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The molecular dynamics (MD) method is a promising
approach for investigating the molecular mechanisms
of microscopic phenomena. In particular, generalized
ensemble MD methods can efficiently explore the con‐
formational space with a rugged free-energy surface.
However, the implementation and acquisition of technical
knowledge for each generalized ensemble MD method
are not straightforward for end-users. Here, we present
a new version of the myPresto/omegagene software, which
is an MD simulation engine tailored for a series of
generalized ensemble methods, which are virtual-system
coupled multicanonical MD (V-McMD), virtual-system
coupled adaptive umbrella sampling (V-AUS), and
virtual-system coupled canonical MD (VcMD). This
program has been applied in several studies analyzing
free-energy landscapes of a variety of molecular
systems with all-atom simulations. The updated version
provides new functionality for coarse-grained simula‐
tions powered by the hydrophobicity scale method. The
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software package includes a step-by-step tutorial docu‐
ment for enhanced conformational sampling of the
poly-glutamine (poly-Q) oligomer expressed as a one-
bead per residue model. The myPresto/omegagene
software is freely available at the following
URL: https://github.com/kotakasahara/omegagene under
the Apache2 license.
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Introduction
The molecular dynamics (MD) method has been widely

applied to dissect the microscopic behavior of various
biophysical phenomena. Although early studies using the
MD method analyzed the picosecond dynamics of a small
protein [1], the rapid growth of computer technologies and
extensive efforts for methodological development have
extended the scope of MD studies to larger and more
complex molecular systems on a much longer time scale.

A major update of the molecular dynamics (MD) simulation engine myPresto/omegagene is presented. The myPresto/omegagene software has
several unique features, including an efficient calculation of electrostatic potentials using the zero-multipole summation method and enhanced
sampling from our original methods. In this update, two new functionalities were implemented: (i) a virtual-system coupled canonical MD
(VcMD) method for enhanced conformational sampling, along with multi-dimensional reaction coordinate space, and (ii) a coarse-grained model
to investigate higher-order molecular assembly. The use of these new functionalities is described in the step-by-step tutorial attached to the
software. This article briefly introduces these functionalities and an example.
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Extensive developments of MD specialized hardware [2–4]
achieved milliseconds simulations. Even with the
commodity clusters, implementing efficient algorithms for
accelerators enables microseconds simulations [5–8].
Moreover, theoretical developments in the mechanics and
physics also accelerate MD simulations, e.g., efficient
calculation methods for the electrostatic potential [9–11].
However, exploring the huge conformational spaces of
complicated molecular systems is still not straightforward
because the simulation trajectories are often trapped in
energy basins and overlook rare events during the
exploration of a rugged free-energy landscape. To tackle
this problem, a variety of generalized-ensemble methods
that enhance the conformational transitions of molecular
systems by applying non-Boltzmann sampling have been
extensively developed [12,13]. These approaches can
efficiently sample conformational ensembles of molecular
systems. Simultaneously, generalized ensemble methods
require users to acquire experience and knowledge for per‐
forming simulations appropriately [14–20]. Therefore, the
development of software to facilitate generalized ensemble
MD simulations is essential for this field of study [21].

We have developed MD simulation software called
myPresto/omegagene, which focuses on generalized
ensemble MD methods [22]. This software is a member of
a molecular simulation software suite termed myPresto,
which was developed and maintained over the past several
decades. The myPresto/omegagene software provides
functionalities for efficient conformational sampling with
explicitly solvated all-atom systems that uses our original
generalized ensemble methods such as the virtual-system
coupled multicanonical MD method (V-McMD) [23], and
the virtual-system coupled adaptive umbrella sampling
method (V-AUS) [24]. These methods have been applied to
solve biophysical issues such as dimerization of peptides
[23,24], protein folding [20], molecular recognition by a
protein [25], elucidation of conformational diversity of an
intrinsically disordered region (IDR) [26], dissecting
mechanisms of phosphorylation-dependent transcription
regulation with an IDR [27], and multimodal complex
formation of an IDR and structured protein [28,29]. These
studies were powered by myPresto/omegagene by taking
advantage of GPGPU acceleration.

Here, we present a major update of the myPresto/
omegagene software with two new functionalities. The
first is an original generalized-ensemble method called the
virtual-system coupled canonical MD method (VcMD)
[30–33]. This method enhances conformational transitions
along arbitrarily defined reaction coordinates or collective
variables as similar to the AUS method. An advantage of
the VcMD method is its capability for sampling in a
multi-dimensional reaction coordinate space. Although
some studies have reported sampling methods for multi-
dimensional reaction coordinate space, it is difficult to

apply them for practical biomolecular systems due to the
complexity [34–37]. The VcMD method tackles this
problem by discretizing reaction coordinate space and
introducing the virtual system which is coupled to the real
system. We have applied this method to investigate
conformational ensembles of complex biomolecular
systems. For example, our previous study successfully
calculated conformational ensemble for GPCR–endothelin1
binding along the reaction coordinates captured open-close
motion of the receptor and bind–unbind motion of the
ligand [38]. The second update is the implementation of
a coarse-grained model. Although the capability of MD
simulations has rapidly increased, it is still challenging
to analyze highly complicated molecular systems, for
example, protein aggregation, at the atomic level. A coarse-
grained model is a promising approach for analyzing such
phenomena. The new version of myPresto/omegagene
enables simulation with a coarse-grained model based on
the hydrophobicity scale model [39] and the Debye-Hückel
approximation. Details of these two functionalities
and software components are presented in this article.
The myPresto/omegagene software is freely available
at https://github.com/kotakasahara/omegagene under the
Apache2 license.

Methods
Virtual-system coupled sampler
The myPresto/omegagene software implements a series

of generalized ensemble methods, that is, V-McMD,
V-AUS, and VcMD. They are collectively called the
virtual-system coupled sampler. Here, we provide only a
brief description of the virtual-system coupled sampler.
See our previous studies for more details [30–33].

In this class of sampler, the virtual system, which
consists of arbitrarily defined discrete states termed as
virtual states L, is introduced. The virtual system interacts
with the molecular system, or a real system, which is
defined as the coordinate and velocity of each particle
[r, v]. The phase space of the entire system is defined as
[r, v, L]. The state variable L is expressed as an
NRc-dimensional integer vector, where NRc indicates the
number of reaction coordinates and each axis of the virtual
system corresponds to an arbitrarily defined reaction
coordinate (λ; Figs. 1A and B). The reaction-coordinate
space is divided into several regions overlapping with their
neighbors (Fig. 1E), and each region is associated with
each virtual state. When the virtual system is in the virtual
state L, the real system is confined to a range of reaction
coordinates associated (λ ∈ zL), where zL is defined as the
range of λ from [zL]min to [zL]max). After a certain number of
sampling steps, the virtual system stochastically transitions
to another virtual state L', which is a virtual state
neighboring to L (Fig. 1C). Then, the sampling was
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performed in the range zL' (Fig. 1D). This process is
repeated until the end of the simulation.
The virtual system coupled sampler applies the physical

system constituted by the following Hamiltonian:

ℋ = Eentire r, L + K v , (1)

where Eentire(r, L) and K(v) are the potential and kinetic
energy terms, respectively. Because the virtual system
evolves by the Monte Carlo method, the kinetic term
depends only on the real system. Eentire(r, L) is defined by
the following equation:

Eentire r, L = ER r + ERV r, L + EV L , (2)

where ER(r) and EV(L) are the potential energy terms for the
real and virtual systems, respectively. ERV(r, L) is the
interaction between the two systems. This term confines the
real system into the region zLi, which is associated with the
current virtual state Li, for example, the flat-bottom
potential (Figs. 1F, G). EV(L) is given as a constant value
for each virtual state L, and determines the transition
probability between the virtual states. The values of EV(L)
for each L can be adjusted to enhance conformational
sampling. If the region zL in the reaction-coordinates space
is less populated in the canonical distribution, a bias for
trapping into this region should be applied by lowering
EV(L). The actual procedure for adjusting EV(L) for the case
of VcMD is shown in Ref. [30–33].

V-McMD, V-AUS, and VcMD are special cases of the
virtual-system coupled sampler. For the V-McMD, the

virtual system is defined as one-dimensional (1D) space,
the reaction coordinate of which is the potential energy of
the real system, and ER(r) is the multicanonical potential
defined by the following equation:

ER r = E r + RT  ln Pc E r , T , (3)

where E(r) is the potential energy defined by the force field
and electrostatic potential in the real system, and Pc(E(r), T)
is the canonical distribution of E(r) at temperature T [23].
Conversely, V-AUS applies a structural parameter, for
example, the distance between two molecules, to define the
1D reaction-coordinate space, with the adaptive umbrella
potential for ER(r).

ER(r) = E(r) + RT  ln Pc λ, T , (4)

where λ is the structural parameter. In this framework,
multiple reaction coordinates with a multi-dimensional
virtual system can be applied. However because the
estimation of the multi-dimensional distribution function
Pc(λ, T) would be impractical because of its complexity
[24], use-cases of the V-AUS method are practically limited
to 1D reaction coordinate space.

VcMD applies an unbiased potential for ER(r).

ER(r) = E(r). (5)

Instead, conformational sampling is enhanced only by
adjusted transition probabilities between different virtual
states [30–33].

Figure 1 Schematic representation of the virtual-system coupled sampler. (A) An example of a real system consisting of molecules a and b.
(B) The same system as panel (A) with a different configuration. The two molecules are distant from each other. The dashed line indicates the
distance between the centers of mass of these molecules. In this example, this distance is defined as the reaction coordinate λ. (C) An example of
the time-course of the virtual system. The system began with state L=1 transition to L=2 and then returned to L=1. (D) An example of the time-
course of the real system coupled to the system shown in panel (C). (E) The relationship between virtual states L and reaction coordinates λ. When
the virtual system is in the state L, the reaction coordinate λ in the real system is confined in the range zL, which is depicted as a horizontal line in
the figure. (F) The potential applied to confine the real system to the range z1. (G) Potential for the range z2.
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After the production runs, the canonical ensemble can be
obtained by reweighing the resultant ensemble. Because the
transitions between different virtual states are biased
according to the energy gap of EV(L), the ratio of canonical
probabilities of two neighboring virtual states is calculated
by the following equation:

ALj; Li

ALi; Lj
= Qcano Li

Qcano Lj
= exp −EV Lj − EV Li

RT , (6)

where Qcano(Li) is the virtual state-partitioned canonical
probability for Lj, and ALj; Li is the transition probability
from the state Li to Lj. See Supporting Information of Ref.
[33] for more details. In addition, further reweighting is
required for the V-McMD and V-AUS methods because
sampling in each virtual state is also biased (Eq (3) and (4),
respectively). Contrarily, in the VcMD method, sampling in
each virtual state is performed under the unbiased manner.
Therefore, it is expected that the intersection on the reaction
coordinate axis between two neighboring virtual states
yields the same distribution. This feature provides the
unique protocols for the iterative simulations and sampling
as described in Ref. [40].

Coarse-grained simulation
In addition to all-atom simulations, the coarse-grained

model can also be applied in myPresto/omegagene. The
one-bead-one-residue model with the hydrophobicity scale
method [39] is implemented. This method applies a
correction reflecting hydrophobicity of the bead to the
Lennard-Jones potential:

Φ(r) = ΦLJ(r) + (1 − λ)ϵ　　 if r ≤ 2
1
6σ

λΦLJ(r) otℎerwise
, (7)

ΦLJ(r) = 4ϵ σ
r

12

− σ
r

6

, (8)

where Φ(r) is the potential function of a pairwise non-bond
interaction with distance r, and ΦLJ is the conventional
Lennard-Jones potential with the parameters ε and σ. λ is
the scaling factor reflecting hydrophobicity. When λ is
unity, Φ(r)=ΦLJ(r). Otherwise (λ is less than unity), the
potential is weakened/strengthened for distances which are
closer/further than the equilibrium distance, respectively.
See the Ref. [39] for details. This potential function has
succeeded in reproducing the experimentally determined
radii of gyrations of a variety of IDRs and the analysis of
liquid-droplet formations [41,42]. For the electrostatic
potential calculation, the Debye-Hückel approximation was
implemented. Because the previous GPGPU kernel was
tailored for all-atom models [22], we modified it to apply
the coarse-grained models.

Example
This section describes a VcMD simulation for poly-

glutamine (poly-Q) octapeptides, with the coarse-grained
model described above as a simple example demonstrating
the new functionalities. Because the purpose of this simu‐
lation is to provide a simple example that is suitable for a
step-by-step tutorial without heavy computations, we do
not discuss in detail the molecular phenomena based on the
simulation results. More practical applications of the new
version of myPresto/omegagene have been reported in our
previous studies applying the all-atom VcMD method
[29,38]. Applications of the coarse-grained model to inves‐
tigate higher-order molecular assemblies are partially intro‐
duced in Ref. [43], and their details are presented elsewhere.

In this simple example with poly-Q peptides, the reaction
coordinate of the 1D virtual system was defined as the
distance between the center of masses of these two
molecules. The VcMD simulation enhances the sampling of
system configurations over a wide range of intermolecular
distances. The initial configuration of the molecular system
was built by placing two poly-Q octapeptides in a cubic cell
with a 60-Å length for each axis. Each poly-Q consisting of
eight beads took a fully extended conformation. The system
was relaxed in a canonical simulation at 300 K lasting over
105 steps. Ten snapshots were randomly selected from the
trajectory and used for the initial structures of the VcMD
simulation. In the VcMD simulation, conformational
sampling was performed with ten independent runs based
on the trivial trajectory parallelization scheme [44] at 300
K. The virtual system was defined as the 1D space based on
the distance between the center-of-mass of the two peptides
(λ). The range of the λ to be sampled was determined to be
3–30 Å and divided into seven states (Table 1). The
parameter set for the hydrophobicity scale model reported
by Dignon et al. [41] was applied.

To determine the potential energy in each virtual state
EV(L), conformational sampling using an estimated EV(L)
and adjusting EV(L) was iteratively performed until the
resultant ensemble converged. Subsequently, a production
run was performed with the estimated EV(L). The
simulation length of each iteration was 106 steps, and that
of the production run was 107 steps. For the first iteration,

Table 1 Definition of the virtual system

L [zL]min (Å) [zL]max (Å)

1 3 5
2 4 6
3 5 9
4 6 12
5 9 17
6 12 22
7 17 30
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the potential energies EV(L) for all the virtual states L
were set to have a constant value, meaning that the
conformational change was not enhanced. This simulation
behaved similarly to the unbiased canonical MD. As a
result, the resultant ensemble of the first iteration was
biased to the configurations with high λ values, and bound
configurations were rarely sampled (the red line in Fig.
2A). Then, EV(L) was updated to enhance the confor‐
mational changes to the unsampled range of reaction
coordinates. After several iterations, the ensemble resulted
in a near-uniform distribution over the virtual states, which
indicates that a wide range of reaction coordinates was
almost equally sampled (Fig. 2B). Based on this estimation
of EV(L), a production run was performed. The resultant
ensemble can be converted into a canonical ensemble by
reweighting each snapshot according to EV(L) (Fig. 2C).
In the canonical distribution, under the given potential,
dimer conformations were unstable, and the dissociated
states showed a more stable potential of mean forces than
those in the associated states. The resultant conformational
ensemble can be characterized using a variety of analytical

methods. Figure 2D presents the free-energy landscape
analyzed with the principal component analysis (PCA) for
the matrix of 8×8=64 inter-residue distances between the
two peptides over 10,000 snapshots. The most stable basin
was composed of dissociated configurations (Fig. 2F),
which mainly stabilized by the entropic effects. The first
principal component axis (PC1) was correlated with the
inter-centroid distance between two peptides (the Pearson
correlation coefficient was –0.81), and bound conformations
were found in the region with high values of PC1 (Fig. 2E).

Conclusions
We presented a new version of the MD simulation

engine, myPresto/omegagene. This software is tailored for a
series of generalized ensemble approaches termed virtual-
system coupled samplers. In this approach, conformational
changes in the real system are enhanced by state transitions
in the virtual system, which interact with the real system.
The new version of myPresto/omegagene provides func‐
tionality for the three special cases of the virtual-system

Figure 2 The conformational ensemble of the poly-Q system test case. (A) The population of each virtual state in an ensemble of each
iteration. (B) The same data as in panel (A) with different scales in the vertical axis. (C) The free-energy landscape as a function of the reaction
coordinate (λ) calculated by reweighting the conformational ensemble of the production run (the eighth iteration). The dashed lines indicate the
borders of the virtual states. (D) The free-energy landscape analyzed by principal component analysis. The horizontal and vertical axes represent
the first and second principal component axes, respectively. (E) An example of the snapshot taken from the point marked as E in panel (D). Blue
and red spheres are beads (residues) in the first and second poly-Q peptides, respectively. (F) An example of point F in panel (D).
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coupled sampler, which are V-McMD, V-AUS, and VcMD,
and users can choose the appropriate one according to their
purpose. In addition, the coarse-grained model with the
hydrophobicity scale method and the Debye-Hückel
approximation was also implemented. The generalized
ensemble approach can be applied to a variety of molecular
systems from all-atom explicit-solvent models to coarse-
grained models.
This update of myPresto/omegagene includes the

documentation for a step-by-step tutorial for VcMD
sampling with the coarse-grained model. The input files are
attached in “sample/cg_q8” directory of the repository. This
example does not demand high computational costs, and
users can acquire the necessary skills for the VcMD
methods using a laptop computer. For the all-atom model,
see “sample/ala3” directory and our previous publication.
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