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Abstract: p-Coordination of aromatic molecules to metals

dramatically alters their reactivity. For example, coordinated
carbons become more electrophilic and C@H bonds of coor-

dinated rings become more acidic. For many years, this
change in reactivity has been used to trigger reactions that
would not take place for uncoordinated arenes, however,
there has been a recent resurgence in use of this technique,

in part due to the development of catalytic reactions in

which p-coordination is transient. In this Minireview, we de-

scribe the key reaction chemistry of arenes coordinated to a
range of transition metals, including stereoselective reac-

tions and industrially relevant syntheses. We also summarise
outstanding examples of catalytic processes. Finally, we give
perspectives on the future direction of the field, with respect
to both reactions that are stoichiometric in activating metals

and those employing catalytic metal.

Introduction

Since their discovery in the 1950s by E. O. Fischer,[1] h6-arene

complexes of transition metals have been of widespread inter-

est, due to the enhancement of the reactivity of the arene
upon complexation (Figure 1 A). Coordination allows for the ar-

omatic compound to undergo many reactions that are not
possible for the corresponding unbound arene.[2] For example,

nucleophilic attack at the coordinated ring can result in substi-
tution reactions of ring-bound substituents or, where substitu-

tion is not favoured, the formation of h5-coordinated Meisen-

heimer complexes (Figure 1 B), which are often stable and isol-
able. Other reactions at the bound aromatic include deproto-

nation, with subsequent reaction with electrophiles, and oxida-

tive addition. Following aromatic transformations, arenes are
typically liberated from the metal centre by photolytic or ther-

molytic techniques.[3] For some arenes and transition metals, p-
complexation is a reversible process. Hence, it is possible to

adapt the stoichiometric transformation of a coordinated
arene complex into a process catalytic, with respect to the MLn

core (Figure 1 C). This attractive prospect requires balance be-

tween the reactivity of the coordinated arene and exchange of
the coordinated arene product with the next equivalent of re-

actant arene.
In this Minireview, we highlight the key advances over the

last 20 years in both reactions of h6-coordinated aromatics and
in reactions catalytic in the activating metal. We restrict our

scope to C6 aromatics and omit examples that include chromi-

um complexes as the activating group, which have been well
reviewed elsewhere by Kendig[4] and by Matsuzaka and Take-

moto.[5] We pay particular focus to suggestions for future de-
velopment in the field and pick out key publications that will

pave the way for new reactions.

Reactivity of p-arene Transition Metal
Complexes

Chromium complexes

The early work on p-arene transition metal complexes fo-
cussed on [(h6-C6H6)Cr(CO)3] and related complexes to develop

the fundamental understanding of the reactivity of the coordi-
nated arene. The reader is guided to several excellent reviews
and book chapters on the early understanding of this complex

and its derivatives.[4, 6] More recently, the reactivity of these Cr
species has further developed into C@H activation and a range

of Pd-catalysed coupling processes, which have also been re-
viewed.[5, 7]

Molybdenum complexes

In comparison with chromium, its Group 6 congener molybde-
num has received far less attention in the synthesis and appli-

cation of p-arene complexes. This is likely due to the lower ki-
netic stability of the Mo complexes, limiting their practical utili-

Figure 1. A) Enhancement of arene reactivity, caused by h6-complexation to
a metal centre. B) A Meisenheimer complex. C) General mechanism of an ar-
omatic transformation catalysed by h6-coordination to a metal fragment.
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ty. In a rare example, the complex [(h6-C6H6)Mo(CO)3] was treat-

ed with an alkyllithium nucleophile, resulting in formation of

an anionic Meisenheimer complex 1 (Scheme 1).[8] Further
treatment with allyl bromide yielded the neutral complex [(h3-

allyl)(h5-cyclohexadienyl)Mo(CO)2] (2), which, on treatment with
CO gas, reductively eliminated to give exclusively one diaste-

reomer of a 1,2-disubstituted cyclohexadiene 3. This serves as
an elegant example of the stereocontrol imparted by the

metal complex, with the initial nucleophilic attack occurring at

the top face of the arene. Further examples of Mo complex re-
activity are rare, but sandwich complexes of the formula

[Mo(h6-arene)2] have been shown to be active towards lithia-
tion, facilitating addition of electrophiles to the arene ring[9]

and complexes of the form [Mo(h6-arene)(PR3)3] can be used as
precursors to other heteroleptic complexes, due to the lability

of the coordinated arene.[10]

Manganese complexes

p-Arene complexes of the [Mn(CO)3]+ fragment are extremely

stable and, due to the net positive charge, are highly suscepti-

ble to nucleophilic attack at the arene ring. Rose et al. used
the [(h6-arene)Mn(CO)3]+ framework to develop enantioselec-

tive syntheses of substituted cyclohexenones from meta-halo-
genoanisoles.[11] Coordination of 1,3-disubstitued benzene to

[Mn(CO)3]+ gives a pair of complexes (4) with planar chirality
(Figure 2 A). Reaction with enantiopure (D)-(++)-camphor forms
a pair of diastereomeric Meisenheimer complexes (5), which
can be separated by chromatography. The chiral auxiliary can

then be removed to yield enantiopure complexes 4 a and 4 b.
As shown in Figure 2 A, these complexes can be converted
into enantiopure cyclohexenones in three steps. In a related
study, the natural products stemofurans were synthesised by
nucleophilic substitution of hydrogen in [(h6-arene)Mn(CO)3]+

complexes with benzofuran.[12] In another study, the scope of
reactivity of Meisenheimer complexes structurally related to 6 a
towards various nucleophiles was established,[13] while earlier

developments have been reviewed in detail by Rose and Rose-
Munch.[14] Meisenheimer complexes of MnI are often active to-

wards organometallic coupling reactions. For example, a series
of aryl chloride derived complexes (8), undergo Stille and So-

nogashira couplings to give complexes 9 and 10, respectively
(Figure 2 B).[15] A more recent study reported the Suzuki–

Miyaura coupling of similar chloro-substituted h5-coordinated
Meisenheimer complexes (11), to give the arylated product

12.[16] Rearomatisation of the cyclohexadienyl ring in 12 can be
achieved with the mild oxidant, trityl chloride. Further exam-

ples of Pd-catalysed reactions[17] include Sonogashira coupling
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Scheme 1. Diastereoselective synthesis of a 1,2-disubstituted cyclohexadiene
from [(h6-C6H6)Mo(CO)3] .[8]

Chem. Eur. J. 2021, 27, 3650 – 3660 www.chemeurj.org T 2020 The Authors. Chemistry - A European Journal published by Wiley-VCH GmbH3652

Chemistry—A European Journal
Minireview
doi.org/10.1002/chem.202004621

http://www.chemeurj.org


to facilitate formation of a dinuclear Mn-Fe complex, which

has potential electronic applications[18] and the synthesis of or-
ganometallic phosphine complexes, used as ligands in catalytic

allylations.[19] Further owing to their high stability, Meisenheim-
er complexes of MnI are active towards lithiation, enabling the

installation of electrophilic functional groups to the ring before

rearomatisation.[20] Optimisation of the lithiation/electrophilic
quenching procedure led to a model system (Figure 2 C), in

which the reactions occur para to the sp3 tetrahedral carbon
of the Meisenheimer ring (13), forming complex 15 after elec-

trophilic quench, which could be purified to diastereomeric ex-
cesses of >85 %. Reactivity of Meisenheimer Mn complexes
has also been exploited to form keto-[21, 22] and alcohol-[23] sub-

stituted cyclohexadienyl complexes. In another study, Grignard
reagents were reacted with keto-substituted cyclohexadienyl,
giving the corresponding alcohols in excellent yields.[24] Acidifi-
cation of these alcohols resulted in dehydration reactions,

giving rise to a series of novel h5-cyclohexadienyl complexes
substituted by a C=C double bond conjugated to the p-system

of the ring.

Technetium and rhenium complexes

Unlike Mn complexes, there are very few examples of p-arene

complexes of technetium, although sandwich complexes of ra-
dioactive 99mTc have been studied for their activity in biomim-

etic imaging.[25] In a rare example by Alberto and co-workers,

an SNAr hydroxylation of the complex [Tc(h6-C6H5Br)(h6-
C6Me6)]+ (16) was described (Figure 3 A), forming h6-phenol

complex 17.[26] The corresponding rhenium complex (18) was
found to undergo a ring contraction giving 21 (Figure 3 B)

rather than the substitution product (20).[26] Based on positions
of H/D exchange in a deuterium experiment, a mechanism was

proposed in which initially a nucleophilic attack of DO@ takes
place to form the Meisenheimer intermediate 19. H/D ex-

change was observed in this intermediate. An SNAr reaction

leading to complex 20 is promoted at lower deuteroxide con-
centrations, while ring contraction to form complex 21 is the

favoured pathway when a larger excess of deuteroxide is pres-
ent (Figure 3 B).

In a more recent study, the complex [Re(h6-C6H6)2]+ (22) was
functionalised with a polypyridyl group to form complex 23

Figure 2. A) Resolution of MnI p-arene complexes with planar chirality and subsequent conversion into substituted cyclohexenones. B) Stille, Sonogashira and
Suzuki–Miyaura coupling reactions of MnI Meisenheimer complexes. C) Lithiation of the complex [(h5-cyclohexadienyl)Mn(CO)3] followed by electrophilic
quenching (X = halide).

Figure 3. A) SNAr hydroxylation of [Tc(h6-C6H5Br)(h6-C6Me6)]+ B) Nucleophilic
hydroxylation of [Re(h6-C6H5Br)(h6-C6Me6)]+ followed by either formation of
the SNAr product or ring contraction, depending on base concentration.
C) Functionalisation of benzene in [Re(h6-C6H6)2]+ followed by synthesis of a
bimetallic Re-Co catalyst.
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(Figure 3 C).[27] Coordination of a catalytically active CoII centre
to the polypyridyl moiety gave bimetallic complex 24, which

was active in the photocatalytic reduction of protons to H2

gas. The presence of the Re sandwich complex moiety in 24
adds structural support and flexibility to the catalytic species,
as well as increasing aqueous solubility of the conjugate and

adding resistance to deactivating redox processes.

Iron complexes

Arene p-complexes of iron were extensively researched in the
late 20th Century. Some key studies conducted by Pearson and
Shin included the synthesis of cyclic peptides via SNAr[28] and
the formation of aryl ethers from coordinated 1,3-dichloroben-
zene.[29] Woodgate also used SNAr reactions of coordinated

arenes in the synthesis of dibenzo[b,e][1,4]dioxin deriva-
tives[30, 31] and Astruc showed Fe-mediated dendrimer synthesis,

exploiting the increased acidity of benzyl protons on h6-coordi-
nation.[32] More recently, examples involving the use of iron

have become scarce, due to the low stability of these com-

plexes relative to Ru analogues. One of few examples is an
SNAr-based approach to synthesise a series of unsymmetrically

substituted sterically congested benzophenones (Figure 4 A).[33]

In a rare example of heterogeneous reactions involving p-

arene metal complexes, a piperazine nucleophile was tethered
to a solid surface before SNAr reactions with a range of [(h6-

chloroarene)FeCp]+ complexes were performed (Figure 4 B).

The resultant immobilised Fe complexes were subjected to ir-
radiation in the presence of phenanthroline to liberate the Fe-

arene bond and leave the aniline derivatives tethered to the
solid surface.[34]

Ruthenium complexes

Since the turn of the century, ruthenium has gathered signifi-

cant traction in its activation of arenes through p-coordination.
This is due to the mild methods of complexation and demetal-

lation, as well as high complex stability.
In the early 2000s, Pigge and co-workers produced a series

of studies, in which spirolactams were synthesised via an intra-

molecular nucleophilic attack of a 1,3-dicarbonyl enolate at the
coordinated arene ring in complex 30 (Figure 5Ai).[35–38] The nu-

cleophilic attack occurred exclusively to form a five-membered
spirolactam core. Subsequent alkylation gave 31, from which

Figure 5. A) Intramolecular nucleophilic attack to form a spirolactam, and diastereoselective synthesis of a spirolactam derivative via a Ru-coordinated Meisen-
heimer intermediate. B) Reaction of [(h6-nitrobenzene)RuCp][PF6] with Me3SiCF3, followed by photolysis of the SNAr product or oxidative rearomatisation to
form free 1-nitro-2-(trifluoromethyl)benzene. C) Aromatic C@H arylation mediated by a bimetallic AgI/Pd0 catalysis. D) Ru-facilitated deoxyfluorination proce-
dure used for radiolabelling arenes with the isotope 18F. E) Ester hydrolysis of an h6-coordinated benzyl ester.

Figure 4. A) Fe-mediated synthesis of a series of benzophenone derivatives.
B) Fe-mediated SNAr on a solid-phase support, with subsequent photolysis.
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demetallation gave the corresponding unbound spirolactam
products (32). In a follow-up study, stereoselective spirolactam

synthesis was achieved in a two-step process involving cyclisa-
tion of 33, followed by an intramolecular Horner–Wadsworth–

Emmons (HWE) olefination to give complex 34 followed by de-
metallation to yield enantiopure spirolactam 35 (Figure 5Aii).[37]

This reaction demonstrates how stereocontrol is imparted by
the presence of the activating metal complex. More recently,
further novel polycyclic arene complexes of Ru were synthes-

ised using the Morita–Baylis–Hillman reaction of phosphines.[39]

In recent years, work from our laboratory has focussed on p-
arene ruthenium reactivity. We developed a trifluoromethyla-
tion of a series of nitrobenzene derivatives (36, Figure 5 B),

using Me3SiCF3.[40] Two products were separated from the reac-
tion in a 1:1 ratio: an SNAr product 37, which undergoes pho-

tolysis to release the free arene and a Meisenheimer complex

38 from nucleophilic attack of the CF3 group at an aromatic
C@H ortho to the C@NO2 bond. The latter product was treated

with DDQ, which causes oxidative rearomatisation and deme-
tallation to give 1-nitro-2-(trifluoromethyl)-benzene. A second

example developed from our laboratories is a Pd/Ag-mediated
arene C@H activation/arylation. Building on pioneering work

from Larrosa,[41] who demonstrated C@H activation in [(h6-are-

ne)Cr(CO)3] complexes, we showed the potential for C@H acti-
vation in [(h6-arene)RuCp]+ complexes (Figure 5 C).[42] Two cata-

lytic metals (Pd and Ag) are required, as the mechanism in-
volves an initial Ag-mediated concerted metalation deprotona-

tion (CMD) C@H activation step, before undergoing transmeta-
lation to form the activated aryl C@Pd bond. As with our

previous trifluoromethylation SNAr process, liberation of the

functionalised arenes from their Ru complexes was achieved
by photolysis in deuterated acetonitrile, which also gave quan-

titative [CpRu(NCCD3)3]+ by-product, indicating recovery of the
starting Ru complex is feasible.

Two practical applications of Ru p-arene complexes include
the synthesis of radiolabelled aryl fluorides from aryl alcohol[43]

(Figure 5 D) and the ester hydrolysis of lignin model com-

pounds.[44] Furthermore, Ru-promoted hydrolysis of ester
groups was also used to synthesise new cytotoxic organome-
tallics (Figure 5 E).[45] Ester hydrolysis in the complex [(h6-
C6H5CO2Me)RuCp*][BF4] (41) was followed by the synthesis of a
small library of ester and amide derivatives (42), several of
which showed promising toxicity against various cancer cell

lines.

Rhodium and iridium complexes

Despite the prevalence of p-arene complexes of rhodium and

iridium,[46, 47] there are a very limited number of examples
where the arene is undergoing transformation while coordinat-

ed to the metal. One study demonstrates the reactivity of a

series of [(h6-arylfluoride)RhCp’]2 + complexes (Cp’ = tetrame-
thyl(ethyl) cyclopentadienyl). Reactivity of these complexes is

highly dependent on the nature of the nucleophile (Fig-
ure 6 A).[48] Hydroxide targets the polarised C@F bond, leading

to an SNAr process to give complex 43 (Figure 6 A), while alkyl-
lithium nucleophiles attack one of the unsubstituted aryl C

atoms. Reaction with LiCH(CO2Et)2 results in Meisenheimer
complex 44, which can undergo in situ oxidative rearomatisa-

tion to the free arene 45, using trifluoroacetic acid (TFA) and
nitromethane. It is worth noting here that a Rh complex 46
was also observed following the reaction, emphasising a non-

destructive demetallation process.
A single example of the reactivity of iridium p-arene com-

plexes (Figure 6 B) involves oxidation of [Cp*Ir(h6-C6H6)]2 + (47)
to form the corresponding h5-cyclohexadienyl oxide (48).[49]

Acidification with HBF4·OEt2 in acetonitrile liberates phenol and
[Cp*Ir(NCMe)3]2 + with a yield of 75 %. The overall process is

catalytic in Ir, as 47 can be regenerated from the Ir product,

however, the conditions for oxidation and decomplexation are
incompatible and the reaction requires isolation at each stage.

Perspectives

The reactions described in this section demonstrate the wide
range of chemical reactivity of arenes bound to various transi-

tion metals and highlights their potential applications in a key
area of industrial and pharmaceutical chemistry. Coordination

to the metal centre enhances the reactivity of the arene and
can control the regiochemistry of the reaction. Furthermore, as

the metal coordinates to one face of the arene, complexation
can allow for control of stereochemistry and enantioselective
syntheses. This stereocontrol has been used in the production

of pharmaceutically relevant target compounds, such as the
stemofurans. As a choice of activating metal, [Mn(CO)3]+ frag-

ments are commonly used, due to their ease of synthesis and
manipulation. However, the oxidative techniques used to re-

cover the arene product lead to loss of the Mn complexes. To
develop more efficient and greener processes it would be de-

sirable to develop reactions in which the MnI activating metal

could be recovered or reused. As an alternative, Ru has
become more prevalent as an activating metal, due to the

ease of synthesis of their complexes and the ability to remove
the reaction product by photolysis, regenerating the activating

Ru fragment. For this method of aromatic activation to
become competitive with other synthetic methodologies, effi-

Figure 6. A) A series of reactions of [Cp’Rh(h6-1-fluoro-2,4,6-methyl)benzene]
[BF4]2 with various nucleophiles. B) IrIII-mediated benzene C@H hydroxylation.
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cient recovery of the metal is paramount. While homogeneous
reactivity of activating p-arene complexes is common, only a

single heterogeneous reaction is known. There is great poten-
tial here for future studies on reactions in which the activating

metal is tethered to a solid support to allow ease of purifica-
tion and potentially access to flow systems for rapid and effi-

cient synthesis. A key limitation to the application of these re-
actions is the need for stoichiometric activating metal. This

negative effect can be offset by the ability to recycle the acti-

vating metal, however, a more desirable approach is to devel-
op reactions that are catalytic in metal and proceed through

transient formation of the active p-arene complex. In the next
section, we give an overview of reactions that are catalytic in

the activating metal.

Catalytic Transformations via Transient h6-Co-
ordination

One challenge to developing catalytic reactions involving p-

arene intermediates is finding conditions that are compatible
with both the transformation step and arene exchange. A bal-
ance between arene reactivity and arene exchange ability is

necessary, because a stronger arene-metal interaction typically
leads to a greater reactivity of the ring, but disfavours arene

exchange. The factors that affect arene exchange have been
reviewed elsewhere.[3, 6] Despite the difficulty in achieving this

balance, there are several cases published, mostly in the past

10 years, where the arene transformation is catalytic in the ac-
tivating metal.

Reactions catalytic in ruthenium

The most common class of catalytic reactions proceeding via

h6-arene intermediates are SNAr reactions with catalytic Ru.[50]

The first example came from Shibata on the amination of un-

activated fluoroarenes, proceeding via RuII intermediates 49 a
and 49 b (Table 1, Entry 1).[51] Reaction conditions involved a Ru

cyclooctadiene catalyst, phosphine DPPPent ligand and addi-

tives TfOH and Et3SiH. Recently, Mueller and Schley carried out
a detailed mechanistic study on the reaction between fluoro-

Table 1. Catalytic SNAr proceeding through p-arene intermediates.

Entry 1 conditions: Arene (5 equiv), NucH (1 equiv), [Ru(COD)(2-methylall-
yl)2] (5 mol %), DPPPent (7 mol %), TfOH (10 mol %), Et3SiH (1 equiv), Et3N
(1 equiv), dioxane, 100 8C. Entry 2 conditions: Arene (5 equiv), NucH
(1 equiv), 50 b (X = morpholino, 5 mol %), dioxane, 100 8C. Entry 3 condi-
tions: Arene (5 equiv), NucH (1 equiv), [Ru(h6-C6H6)Cl2]2 (2.5 mol %), P(p-
C6H4F)3 (24 mol %), AgOTf (21 mol %), 1,4-Dioxane, 100 8C. Entry 4 condi-
tions: Arene (1 equiv), NucH (3 equiv), [Ru(h6-C6H6)Cl2]2 (2.5 mol %),
PPh2(C2H4OMe) (10 mol %), AgPF6 (10.5 mol %), THF, 120 8C. Entry 5 condi-
tions: Arene (1 equiv), NucH (3 equiv), [CpRu(h6-p-cymene)][PF6]
(10 mol %), 1-octanol, 180 8C. Entry 6 conditions: Arene (excess), CsF
(1 equiv), [Cp*Ru(h6-naphthalene)][BF4] (2 mol %), neat arene, 180 8C.

Figure 7. A) Accelerated arene exchange promoted by transient coordination of a hemilabile methoxy phosphine ligand during rate limiting h6 to h4 step.
B) No arene exchange shown for analogous ligand without coordinating methoxy group. C) Equilibrium constant between Ru complexes containing reactant
and product capping arenes. D) Hydroamination catalysed by transient Ru coordination and the introduction of enantioselectivity by using a chiral bisphos-
phine ligand (P

_
P* = (S)-xylylBINAP).
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benzene and morpholine, under these catalytic conditions.[52]

Product inhibition was observed and quantified, as the N-phe-

nylmorpholine reaction product binds much more strongly to
Ru than fluorobenzene (Keq = 2 V 103 for the equilibrium be-

tween the fluoro, 49 a, and morpholino species, 49 c), limiting
the rate of arene exchange (Figure 7 C). Furthermore, the rest-

ing state of catalysis was found to be a previously unknown
Ru-hydride species 50 b (Table 1, Entry 2. X = morpholino). The

formation of this species reveals the role of additives Et3N and

Et3SiH, which drive the formation of the more active species
50 b from 49 b. Indeed an alternative catalyst, in which the
DPPPent ligand in 50 b is replaced by two PPh3 ligands gives
comparable yields (72 % versus >99 % for 50 b). In follow up

work by Shibata, a bench stable catalyst [Ru(h6-C6H6)Cl2]2 and
an alternative phosphine ligand led to improvements in reac-

tion efficiency, with yields >80 % (Table 1, Entry 3).[53] This reac-

tion proceeded via intermediates 51 a and 51 b.
In 2020, Shi and co-workers presented a similar procedure

for ruthenium catalysed SNAr coupling of fluoroarenes with
amines (Table 1, Entry 4), proceeding via intermediates 52 a
and 52 b.[54] By using a hemilabile phosphine ligand, a balance
between reactivity and arene exchange was achieved and the

reaction proceeded to excellent yields for a range of aryl fluo-

rides and amines under mild reaction conditions. Key to this
success was the proposed catalytic intermediates, 52 a and

52 b, which incorporate two phosphine ligands: one bidentate
and the other monodentate. Rapid SNAr is followed by arene

exchange, which is accelerated through transient coordination
of the second hemilabile phosphine ligand (Figure 7 A). As evi-

dence for this process, a related phosphine ligand without the

second coordinating group showed no release of the reaction
product from complex 55 (Figure 7 B).

The previous examples of catalytic SNAr are limited to fluo-
roarenes, with no reactivity shown for aryl chlorides or bro-

mides. Successful reaction procedures using chloroarenes have
been developed more recently. The first example is the catalyt-

ic SNAr of aryl chlorides shown by our laboratory in 2015

(Table 1 Entry 5).[55] Using 10 mol % of the precatalyst [CpRu(h6-
p-cymene)][PF6] , p-chlorotoluene was coupled with morpholine

in 90 % yield. From spectroscopic data, we inferred complex
53 a as the active intermediate. In a related study, Grushin ach-

ieved a catalytic fluorination of aryl chlorides via SNAr (Table 1,
Entry 6).[56] Using the pre-catalyst [Cp*Ru(h6-naphthalene)][BF4]

and CsF as the nucleophilic fluoride source, the reaction pro-
ceeded at 140 8C in dry DMF, via intermediates 54 a and 54 b,
with a catalytic turnover number (TON) of 4.3 after 24 hours.

Compared with the previous example, this reaction works at a
lower temperature, which is potentially due to the more elec-

tron-rich Cp* facilitating arene exchange better than Cp. When
the reaction was performed in neat chlorobenzene at 180 8C,

an improved TON of 8.5 was observed.

Catalytic SNAr reactions are all activated by the increase in
electrophilicity of the Ru-bound aromatic ring. This enhance-

ment of reactivity also extends beyond the coordinated ring to
more distal positions. The earliest example of catalytic activa-

tion via this route was the Ru-catalysed anti-Markovnikov hy-
droamination of styrene derivatives with secondary amines, re-

ported by Hartwig et al. in 2004 (Figure 7 D).[57] In this study,
the hydroamination was facilitated by the stabilisation of the

Ru-bound intermediate that places negative charge in the a-
position of coordinated styrene. Conjugation with the coordi-

nated arene provides this stabilisation and the resultant opti-
mised yields were up to 95 %. In a related study, enantioselec-

tive addition to a-methylstyrene was achieved using a chiral
bisphosphine ligand.[58] Chirality in the ligand renders com-
plexes 56 a and 56 b diastereomeric. After nucleophilic attack,

protonation occurs on the less hindered face away from the
Ru, hence a preference for one diastereomer ultimately leads
to enantioselectivity in the final uncoordinated product.

A final example of catalysis via transient Ru p-arene com-
plexes exploits the increased acidity of benzylic protons of co-
ordinated arenes.[59] The production of trans-stilbene deriva-

tives was shown via a dehydrative condensation of benzylic C@
H bonds with aromatic aldehydes (Figure 8 A).[60] Using
10 mol % of the catalyst [Cp*Ru(h6-toluene)][HNTs], toluene

was coupled with a series of aromatic aldehydes at 150 8C in
yields of up to 95 %. The key intermediate in the mechanism is

57b, in which deprotonation at the benzylic position of tolu-
ene is stabilised by Ru coordination. As shown in Figure 8 A,

this intermediate goes on to react with benzaldehyde, which

itself is activated to an imine by the Ru complex counterion
[HNTs]@ . The organocatalytic behaviour of this ion was found

to be crucial in the reaction, as other counter ions (PF6
@ , TfO@ ,

Cl@) resulted in no stilbene formation. During catalyst screen-

ing, the [CpRu]+ system was found to be less active than the
[Cp*Ru]+ fragment, which implies that arene exchange is rate-

determining, as a more electron rich metal centre is expected

to lead to weaker h6-arene coordination.

Reactions catalytic in nickel

Beyond reactions catalytic in Ru, several examples have been
reported in which p-arene Ni intermediates are implicated. In a

series of papers Hartwig reported the hydrogenation of aryl
ethers with H2 to yield aryl alcohols and unsubstituted arenes

(Figure 8 B), using catalytic Ni(COD)2 and an N-heterocyclic car-
bene ligand.[61, 62] In the reaction, the aryl ether coordinates to
a Ni0 centre via h6-coordination to form intermediate 58 a. The
p-coordination activates the aryl ether towards an oxidative

addition to the Ni centre (58 b) (likely via an h2 intermedi-
ate[63]), before reaction with H2 leads to release of the aryl alco-
hol and regeneration of an h6-coordinated unsubstituted arene

(58 c). Finally, arene exchange with the more electron rich aryl
ether starting material completes the catalytic cycle.[62]

Using very similar catalytic conditions, aryl fluorides were
coupled with secondary amines to give substituted anilines

(Figure 8 C).[64] While no direct evidence for h6-coordination

was provided, an oxidative addition pathway was proposed
and based on Hartwig’s subsequent work, a p-arene intermedi-

ate preceding oxidative addition seems highly likely. The scope
of this reaction was extended to include primary amines in a

study led by Iwai and Sawamura.[65] Again, a Ni0-based catalyst
was employed, but bulky bis(phosphine) ligands were used in-

Chem. Eur. J. 2021, 27, 3650 – 3660 www.chemeurj.org T 2020 The Authors. Chemistry - A European Journal published by Wiley-VCH GmbH3657

Chemistry—A European Journal
Minireview
doi.org/10.1002/chem.202004621

http://www.chemeurj.org


stead of N-heterocyclic carbenes, giving selectivity for forma-

tion of secondary over tertiary amines.

Reactions catalytic in niobium

A single example has been presented in the literature in which
Nb p-arene intermediates have been identified as key reaction

intermediates.[66] Aryl fluorides undergo arene exchange with
NbIII complex 60 a to give 60 b, which undergoes oxidative ad-
dition to form aryl-NbV intermediate 60 c. This species reduc-

tively eliminates in the presence of stoichiometric phenyl
silane to give an overall catalytic hydrodefluorination (Fig-

ure 8 D).

Perspectives

Whilst progress has been made over the past decade in devel-

oping catalysis via p-arene intermediates, limitations still
remain, with most reactions suffering from low TONs and poor

scope of reactivity. These factors must be improved upon if
these reactions are to compete with catalytic transformations

used in industrial processes. As previously discussed, factors

that promote reactivity of a ring typically inhibit its ability to
undergo arene exchange and mastering this fine balance is

key to improving the TON of a catalyst. Another factor compli-
cating the arene exchange step is that often displacement of
the product aromatic with the starting material is disfavoured
by their relative thermodynamic stabilities, particularly where
electron rich nucleophiles are involved. With both issues in

mind, careful consideration of substrates is necessary or meth-
ods to trigger arene exchange in stable complexes are re-
quired. The field of photocatalysis has grown rapidly over
recent years, due to advances in both theoretical understand-
ing and practical instrumentation. It is well known that certain
p-arene metal complexes are susceptible to photoactivated de-

stabilisation of the metal arene bond, therefore catalytic reac-
tions in which light is used to trigger arene exchange should
be entirely feasible. Despite this, there are almost no examples
of this type of photocatalytic reactivity. A single reaction is
known in which a Ru- or Fe-catalysed cycloaromatisation of an

enediyne with g-terpinene as H source is shown to proceed
under irradiation (Figure 9).[67] The proposed catalytic mecha-

Figure 8. A) Ru-catalysed dehydrative condensation of styrene derivatives. B) Ni0-catalysed hydrogenation of aryl ethers, C) Ni0-catalysed amination of aryl fluo-
rides and D) Nb-catalysed hydrodefluorination of a series of aryl fluorides.
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nism (Figure 9 B) consists of a cycloaromatisation to form an
h6-coordinated arene complex, 61 b, then photolysis to give

the free arene and the complex [Cp*M(NCMe)3]+ (61 a), restart-
ing the catalytic cycle. It is likely that the emergence of more

photocatalytic protocols can pave the way towards solutions

surrounding arene exchange, and developments here must be
considered a high priority in the coming decade.

Conclusions and Outlook

This review was written with the objective of giving a compre-
hensive summary of recent advances in the reactivity of cap-

ping aromatics in p-arene metal complexes and transforma-
tions that are catalytic in metal. Despite the fact that this field

has been established since the 1950s, many significant devel-
opments have been made in the past 10—15 years. Many new

reactions that are stoichiometric in metal, both on the arene

ring and its periphery have been reported, which highlight the
significant change in reactivity of an arene upon coordination

and the potential for stereochemical control. Furthermore, by
combining the increased reactivity of h6-coordinated arenes

with conditions that allow arene exchange, several efficient
catalytic protocols have been developed.

Looking forwards, several key milestones are still to be met
in this field. Firstly, reactions that are stoichiometric in metal

would ideally be adapted such that the metal centre can
either operate catalytically or allow for simple recovery of the
activating metal. Photolytic liberation of the capping arene

and/or the use of heterogeneous systems are the most promis-
ing methods to achieve recovery of the activating metal, but

only Ru complexes currently allow for simple liberation of the
coordinated arene via these methods. Whilst the development

of catalytic reactions has been a major breakthrough in this

field, more needs to be achieved to be competitive with indus-
trial processes. In-depth mechanistic studies that help to iden-

tify active catalytic species and rate limiting reaction steps are
crucial to realise this ambition. Focus on developing photoca-

talytic reactions also seems an important route forward. Partic-
ularly, as advances are made in both theoretical and practical

photochemistry, it is key for the field of p-arene metal com-
plexes to take advantage of these developments. Overall, this

field has a bright outlook and we look forward to the next
decade of developments.
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