE, Bucaramanga, Colombia, April 2019.

[24] S. Wang, Y. Wang, X. Wang, Y. Xin, L. Huaiming, and
C. Xuelong, An Improved Two-Stage Multi-Person Pose Es-
timation Model, pp. 18–27, Springer, Singapore, 2019.

[25] S. Suzuki, Y. Amemiya, and M. Sato, “Enhancement of gross-
motor action recognition for children by CNN with Open-
Pose,” in Proceedings of the IECON 2019-45th annual Con-
ference of the IEEE industrial electronics society, vol. 1,
pp. 5382–5387, Article ID IEEE, Lisbon, Portugal, October
2019.

[26] L. Zhang, M. Shi, and Q. Chen, “Crowd Counting via Scale-
Adaptive Convolutional Neural network,” in Proceeding of the
2018 IEEE Winter Conference On Applications Of Computer
Vision (WACV), pp. 1113–1121, IEEE, Lake Tahoe, NV, USA,
March 2018.

[27] M. Shi, Z. Yang, C. Xu, and C. Qijun, “Revisiting Perspective
Information for Efficient Crowd counting,” in Proceedings of

Computational Intelligence and Neuroscience 17

https://arxiv.org/abs/1904.01355


the IEEE/CVF Conference On Computer Vision And Pattern
Recognition, pp. 7279–7288, Long Beach, CA, USA, June 2019.

[28] Z. Cai and N. Vasconcelos, “Cascade R-Cnn: Delving into
High Quality Object detection,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
pp. 6154–6162, Salt Lake City, GA, USA, December 2018.

[29] R. Girshick, “Fast r-cnn,” in Proceedings of the IEEE Inter-
national Conference on Computer Vision, pp. 1440–1448,
Cambridge, MA, USA, June 2015.

[30] J. Dai, Y. Li, and K. He, “Object detection via region-based
fully convolutional networks,” Advances in Neural Informa-
tion Processing Systems, pp. 29–38, 2016.

[31] K. He, G. Gkioxari, and P. Dollár, “Mask r-cnn,” in Pro-
ceedings of the IEEE International Conference on Computer
Vision, pp. 2961–2969, Cambridge, MA, USA, June 2017.

[32] P. Sermanet, D. Eigen, X. Zhang, M. Michael, F. Rob, and
L. Yann, Overfeat: Integrated Recognition, Localization and
Detection Using Convolutional networks, pp. 1312–6229, 2020,
https://arxiv.org/abs/1312.6229?context=cs.

[33] R. Laroca, E. Severo, L. A. Zanlorensi et al., “A Robust Real-
Time Automatic License Plate Recognition Based on the
YOLO detector,” in Proceedings of the 2018 International Joint
Conference on Neural Networks (IJCNN), pp. 1–10, IEEE, Rio
de Janeiro, Brazil, July 2018.

[34] W. Liu, D. Anguelov, D. Erhan et al., Ssd: Single Shot Multibox
detector, pp. 21–37, Springer, Cham, 2016.

[35] D. Ryan, S. Denman, S. Sridharan, and C. Fookes, “An
evaluation of crowd counting methods, features and regres-
sion models,” Computer Vision and Image Understanding,
vol. 130, pp. 1–17, 2015.

[36] L. Yang, S. Liu, S. Tsoka, and L. G. Papageorgiou, “Mathe-
matical programming for piecewise linear regression analy-
sis,” Expert Systems with Applications, vol. 44, pp. 156–167,
2016.

[37] A. K. M. E. Saleh, M. Arashi, and B. M. G. Kibria, =eory of
ridge Regression Estimation with applications, John Wiley &
Sons, New York, United State, 2019.

[38] E. Schulz, M. Speekenbrink, and A. Krause, “A tutorial on
Gaussian process regression: m,” Journal of Mathematical
Psychology, vol. 85, pp. 1–16, 2018.

[39] S. Albawi, T. A. Mohammed, and S. Al-Zawi, “Understanding
of a Convolutional Neural network,” in Proceedings of the
2017 International Conference on Engineering and Technology
(ICET), pp. 1–6, IEEE, Antalya, Turkey, August 2017.

[40] Q. Ji, T. Zhu, and D. Bao, “A hybrid model of convolutional
neural networks and deep regression forests for crowd
counting,” Applied Intelligence, vol. 50, no. 9, pp. 2818–2832,
2020.

[41] J. M. Sadler, J. L. Goodall, M. M. Morsy, and K. Spencer,
“Modeling urban coastal flood severity from crowd-sourced
flood reports using Poisson regression and Random Forest,”
Journal of Hydrology, vol. 559, pp. 43–55, 2018.

[42] H. Mo, W. Ren, Y. Xiong et al., “Background noise filtering
and distribution dividing for crowd counting,” IEEE Trans-
actions on Image Processing, vol. 29, pp. 8199–8212, 2020.

[43] Y. Wang, J. Hou, and L. P. Chau, “Object Counting in Video
Surveillance Using Multi-Scale Density Map regression,” in
Proceedings of the 2019-2019 IEEE International Conference
On Acoustics, Speech And Signal Processing (ICASSP),
pp. 2422–2426, IEEE, Brighton, UK, May 2019.

[44] A. K. Pai, A. K. Karunakar, and U. Raghavendra, “A Novel
Crowd Density Estimation Technique Using Local Binary
Pattern and Gabor features,” in Proceedings of the 2017 14th
IEEE International Conference On Advanced Video And Signal

Based Surveillance (AVSS), pp. 1–6, IEEE, Lecce, Italy, August
2017.

[45] S. M. H. Miangoleh, S. Dille, L. Mai, P. Sylvain, and A. Yagiz,
“Boosting monocular depth estimation models to high-res-
olution via content-adaptive multi-resolution merging,” in
Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 9685–9694, Nashville, TN, USA,
2021.

[46] Y. Liu, M. Shi, Q. Zhao, and W. Xiaofang, “Point in, box out:
beyond counting persons in crowds,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Rec-
ognition, pp. 6469–6478, Long Beach, CA, USA, June 2019.

[47] H. Chu, J. Tang, and H. Hu, “Attention guided feature pyr-
amid network for crowd counting,” Journal of Visual Com-
munication and Image Representation, vol. 80, Article ID
103319, 2021.

[48] B. Zhang, N.Wang, Z. Zhao, A. Abraham, andH. Liu, “Crowd
counting based on attention-guided multi-scale fusion net-
works,” Neurocomputing, vol. 451, pp. 12–24, 2021.

[49] X. Zeng, Y. Wu, S. Hu, R. Wang, and Y. Ye, “DSPNet: deep
scale purifier network for dense crowd counting,” Expert
Systems with Applications, vol. 141, Article ID 112977, 2020.

[50] D. Sam Babu, S. Surya, and R. Venkatesh Babu, “Switching
Convolutional Neural Network for Crowd counting,” in
Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pp. 5744–5752, Honolulu, HI, USA, July
2017.

[51] D. B. Sam, S. V. Peri, M. N. Sundararaman, K. Amogh, and
B. Venkatesh, “Locate, size, and count: accurately resolving
people in dense crowds via detection,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 43, no. 8,
pp. 2739–2751, 2020.

[52] D. Kang, Z. Ma, and A. B. Chan, “Beyond counting: com-
parisons of density maps for crowd analysis tasks—counting,
detection, and tracking,” IEEE Transactions on Circuits and
Systems for Video Technology, vol. 29, no. 5, pp. 1408–1422,
2019.

[53] Y. Liu, M. Shi, Q. Zhao, and W. Xiaofang, “Point in, box out:
beyond counting persons in crowds,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition,
pp. 6469–6478, Long Beach, CA, USA, June 2019.

[54] Z. Zhong, J. Li, and Z. Zhang, “An Attention-Guided Deep
Regression Model for Landmark Detection in cephalograms,”
in Proceedings of the International Conference On Medical
Image Computing And Computer-Assisted Intervention,
pp. 540–548, Springer, Cham, July 2019.

[55] F. Hou,W. Lei, S. Li, J. Xi, M. Xu, and J. Luo, “ImprovedMask
R-CNN with distance guided intersection over union for GPR
signature detection and segmentation,” Automation in Con-
struction, vol. 121, Article ID 103414, 2021.

[56] D. B. Sam, N. N. Sajjan, R. V. Babu, and S. Mukundhan,
“Divide and grow: capturing huge diversity in crowd images
with incrementally growing cnn,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
pp. 3618–3626, Salt Lake City, UT, USA, June 2018.

[57] Y. Zhang, D. Zhou, S. Chen, G. Shenghua, and M. Yi, “Single-
image crowd counting via multi-column convolutional neural
network,” in Proceedings of the IEEE conference on computer
vision and pattern recognition, pp. 589–597, Las Vegas, NV,
USA, July 2016.
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