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Abstract: We investigate single and opposing silica plates, either bare of grafted, in contact with
vacuum or melt phases, using self-consistent field theory. Solid–polymer and solid–solid nonbonded
interactions are described by means of a Hamaker potential, in conjunction with a ramp potential.
The cohesive nonbonded interactions are described by the Sanchez-Lacombe or the Helfand free
energy densities. We first build our thermodynamic reference by examining single surfaces, either
bare or grafted, under various wetting conditions in terms of the corresponding contact angles, the
macroscopic wetting functions (i.e., the work of cohesion, adhesion, spreading and immersion),
the interfacial free energies and brush thickness. Subsequently, we derive the potential of mean
force (PMF) of two approaching bare plates with melt between them, each time varying the wetting
conditions. We then determine the PMF between two grafted silica plates separated by a molten
polystyrene film. Allowing the grafting density and the molecular weight of grafted chains to
vary between the two plates, we test how asymmetries existing in a real system could affect steric
stabilization induced by the grafted chains. Additionally, we derive the PMF between two grafted
surfaces in vacuum and determine how the equilibrium distance between the two grafted plates is
influenced by their grafting density and the molecular weight of grafted chains. Finally, we provide
design rules for the steric stabilization of opposing grafted surfaces (or fine nanoparticles) by taking
account of the grafting density, the chain length of the grafted and matrix chains, and the asymmetry
among the opposing surfaces.

Keywords: SCF; PMF; brushes; polymer; agglomeration

1. Introduction

Grafting polymer chains on solid surfaces is a standard procedure for the steric stabi-
lization of nanocomposite systems [1–3]. Various methods for the experimental synthesis
of such systems are reported in the literature [4–6]. Understanding the behavior of grafted
polymer brushes requires a thorough investigation of the thermodynamics of the system
under different conditions. In the case of two or more nanoparticles embedded inside a
polymer melt, the challenge is to keep them separated by overcoming their tendency to
form aggregates. When nanoparticles are bare, the attractive Van der Waals forces [7] drive
them to come closer to each other. One of the possible ways to get around this behavior is
to graft polymer chains on the surface of the nanoparticles. Achieving a proper dispersion
of nanoparticles inside the polymer melt is associated with a considerable enhancement of
its properties [8–12].

Major computational research has been conducted on systems comprising a single
grafted nanoparticle embedded in a solvent or a homopolymer matrix, using theoretical
formulations [13,14] or atomistic simulations [15–18]. Moreover, considerable work has
addressed the behavior of grafted and matrix chains in systems comprising multiple grafted
solid surfaces [19–25]. Munao et al. [19] demonstrated the effect of a third nanoparticle,

Polymers 2021, 13, 1197. https://doi.org/10.3390/polym13081197 https://www.mdpi.com/journal/polymers

https://www.mdpi.com/journal/polymers
https://www.mdpi.com
https://orcid.org/0000-0003-4183-686X
https://orcid.org/0000-0002-8003-2832
https://orcid.org/0000-0002-4763-9739
https://doi.org/10.3390/polym13081197
https://doi.org/10.3390/polym13081197
https://doi.org/10.3390/polym13081197
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/polym13081197
https://www.mdpi.com/journal/polymers
https://www.mdpi.com/article/10.3390/polym13081197?type=check_update&version=2


Polymers 2021, 13, 1197 2 of 32

when inserted in a system of two interacting grafted silica nanoparticles, while Martin
et al. [23] investigated the effect of polydispersity of grafted chains on the structural
properties of the nanocomposite system.

In this work, we undertake a self-consistent field theory [26–28] (SCFT)-based analysis
to examine the structural properties and thermodynamics of polystyrene (PS) melt (matrix)
confined between two silica plates, either grafted or bare, as well as of the same plates in
the absence of melt. In fact, when no matrix chains are present between the two grafted
surfaces, or they are present but their molecular weight is significantly larger than that
of the grafted chains, the latter behave as if they were in contact with a very bad solvent.
Following Flory’s theory [29], when matrix chains are present and their molecular weight
is similar to the one of grafted chains, then the system is analogous to one wherein the
grafted chains are embedded inside a theta solvent. On the contrary, when matrix chains
are much shorter than the grafted chains, the latter are starting to swell towards the matrix
as if they were in contact with a good solvent.

Specifically, we derive the potential of mean force between the plates by varying
the distance between them. Studying the thermodynamics in such a planar geometry is
quite important in the field of biomembranes and other biological applications [30,31].
One could consider this planar geometry study as the equivalent of investigating the
potential of mean force between spherical (fine) particles, whose radius is large enough, in
comparison to chain dimensions, for their curvature to be negligible. Materials consisting
entirely of matrix-free grafted plates or hairy nanoparticles (also referred to as “particle
solids”) exhibit interesting mechanical and optical properties, while they behave as tough
glasses when assembling in specific configurations [32–36]. Barnett and Kumar [37,38]
have published several works, where they report the use of such materials in the design of
membranes for separation processes. In their recent work, Biltchak et al. [39] studied the
effect of the addition of matrix chains to a neat grafted nanoparticle-based membrane on its
selectivity in separations of gases of different molecular size. Mydia et al. [40] developed
a two-layer theoretical model to describe the configurations of the grafted chains in the
vicinity of the grafted nanoparticles and at intermediate distances between them and they
compared their model with atomistic molecular dynamics simulations.

The problem of polymer grafted chains in planar geometries has been addressed in
the past by several works [41,42]. By removing the incompressibility assumption and
imposing Dirichlet boundary conditions at the solid surfaces, we make a step forward
towards the investigation of systems with realistic interfacial free energies. Furthermore,
we explicitly describe the solid–polymer and solid–solid interactions via the Hamaker
potential, and we explore its influence on the potential of mean force. Without these
considerations, we would not be able to apply our methodology in systems comprising
exclusively grafted chains, i.e., systems in the absence of polymer matrix chains, since
the incompressibility condition requires that the total segment density profile be uniform
across the entire domain of interest [43]. Furthermore, such approaches—when applied
to three dimensions—allow for the investigation of systems of complex geometry, where
the use of Fourier based methods is not recommended, since no symmetry appears and no
periodic boundary conditions can be implemented.

In the majority of computational works, it is assumed that the plates have the same
grafting density and molecular weight as the grafted chains [41,42]. In reality, it is rather
hard for experimentalists to prepare such a perfectly symmetric system. Herein, we increase
the degrees of freedom of the system by allowing the grafted chains on each plate to have
different molecular weights, whereas each plate may have its own grafting density as well.
The goal is to reveal the influence of these kinds of asymmetries on the potential of mean
force between the two grafted plates when varying the distance between them, and to
propose a scaling law that accounts for all of these design aspects.

As a first step, we build our thermodynamic reference system by deriving the free
energy of single bare or grafted plates, either isolated or in contact with polystyrene melt.
Next, we demonstrate the potential of mean force of a system which contains matrix chains
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exclusively. The melt is assumed to be at equilibrium with a bulk melt phase at all times
and it is gradually squeezed by reducing the distance between the two silica surfaces.
Finally, we demonstrate results concerning the structure and potential of mean force in a
system of two grafted silica plates over a large parameter space, involving the molecular
weight of matrix chains, the molecular weight of grafted chains on each plate, and the
grafting density of each plate. Understanding the behavior of matrix and grafted chains
in this planar geometry is a stepping-stone towards the corresponding spherical case, i.e.,
two or more polystyrene-grafted silica nanoparticles embedded in a polystyrene matrix.

In the context of our SCFT calculations, we employ the Sanchez-Lacombe (SL) equation
of state in conjunction with square gradient theory (SGT), which has been shown to
reproduce correctly the density profiles and surface tension of a number of different
industrially important thermoplastic polymers, when compared with atomistic molecular
dynamics simulations or experiment [44]. In this work, we introduce an additional potential
term which allows for a refinement of the polymer–solid interactions; by adjusting the
strength of these interactions, we examine interphases with low (LW), high (HW) and
perfect (PW) wetting. For comparison purposes, we evaluate several of our findings with
Helfand’s (HFD) free energy density [45] as well, using a constant compressibility [15]; this
free energy density is most commonly used in SCFT studies whenever the incompressibility
condition is relaxed. It is noted at this point, that in cases where matrix chains are not
present in the system, only the SL EoS is applicable, since HFD fails to describe correctly
the density profiles of grafted chains in contact with vacuum and the corresponding free
energy of the system.

It is mentioned here that, since the employed model is one-dimensional, a smearing of
the grafting points parallel to the solid surfaces is required. As discussed in our previous
work [46], this smearing may become an inaccurate approximation when addressing
grafted surfaces with low σgRg

2 values (σg being the surface grafting density and Rg
2

the mean squared radius of gyration of grafted chains) and small nanoparticles (large
curvatures). Nonetheless, the effect of smearing is weaker in the present work, since it
deals with planar surfaces (zero curvature) where it is less probable for the grafted chains
to adopt a mushroom-like configuration.

The manuscript is structured as follows. Section 2 discusses the systems under study,
presents the formulation for grafted chains in the presence and in the absence of a melt
phase, whereas Section 3 provides details regarding the calculations. The first part of the
Results section (Section 4.1) discusses single surfaces, either bare (polymer/vacuum and
polymer/solid interphases), or grafted and in the presence or absence of melt chains. The
structural and thermodynamic properties derived from these systems are used as reference
quantities for the analysis of two opposing surfaces. Subsequently, we present results
regarding the potential of mean force (PMF) of approaching silica surfaces, either bare
(Section 4.2), or grafted, in the presence (Section 4.3) or absence (Section 4.4) of melt chains.

2. Model and Theoretical Formulation
2.1. Model Systems

Figure 1 illustrates a mesoscopic bead-spring representation of the systems under
study. Two opposing silica plates at distance hss are grafted with polystyrene chains, while
matrix chains may or may not exist in the space between the grafted plates. Hereafter, the
matrix chains are denoted by m, the chains grafted on the left silica plate are denoted by g–,
and the chains grafted on the right silica plate are denoted by g+. When polymer melt exists
between the two plates, it comprises a total number of nm monodispersed chains of length
equal to Nm monomers/segments. The melt, when present, is at equilibrium with a bulk
polymer phase of chain length Nm of temperature T and pressure P. The left/right surfaces
are grafted with ng−/ng+ chains of length Ng−/Ng+ segments, whereas the corresponding
grafting density equals σg∓ = ng∓/Ssolid with Ssolid denoting the area of each surface. The
grafting density and molecular weight of grafted chains are allowed to vary between the
two plates. It is obvious from the density profiles in Figure 1b,d—corresponding to systems
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with Figure 1a and without Figure 1c matrix chains—that, in the former case, the extension
of each brush towards the opposing plate is favored.

Figure 1. (a) Bead-spring representation of two opposing grafted silica walls embedded in a melt (GMG system) comprising
matrix chains of length Nm. The silica wall on the left (right) is grafted with σg−Ssolid (σg+Ssolid) grafted chains of length
Ng− (Ng+ ). (c) The same system as (a), but in absence of matrix chains (GVG system). Additionally, the corresponding
reduced density profiles from the opposing grafted silica walls in the (b) presence and (d) absence of the matrix chains
are shown.

In the rest of this manuscript, the situation at the boundaries will be referred to
either as V (vacuum), S (bare solid surface) or G (grafted solid surface), and the in-
termediate region between the plates will be referred to as V (vacuum) or M (melt).
For example, systems comprising vacuum/melt, bare solid/melt, grafted solid/melt
and grafted solid/vacuum phases will be referred to as VM, SM, GM and GV, respec-
tively. In the same spirit, more complex systems: solid/melt/solid, grafted/melt/grafted
(Figure 1a) and grafted/vacuum/grafted (Figure 1b) will be referred to as SMS, GMG and
GVG, respectively.

2.2. Self-Consistent Field Convergence Scheme

The polymer chains are described with the Gaussian thread model. Consequently,
their propagation inside a three-dimensional space is described by the Edwards diffusion
equation [47] subject to the field w′ifc:

∂

∂N
qc(r, N) =

RG,c
2

Nc
∇2

r qc(r, N)− βw′ifc(r)qc(r, N) (c = m, g−, g+) (1)

where qc is the restricted partition function, RG,c is the radius of gyration of chains, Nc
is the chain length measured in monomer units, and c denotes the kind of the chains (m:
matrix, g–/g+: chains grafted to the left/right side). Unless otherwise stated, the initial
configuration of the field is set equal to zero across the domain. For more details concerning
the iterative solution of Equation (1) in the presence of the field, the reader is referred to
Section 2.1.1 of Reference [46]. In the Section 2.1.2 of the same work [46], we explain how
Equation (1) reduces to its one-dimensional analogue, and in its supporting information
we elaborate on the numerical solution of Equation (1) via a finite difference scheme and
on the stability criteria for the proper equilibration of the field w′ifc.
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Dirichlet boundary conditions are imposed on the edges of the domain when they
correspond to solid or gas phases and Neumann (with zero flux) when they correspond to
bulk polymer phases (in cases of single interfaces). The initial conditions of matrix chains
are given by qm(r, 0) = 1, while for grafted chains the following Equation (2) holds in an
one-dimensional domain.

qg(hg, 0) =
Ssolid
Shg

σgNg

ρseg,bulk

δ
(
h− hg

)
qm
(
hg, Ng

) (2)

with Shg being the surface area of the plane over which the smearing of grafting points
takes place (equal to Ssolid in planar geometries), and qm(hg, Ng) is the chain propagator for
matrix chains with length Ng at distance hg from a solid plate. The delta function δ

(
h− hg

)
is analytically evaluated as the inverse of the width ∆h of the interval assigned to the points
of the mesh which are closest to the two solid surfaces and is zero everywhere else.

The reduced density, ϕc = ρc/ρseg,bulk, can be calculated from the corresponding
restricted partition function using the convolution integral in the following Equation (3).

ϕc(r) =
1

Nc

Nc∫
0

dN qc(r, N) qm(r, Nc − N) (c = m, g−, g+) (3)

with ρseg,bulk = ρmass,bulk NA/mmonomer being the segmental number density in the bulk.
With ϕc known for each chain type, the field is estimated based on the free energy density,
f [ρ,∇ρ], from a suitable EoS:

w′ifc(r) = w′(r)− w′bulk =
∂ f [ρ,∇ρ]

∂ρ

∣∣∣∣
ρ=ρ(r)

− ∂ f [ρ,∇ρ]

∂ρ

∣∣∣∣
ρ=ρseg,bulk

−∇ · ∂ f [ρ,∇ρ]

∂∇ρ
+ us(r) (4)

For more details about the corresponding EoS, the reader is referred to
Sections 2.4.1–2.4.3.

2.3. Thermodynamic Description
2.3.1. Systems with Melt: Grand Canonical Ensemble

Following the formulation developed in our previous work [46], when melt/matrix
chains exist between the two plates, then we describe the equilibrium of the system in
the context of the grand canonical ensemble. Hence, the thermodynamics of the polymer-
grafted planar surfaces in contact with a matrix phase is described by a grand potential of
the form:

∆Ω = Ω−Ωbulk − Ag,bulk = ∆Ωcoh + ∆Ωfield + ∆Ωm + ∆Ag + Us + Uss (5)

Note that the grand potential has been defined with respect to a reference system at
the same temperature, which comprises the two solids at infinite distance from each other
so that they do not interact, a bulk phase of matrix chains of length Nm with chemical
potential µmNm, occupying the same polymer-accessible volume as the interfacial system,
and a set of ng− and ng+ unperturbed end-pinned grafted chains of length Ng− and
Ng+ , respectively, exposed to bulk polymer. The segment density of the bulk polymer at
temperature T and chemical potential µmNm is ρseg,bulk.∆Ωcoh in Equation (5) describes
the nonbonded cohesive interactions among the polymer segments as governed by the free
energy density of the equation of state:

∆Ωcoh =
∫
R

dr
{

f [ρ(r),∇ρ(r)]− f
[
ρseg,bulk, 0

]}
(6)
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∆Ωfield describes the interaction between the chemical potential field and the density
field [26],

∆Ωfield = −
∫
R

dr
{

ρ(r)w′(r)− ρseg,bulkw′bulk(r)
}

(7)

∆Ωm encompasses the free energy associated with the translational and conformational
entropy (with respect to the entropy of a bulk melt) of matrix chains and it is given by the
following Equation (8).

∆Ωm = −
ρseg,bulkV

βNm

(
Qm
[
w′ifc

]
− 1
)

(8)

∆Ag is associated with the conformational entropy of ng− and ng+ grafted chains subject
to the field w′ifc, and it is given by Equation (9).

∆Ag = ∆Ag− + ∆Ag+

= − 1
β

ng−

∑
ig−=1

ln Qg

[
rg,ig− ; w′ifc

]
− 1

β

ng+

∑
ig+=1

ln Qg

[
rg,ig+ ; w′ifc

]
− 1

β

ng−+ng+

∑
ig=1

ln
rref,q=0
rg,ig,q=0

(9)

Note that the last term in the right-hand side of Equation (9) is added in order to
normalize the free energy term, ∆Ag, with respect to the distance of the grafting point from
the solid surface and therefore render it independent of the spatial discretization of the
system [46].

Us is the interaction energy between the polymer chain segments and the left and
right solid surfaces,

Us = Us− + Us+ =
∫
R

dr
{

ρ(r)us−(r)
}
+
∫
R

dr
{

ρ(r)us+(r)
}

(10)

Uss describes the direct interactions between the opposing semiinfinite solid surfaces.
Expressions for us(r) and Uss are given in Sections 2.5.1 and 2.5.2 below.

For the full SCFT formulation, the reader is referred to Reference [46] and its support-
ing information.

2.3.2. Systems without Melt: Canonical Ensemble

In order to address the system where no matrix chains exist, we need to modify
the above formulation and describe the thermodynamics of the system by means of the
canonical ensemble. In more detail, the thermodynamics of a melt-free system with polymer
chains grafted to a surface is described by the following expression for the Helmholtz
free energy,

∆A = A− Abulk = ∆Acoh + ∆Afield + ∆Ag + Usolid + Uss (11)

with Abulk being the Helmholtz energy of a reference system at the same temperature,
consisting of the two solids at infinite distance from each other and a set of ng− and ng+

unperturbed end-pinned grafted chains exposed to bulk melt with length Ng− and Ng+ ,
respectively [46]. The first term on the right-hand side of Equation (11) describes the
cohesive interactions among the polymer segments as governed by the free energy density
of the equation of state,

∆Acoh =
∫
R

dr{ f [ρ(r),∇ρ(r)]} (12)
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the second term describes the interaction between the chemical potential field and the
density field [26]:

∆Afield = −
∫
R

dr
{

ρ(r)w′(r)
}

(13)

while the rest of the terms remain the same as those in Equation (5).
Since the article addresses planar geometries, it would be meaningful to report the

free energies per unit area. Hereafter, the free energy terms in Equations (5)–(13) will be
referred to as:

γ
sys
α = Esys

α /Ssolid (14)

where E is Ω, A, or U, “α” denotes the kind of contribution (coh, field, m, g−/+ and s−/+)
whereas omitting “α” corresponds to the total free energy. The “sys” symbol denotes
the kind of system (see Section 2.1) and hence implicitly the statistical ensemble; i.e., a
system with/without melt is described in the grand canonical/canonical ensemble. A few
examples: γVM, the total free energy of a melt in contact with vacuum (surface tension);
γSM, the total free energy of a melt in contact with a silica plate (minus adhesion tension);
γGVG

coh = ∆Acoh/Ssolid, the contribution from cohesive interactions in the polymer to the
Helmholtz energy of a system consisting of two grafted silica surfaces with vacuum in
between them; γGMG

coh = ∆Ωcoh/Ssolid, the cohesive term for a melt capped between two
grafted silica surfaces; etc.

2.4. Nonbonded Free Energy Density

The following subsections illustrate the contributions of the square gradient theory
and the free energy density functionals to the cohesive (Equations (6) and (12)) and field
(Equations (7) and (13)) terms. These equations represent the nonbonded interactions
between polymer segments in the context of the field theoretical formulation applied herein.

2.4.1. Square Gradient Theory

Given the steepness of the field and the segment density profiles, we expand the
free energy density functional governing the nonbonded interactions by considering it
a functional of the density gradient too, as shown in the following Equation (15) [48,49].
The contribution of the gradient term to the free energy of the system is weighted by
the influence parameter, κ. The value of this parameter is reported in Table 1. It has
been obtained after a thorough comparison of SCFT with atomistic molecular dynamics
simulations conducted by the authors in the past for a wide range of polymer melts [44].

f [ρ(r),∇ρ(r)] = fEoS(ρ(r)) +
1
2

κ(∇ρ(r))2 (15)

w′ifc(r) =
∂ fEoS(ρ)

∂ρ

∣∣∣∣
ρ=ρ(r)

− ∂ fEoS(ρ)

∂ρ

∣∣∣∣
ρ=ρseg,bulk

− κ∇2ρ
∣∣∣
ρ=ρ(r)

+ Us(r) (16)

2.4.2. Sanchez-Lacombe

The Sanchez-Lacombe (SL) equation of state [50] and the corresponding free energy
density are given by Equations (17) and (18), respectively. The symbols ρ̃ = ρ/ρ∗, P̃ =
P/P∗, and T̃ = T/T∗ represent the reduced density, pressure and temperature, respectively,
where ρ*, P*, and T* correspond to the characteristic SL density, pressure and temperature.
For polystyrene, the values of those characteristic parameters are reported in Table 1.

ρ̃2 + P̃ + T̃
[

ln(1− ρ̃) +

(
1− 1

rSL

)
ρ̃

]
= 0 (17)

f SL
EoS(ρ(r)) = P∗

[
T̃ρ̃− ρ̃2 + T̃(1− ρ̃) ln(1− ρ̃)

]
(18)
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Using Equation (17), we can derive the mass density across the bulk fluid phase,
ρmass,bulk, for each chain length from the vapor-liquid equilibrium of a SL fluid; more
details in the Supplemental Material Section S1 in Reference [44].

2.4.3. Helfand Free Energy Density

A simpler EoS which can be used in the context of a compressible model for the de-
scription of the nonbonded polymer interactions is the Helfand (HFD) equation appearing
in the following Equation (19) [45].

f HFD
EoS (ρ(r)) =

1
2κT

(
ρ(r)

ρseg,bulk
− 1

)2

(19)

where κT is the isothermal compressibility of the polymer and ρseg,bulk is the polymer
segment density in the bulk melt region. For a detailed comparison between the SL and
HFD equations of state, the reader is referred to previous works of the authors [44].

2.5. Interactions with the Solid Surfaces
2.5.1. Polymer–Solid Interactions

In the context of Hamaker theory [7], the attractive and repulsive interactions between
a sphere of radius aM and a semi-infinite solid surface are given by Equations (20) and (21).

uSM
A = −ASM

6

(
1
r′
+

1
2 + r′

+ ln
(

r′

2 + r′

))
(20)

uSM
R =

ASM

7560
σ6

SM
aM

6

(
8 + r′

(2 + r′)7 +
6− r′

r′7

)
(21)

with ASM =
√

AS AM, r′ = dSM/aM, dSM = h–aM being the distance between the surface
of the sphere and the solid surface, h being the distance of the center of the sphere from
the surface, and σSM = 0.5(σS + σM) with σS and σM being the collision diameter of
Lennard-Jones particles constituting the solid and melt, respectively. Even though the
Hamaker potential allows for a proper description of the long-range interactions, it cannot
by itself restore the proper interfacial thermodynamics of the system, due to spurious
interactions with the self-consistent field, which can result in incorrect adhesion tension
and density profiles. This issue prevails regardless of the EoS and whether SGT is enabled,
as we demonstrate later on. Therefore, to circumvent the aforementioned limitations, we
introduced an additional potential term which is given by Equation (22).

uramp = vrampmax
(

σramp − h
σramp

, 0
)

(22)

This term has a local character and by adjusting vramp, it allows to tune the polymer–
solid interactions in the vicinity of the interface and restore the proper interfacial properties
of the system.

Putting it all together, in this work the interactions between the polymer chains and the
solid surface are described by the Hamaker potential in conjunction to the ramp potential:

us = uSM
A + uSM

R + uramp (23)

Hence allowing to preserve the long-range interactions and at the same time the
short-range structure and thermodynamics.
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2.5.2. Solid–Solid Interactions

In the context of Hamaker theory, the interactions between two semi-infinite solid
surfaces separated by a medium are described by the following equation:

Uss(hss) = Ssolid
ASMS

π

[
σS

6

360hss8 −
1

12hss2

]
(24)

The Hamaker constant for these interactions is usually approximated as ASMS ≈ AS +
AM − 2

√
AS AM [51]. This approximation is, however, inappropriate for describing the

surface-surface interactions in our case, since the polymer/solid interactions are computed
explicitly for each surface and it would lead to double counting of these interactions. In
other words, the aforementioned approximation accounts—apart from the solid–solid
interactions—for the polymer/solid interactions in an effective manner [51]. This can be
understood more clearly by the following example:

In the trivial case where the solid and medium phases are exactly the same (in terms
of structure and chemical constitution, AS = AM), the total free energy balance (sum of the
polymer–solid and solid–solid interactions) assumes a constant value that is independent
of hss. In that case, using the above approximation, ASMS = 0, and therefore, Uss = 0.
However, the medium–solid interactions arising from the integration of Equation (10) vary
with hss, indicating that the free energy balance is not satisfied.

Since in our implementation the polymer–solid interactions are described explicitly,
the proper treatment for ASMS is to set it ASMS = AS. This way, all kinds of interactions
(polymer–solid and solid–solid) are calculated in an explicit manner and there are no
double counting issues.

3. Calculation Details

The calculations have been performed with our in-house RuSseL code for a one-
dimensional formulation. The same code has been extended to address arbitrary 3D
geometries as well [52]. The values of the parameters that we used in our SCFT calculations
are presented in the following Table 1. The temperature, T, of the system was always equal
to 500 K and when matrix chains exist in the system, the calculations were performed
under the grand canonical ensemble, which we find most suitable in such interfacial solid–
polymer systems. On the other hand, in absence of matrix chains, we employ the canonical
ensemble to describe the equilibrium properties of the system.

Table 1. Parameters of the self-consistent field theory (SCFT) calculations.

Parameter Value Reference

System
T 500 K

rref,q=0 0.05 nm -
rg,ig ,q=0 0.05 nm -

Chain stiffness

bk 1.83 nm [15]
lC-C 0.154 nm -

γ 0.829 [53]
mmonomer 52.08 g/mol -

Hamaker

hHS ~0.4 nm -
σPS 0.37 nm [15]

σSiO2 0.30 nm [15]
APS 5.84 × 10−20 J [15]

ASiO2 6.43 × 10−20 J [15]
Ramp potential vramp (LW) 0.0

vramp (HW) –2.481 × 10−20 J Fitted to WA = 38.8 mJ/m2 from [54]
vramp (PW) –3.975 × 10−20 J Fitted to WA = 71.1 mJ/m2 from [54]

σramp 1.28 nm

Helfand κT=500K 3.97 (GPa)−1 [55,56]
ρmass,bulk 953 kg/m3 [15]

Sanchez Lacombe ρ* 1105 kg/m3 [57]
P* 357 MPa [57]
T* 735 K [57]

Square Gradient κ
κ̃ 0.2233·10–66 J m5 0.55 [44]

Edwards Diffusion
∆h 0.05 nm [46]
∆N 0.25 [46]

∆w′tol
ifc 10−6 kBT -
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The position of the grafting point is set equal to the coordinate of the first discretization
node of the one-dimensional spatial mesh. Ideally, the grafting point should be attached
exactly on the solid surface, but numerical issues would occur, since Dirichlet boundary
conditions are imposed on the solid; hence the propagator of matrix chains appearing in the
denominator of Equation (2) becomes zero on the solid surface [41,58]. In our work, we use
an alternative approach to address the boundary conditions at the interfaces, rather than
applying reflecting boundary conditions [41]. Mathematically preventing all chains from
touching the solid surfaces via Dirichlet boundary conditions, while preserving the severity
of delta function initial conditions, may seem to be an overkill in such one-dimensional and
symmetric geometry systems, but it is necessary if complex systems of arbitrary geometry,
dimensionality or chemistry are to be addressed in the future.

The intensity of PS–SiO2 interactions in the context of the Hamaker potential are dic-
tated by the corresponding σPS, APS and σSiO2 , ASiO2 parameters, whose values are reported

in Table 1. The effective radius of a PS segment was estimated as aPS = 3

√
3/
(

4πρseg,bulk

)
.

The range (σramp) of the ramp potential was set to a distance where intensity of the Hamaker
potential becomes equal to –0.005 kBT (see critical adsorption distance in Reference [46]),
and the well depth to vramp = 0 J, –2.481 × 10−20 J and –3.975 × 10−20 J for cases of low
(LW), high (HW) and perfect (PW) wettability conditions [54], respectively. vramp were op-
timized for each WA value via the secant optimization method. Retaining the full repulsive
part of this potential would result in a very steep configuration of the self-consistent field
near the solid surface. For that reason, we replace the repulsive part of the solid potential
with a repulsive wall positioned at a distance equal to, hHS ~ 0.4 nm, from the solid silica
plate, where it assumes a value of us(hHS) = 5 kBT (exactly). Unless otherwise stated, the
evaluations will be performed in the absence of the ramp potential, whereas the solid–solid
interactions are active in all cases of two opposing solid surfaces.

4. Results
4.1. Single Surfaces

The present section discusses the thermodynamics and structure (in terms of the brush
dimensions) of vacuum/melt (VM), solid/melt (SM), grafted/melt (GM) and grafted/
vacuum (GV) interphases. The quantities extracted from these systems will be used as
reference for the potential of mean force calculations involving two approaching silica
surfaces, either grafted or bare.

4.1.1. Vacuum/Melt (VM) and Solid/Melt (SM) Interphases

Figure 2 presents the free energy of VM (surface tension) and SM (minus adhesion
tension) interphases as a function of chain length. In Figure 2a, the free energies have
been evaluated with HFD. In Figure 2b the SL-SGT model is considered with the original
Hamaker potential corresponding to low wetting conditions (LW), and with the addition
of the ramp potential that has been adjusted to reproduce the work of adhesion of PS melts
in contact with treated (high wetting, HW) and untreated (perfect wetting, PW) silica [54].

In interphases with low wetting, the free energies are qualitatively similar for VM
and SM; they differ by about γSM

s across the chain molar mass range explored herein.
This is attributed to the fact that the density profiles for these cases are very similar (e.g.,
compare Figure 2c with Figure 2d, and Figure 2e with the “LW” curve in Figure 2f); thus,
any differences in the free energies can be attributed to the polystyrene/silica Hamaker
interactions.

Increasing the strength of the ramp potential enhances the polymer–solid interactions
as indicated by the more negative free energies in Figure 2b, and the more pronounced
peaks of the density profiles in Figure 2f.
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Figure 2. The free energy of vacuum/melt (VM, circles) and bare solid/melt (SM) with low wetting
(LW, triangles), high wetting (HW, squares) and perfect wetting (PW, stars) wetting, as a function of
chain length using the (a) HFD and (b) SL-SGT EoS. Bands denote scale changes along the axes. The
right panels depict the corresponding reduced density profiles of VM and SM interphases with HFD
(c,d) and SL-SGT (e,f) for Nm = 24, 48, 96, 192, 384, 768 and 1536. Even though the thickness of the
lines increases with increasing Nm, there is practical coincidence of reduced density profiles for all
chain lengths; thus, the reader has to zoom considerably to notice any deviations. The dotted lines in
(c–f) are guides to the eye.

The free energy from SL in Figure 2b appears to be an increasing function of chain
length, and this behavior is anticipated, since the cohesion of the polymer increases with
increasing chain length [59–61]. In contrast, HFD (Figure 2a) exhibits the opposite trend
and this is attributed to the fact that all evaluations have been performed using a constant
isothermal compressibility. In Section S1 of the Supplementary Materials we demonstrate
that tuning the HFD compressibilities (with and without employing SGT) based on the
predictions of SL, or even fitting them directly to the experimental surface tensions, allows
to restore the proper chain length dependence in the thermodynamic behavior of the
systems in terms of the interfacial free energies. Furthermore, as shown in Section S2 of the
Supplementary Materials, for the longer chain lengths considered here, one must apply
special care to converge the SCF efficiently; the density profiles tend to shift further towards
the bulk region with increasing Nm and, as a result, the SCF is prone to entrapment in
metastable states for a large number of iterations.

The thermodynamics of these films can be understood better in terms of the four
macroscopic wetting functions, i.e., the work of cohesion (WC), the work of adhesion (WA),
the work of spreading (WS) and the work of immersion (WI):

WC = 2γVM = 2σVM (25)

WA = γVM − γSM = σVM + σSV − σSM = σVM(cos θ + 1) (26)

WS = −γVM − γSM = −σVM + σSV − σSM = σVM(cos θ − 1) (27)

WI = −γSM = σSV − σSM = σVM cos θ (28)
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where σVM ≡ γVM is the surface tension, (σSV – σSM) ≡ –γSM is the adhesion tension [62],
and θ the contact angle of the corresponding solid–fluid–vapor interface.

Table 2 illustrates the wetting functions and contact angles of the PS/SiO2 interphases
studied here for Nm = 384; they remain practically the same with larger chain lengths as
shown in Figure S4. WA corresponds to the reversible work required to separate two phases
in contact. It is noted that in the absence of the ramp potential, WA is significantly lower
than in the HW and PW cases, where vramp has been fitted to experimentally reported
values of WA. WS quantifies the spontaneity of the wetting process: positive values
indicate spontaneous spreading across the interphase (perfect wetting), while negative
values indicate finite contact angles (partial or no wetting). In the LW and HW interfaces,
WS remains negative across the full molar mass regime investigated here, indicating that
the corresponding solid–fluid–vapor interphase will form finite contact angles. The PW
interface, on the other hand, exhibits positive WS; thus, PS will spread spontaneously on
the silica surface.

Table 2. Interfacial energies and wetting functions for Nm = 384 in units of mJ/m2.

EoS Wetting γVM γSM σSV–σSM WA WS WI WC θ (◦)

HFD low (LW) 28.85 21.97 –21.97 6.88 –50.81 –21.97 57.70 139.6
SL-SGT low (LW) 27.89 26.02 –26.02 1.86 –53.91 –26.02 55.77 158.9
SL-SGT high (HW) 27.89 –10.91 10.91 38.8 [54] –16.97 10.91 55.77 67.0
SL-SGT Full (FW) 27.89 –43.21 43.21 71.1 [54] 15.33 43.21 55.77 -

4.1.2. Grafted/Vacuum (GV) and Grafted/Melt (GM) Interphases

Figure 3 depicts the reduced density profiles of PS grafted chains in (a) GV and (b)
GM systems in the absence of the ramp potential (low wetting) as a function of σg and Ng.

Figure 3. Reduced density profiles of polystyrene PS brushes from SL-SGT EoS in the absence of the ramp potential in
(a) grafted/vacuum (GV) and (b) grafted/melt (GM) systems for Ng = 24 (red), 48 (blue), 96 (green) and 192 (violet), and
σg = 0.1 (solid lines), 0.2 (dashes), 0.4 (dots) and 0.8 (short dashes) nm–2. The numbers in (a) depict the value of the product
σgNg in nm–2 units.

The behavior of grafted chains can be classified into three distinct regimes depending
on the combinations of σg and Ng:

1. Mushroom regime (low σgNg). The density of the profiles is less than the bulk density
and chains assume randomly coiled conformations [63]. Increasing σg and Ng has a
minor effect on the thickness of the profiles but rather makes them more pronounced.

2. Dense brush regime (high σgNg). The brushes become stretched [46,63] and feature
extended regions with bulk density. The thickness of the profiles depends strongly on
both σg and Ng, reaching the limiting scaling behavior ~σg

1Ng
1; i.e., the dimensions

of the brushes become proportional to their mass.
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3. Crowding regime (very high σg). In this regime, the crowding of the chains becomes
so intense that the density of the grafted chains surpasses slightly the bulk one, as
observed in our previous work [46]. This happens because the entropic penalty due
to stretching overcomes the enthalpic penalty due to deviations from the bulk density.

There are, however, noticeable differences between the two systems. In GV, the
thickness of the density profiles becomes commensurate with the number of the grafted PS
segments which equals the product σgNg. Indeed, the profiles in Figure 3a collapse together
for constant σgNg values, i.e., for constant amount of material. In GV, the tails of the profiles
feature a sigmoid region on the order of 1 nm at the polymer/vacuum interface [44,61],
whereas in GM they are much more expanded across the bulk region [15,46]. Finally, in
both GV and GM, the profiles become slightly more pronounced with increasing σg in the
vicinity of the grafting points (~0.4 nm).

The dimensions of the grafted chains can be quantified in terms of their root mean
squared brush thickness, which is calculated via the following Equation (29).

〈
hg

2
〉1/2

=

[∫
R dr [h(r)]2ρg(r)∫
R drρg(r)

]1/2

(29)

Additionally, we employ another measure for the extension of grafted chains, namely
the height, h99%, which is defined here as the distance between the surface of the solid
(∂Rsolid) and a surface (∂Rh99%

) that encloses 99% of grafted chain segments. It is deter-
mined via the following Equation (30).∫

R99%

drρg(r) = 0.99Ngng (30)

withR99% denoting the region between ∂Rsolid and ∂Rh99%
.

Figure 4a,b illustrates evaluations of
〈

hg
2〉1/2 and h99% against the scaling law ~σgNg

in GV (left column) and GM with the matrix chains either being equal in length to the
grafted ones (Nm = Ng; central column), or varying between 24 and 1536 segments (right

column). Figure 4c depicts the ratio h99%/
〈

hg
2〉1/2 which can be thought of as a measure

of the shape of the profile. A striking difference between the two systems is that in the first
one, the measures of the brush thickness collapse to a single master curve across the full
regime. This is because in GV, the shape of the collapsed films is a function of the mass of
the film (~σgNg) and does not depend on the ratio (σg/Ng); see Figure 3a.

Across the mushroom regime, the brush thickness is practically independent of σg.
The thickness in vacuum is independent of Ng as well, indicating collapse of the sparsely
grafted chains on the surface. In the case where melt chains are present, the thickness
exhibits a random walk-like Ng-dependence, scaling approximately as ~Ng

0.5. The shape

of the brushes as quantified by the ratio h99%/
〈

hg
2〉1/2, is quite sensitive to the grafting

density in the presence of matrix chains; in GV, the ratio decreases with respect to the
predictions from Alexander’s model [64,65] for incompressible brushes, whilst the opposite
behavior is exhibited in the GM system.

Across the dense brush regime the brush dimensions depend strongly on both σg and
Ng. For very large σg and Ng the brush thickness scales as ~σgNg, no matter the solvent
conditions (vacuum or melt). This means that the dimensions of the brushes become
proportional to their mass and the ratio h99%/

〈
hg

2〉1/2 approaches the limiting value of√
3 predicted by Alexander’s model [64,65].
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Figure 4. (a) hg,99%, (b)
〈

hg
2〉0.5, and (c) their ratio hg,99%/

〈
hg

2〉0.5 versus the scaling law σgNg using the SL-SGT (markers)
and HFD (solid lines) EoS. The panels on the left column correspond to the GV system. The panels in the central row depict
results regarding the GM system, for Ng = Nm. The rightmost column depicts results for the GM system as well, but with
Nm varying from 24 up to 1536 segments. Different colors and symbols denote different values of the surface grafting
density; σg = 0.1 (red/circles), 0.2 (blue/triangles), 0.4 (green/stars) and 0.8 (violet/crosses) nm–2. The length of grafted
chains increases implicitly in each panel from left to right, according to the scaling law expression presented in the labels of
the x-axis. In the rightmost column the size of the symbols increases with the chain length of matrix chains. All cases have
been evaluated in the absence of the ramp potential.

Regarding the effect of the matrix chains on the scaling of the brushes, it appears
that, as long as Ng ≤ Nm, the brush dimensions are practically independent of Nm. For
Nm � Ng, on the other hand, the brushes expand with decreasing Nm due to the fact that
the matrix chains can easily penetrate the brushes, thus the latter swell towards the bulk
region. A similar behavior has been recently observed by Biltchak et al. [39]. Therefore,
modulating Nm allows for the tuning of the solvent conditions, from theta solvent (Nm = Ng)

up to good solvent (Nm < Ng) conditions. Regarding the ratio h99%/
〈

hg
2〉1/2, it features a

complicated behavior with varying Nm, where it decreases/increases for low/high σg.
It seems that, regardless of the choice of the free energy density equation (e.g., compare

lines (HFD) with markers (SL-SGT) in Figure 4) or the strength of the polymer–solid
interactions (see Figure S5), the structural features and the scaling behaviors of GM systems
are quantitatively very similar. In addition, the shortcoming of using HFD with constant
κT does not have a practical effect on the structural properties of grafted chains and on the
potential of mean force of the system, as will be shown below.

Figure 5 illustrates the total grand potential per unit area of grafted/vacuum (γGV)
and grafted/melt (γGM) interphases as a function of Ng and σg, as well as the partial
contributions from the polymer/solid interactions (γs), and the entropy of matrix (γm) and
grafted chains (γg). Some key remarks regarding the evaluation of each term with SL-SGT
can be summarized as follows:

• γs is purely of enthalpic origin and thus it is a functional of the total density profiles.
γs becomes more attractive with increasing σg, since the profiles become more pro-
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nounced in the vicinity of the solid (e.g., see Figure 3). In GV, γGV
s decreases with

increasing Ng, since increasing Ng increases the amount of material near the solid. In
GM,γGM

s is independent of Ng, since the total density profiles are also invariant to Ng,
e.g., compare profiles in Figure 2c–f for different chain lengths.

• γm describes the entropic contribution of the matrix chains. In GM, it decreases
precipitously with increasing Ng/Nm ratio, since the grafted chains occupy more
space in the vicinity of the Interphase leaving the matrix chains with fewer available
conformations. Note that, by keeping Ng fixed, γm scales with Nm about as γm ~ Nm

−1;
see Equation (8). In GV systems, this term is of course zero since there are no matrix
chains at all.

• γg quantifies the entropic contribution of the grafted chains and it is an indicator of
the stretching of the brush [46]. It increases monotonically with increasing Ng and
σg, since the grafted chains expand and stretch further towards the bulk region. In
addition, γGM

g increases with decreasing Nm, since the grafted chain-melt interactions
are enhanced and, as a result, the brushes swell as shown in Figure 4b,c (rightmost
column).

• γ is the total free energy of the interfacial systems per unit area. It increases with
increasing molecular weight of grafted chains and appears to be dominated by the
conformational entropy term of grafted chains, γg.

Figure 5. Partial contributions to the grand potential (a) γs, (b) γm, and (c) γg, and (d) total grand potential, γ, per unit area,
using the SL-SGT (markers) and HFD (solid lines) EoS. The panels on the left column correspond to the GV system. The
panels in the central column depict results regarding the GM system, for Ng = Nm. The rightmost column depicts results for
the GM system as well, but with Nm varying from 24 up to 1536 segments. Different colors and symbols denote different
values of the surface grafting density; σg = 0.1 (red/circles), 0.2 (blue/triangles), 0.4 (green/stars) and 0.8 (violet/crosses)
nm–2. The chain length of grafted chains increases implicitly in each panel from left to right, according to the scaling law
expression presented in the labels of the x-axis. In the rightmost column the size of the symbols increases with the chain
length of matrix chains. All cases have been evaluated in the absence of the ramp potential.
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Overall, the evaluations of the free energy terms with HFD are in good qualitative
agreement with SL-SGT. Furthermore, it appears that evaluating γGM

s with HFD is more
negative than when the SL-SGT EoS is used, because the density profiles lie closer to
the silica surface in the former model (e.g., compare Figure 2d,f). In their recent work
concerning neat grafted nanoparticles, Mydia et al. [40] report that for constant grafting
density, the stretching energy does not increase monotonically with the chain length. This
behavior is attributed to the curved space around the nanoparticles since, at some point,
the grafted chains do not experience the presence of each other and become unperturbed.
For planar surfaces, however, the threshold chain length becomes infinitely large, since no
curvature is involved and the chains will always experience the presence of each other,
considering that the dimensionless quantity σgRg

2 is above a threshold value as well [46].

4.2. PS Melt Capped between Two Bare Silica Surfaces (SMS)

It is worth studying the potential of mean force (PMF) between two approaching bare
silica surfaces. This means that only matrix chains are present in the system. This situation
corresponds to the limiting case of very low grafting densities, where allophobic dewetting
occurs and the enthalpic interactions between the two solid surfaces prevail. The matrix
chains are gradually restricted in terms of available conformations as the distance between
the two plates decreases. For these calculations, the PMFSMS is expressed with respect to
the free energies of the single SM interphases for the same chain length:

PMFSMS = γSMS − γSMS
inf = γSMS − lim

hss→∞
γSMS = γSMS − 2γSM (31)

with γSM being the free energy of a SM interphase in presence of matrix chains of length
Nm, depicted in Figure 2a,b. Note that, with PMFSMS known, the disjoining pressure can
be calculated as:

Π(hss) = −
(

∂γSMS

∂hss

)
µ,T

(32)

Due to numerical stability issues, the initial configuration of the field can affect
the outcome of the converged solution. To investigate this effect, we performed these
calculations using two different compression methods:

1. In the first method, the calculations were performed in a decremental fashion, in
which the initial configuration of the field was set to the field corresponding to the
converged calculation for a slightly larger domain, w

′
ifc,init(hss) = w

′
ifc,final(hss + ∆h)

2. In the calculations corresponding to the second method, the initial configuration of
the field was set to zero across the domain, w

′
ifc,init = 0.

Using the first method, it is easier to derive a solution that corresponds to a stable
configuration. The second method, on the other hand, can provide a measure of the stability
of the films in terms of their tendency to collapse and their sensitivity to fluctuations about
equilibrium (e.g., their response during the formation of a cavity).

Figure 6 illustrates evaluations of PMFSMS with HFD (a), and with SL-SGT under
low (b, LW), high (c, HW) and perfect (d, PW) wetting situations, using the first method
for decremental compression. Results concerning the second method are presented in
Supplementary Materials Section S5, along with a relevant discussion.

In the case of HFD, regardless of the compression approach, PMFSMS increases with
decreasing plate-plate distance, suggesting the manifestation of a repulsive force that resists
the attractive interactions between the surfaces. These repulsive forces are dominated by
the loss of polymer–solid interactions; with decreasing hss, the mass of the film decreases
and there are fewer interaction sites. The sign of these forces depends on an interplay
between the strength of the polymer–solid and the solid–solid interactions. If the latter
become much stronger than the former, the solid–solid forces will dominate and PMFSMS

will become attractive. The steadily increasing forces in this case can be, however, a
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misleading result, because HFD does not account for the gaseous phases which may arise
during the process.

Figure 6. Potential of mean force, in mJ/m2, for the system of approaching bare silica surfaces in a
melt (SMS) obtained by the (a) HFD, (b) SL-SGT (LW), (c) SL-SGT (HW) and (d) SL-SGT (PW), for
Nm = 24 (red), 96 (green), and 384 (orange). The calculations were performed in a decremental fashion,
in which w

′
ifc,init(hss) = w

′
ifc,final(hss + ∆h), with a compression rate equal to −0.1 nm/evaluation.

The inset graphs in (b-d) depict snapshots of the density profiles at plate-plate distances denoted by
the arrows, for Nm = 384. Bands denote scale changes along the axes. The dashed lines display the
Hamaker potential contribution to the solid–solid interaction, shifted by twice the solid/polymer
adhesion tension.

According to evaluations with SL-SGT under low wetting (LW) conditions (Figure 6b),
the functional dependence of PMFSMS is quite similar to that of HFD. However, below a
critical plate-plate distance (hcrit

ss ), PMFSMS decreases abruptly, indicating a phase transition.
At these distances it is impossible for SCF to maintain a metastable film; hence, a cavity is
formed and the calculation converges to the more stable solution, ϕ = 0. The films remain
stable above hcrit

ss on the order of 3.5 nm, regardless of Nm (Figure 6b).
Upon departure of the melt from the gap between the plates, the only contribution

to the free energy is due to plate-plate interactions which are described here by means
of the Hamaker potential; therefore, leading to the eventual contact of the adjacent solid
surfaces. Note that, for the LW surfaces, PMFSMS(ϕ = 0) = γSMS

ss −γSMS
inf , which is depicted

by dashed lines in Figure 6b is negative, indicating that the polymer–solid interactions
are really weak for the LW films and these films are actually metastable with respect to
cavitation across the entire range of thicknesses.

A similar picture has been reported by past simulations from a variable-density lattice
based SCF model [66]. In that model, the interactions in flat geometries become insignificant
for hss slightly larger or equal than 4

〈
Rg

2〉0.5, whereas the maximum recorded force per
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radius before cavitation in a crossed cylinder geometry was on the order of ~0.01 mN/m
when considering high energy surfaces and 0.1 mN/m for low energy surfaces.

With enhanced polymer/solid interactions, the stability of the capped polymer films is
reinforced considerably. According to the more reliable solution scheme where the domain
length is adjusted decrementally, the HW and PW films remain stable throughout the
full hss range examined here, always converging to the stable, polymer-filled equilibrium
solution of the problem (see Figure 6c,d). In contrast to LW films, the PMFSMS of the HW
and PW ones increases steadily for hss less than 2.5 nm, whereas in the limit of low hss
the density decreases significantly due to the entropy of confinement. A significant free
energy barrier of approximately −γSMS

inf , on the order of 20 mN/m in the HW case and
80 mN/m in the PW case, has to be overcome for the polymer to be expelled completely
and the solids to come in direct contact at PMFSMS(ϕ = 0) = γSMS

ss − γSMS
inf .

There is, however, a striking difference between the HW and PW films. The HW films
can be considered as metastable with respect to cavitation, since, after crossing a barrier
of ~−γSMS

inf with decreasing hss, they can be trapped in the global minimum of attractive
Hamaker interactions between the bare solids (see minima of the dashed lines in 6c), as
in the case of the LW film. The PW film, on the other hand, is indeed stable down to
thicknesses of ca. 1.5 nm, since the minimum of the Hamaker potential lies way higher
(~+60 mJ/m2) than the plateau PMFSMS value at large hss.

4.3. Interacting Grafted Surfaces in Melt (GMG)

The current section presents evaluations of the potential of mean force of approaching
grafted surfaces. To facilitate comparisons across the wide parameter space considered in
this work, the PMFGMG will be expressed in terms of the reduced surface-surface distance
which is defined by the following Equation (33).

h̃ss =
2hss〈

hg−
2
〉0.5

+
〈

hg+
2
〉0.5 (33)

with
〈

hg−
2
〉0.5

and
〈

hg+
2
〉0.5

being the root mean squared brush thickness of the single
grafted surfaces (infinite surface-surface distance) at the same temperature and in the pres-
ence of matrix chains of length Nm (brush thickness from Figure 4). A similar normalization
can be obtained by dividing hss with

〈
Rg

2〉0.5, since
〈

Rg
2〉0.5 ∼ Ng and Ng ∼

〈
hg

2〉0.5

across the dense brush regime. However, normalizing the plate-plate separation distances
as shown in Equation (33) is a more natural approach of making such comparisons, since
it allows evaluating the tendencies of the brushes to interpenetrate. In addition,

〈
hg

2〉0.5

takes account of the chain perturbations when varying the melt conditions and leads to
comparisons that are less sensitive to the particular equation of state used in the nonbonded
free energy density model.

As in the SMS systems, PMFGMG will be expressed relative to the free energy of the
isolated G−M and GM+ systems in the presence of matrix chains of length Nm (see Figure 5).

PMFGMG = γGMG − γGMG
inf = γGMG − lim

hss→∞
γGMG = γGMG − γG−M − γMG+

(34)

In other words, PMFGMG is expressed with respect to the free energy of the system
at infinite plate-plate separation. Regarding the segment/substrate interactions—unless
otherwise stated—LW conditions are employed throughout this section.

4.3.1. Symmetric Surfaces

We present the PMFGMG for the simplest case where the opposing surfaces are grafted
symmetrically with respect to σg and Ng for varying Nm/Ng. Figure 7 illustrates PMFGMG

as a function of the plate-plate distance, hss, whereas Figure 8 depicts the corresponding
density distribution across the examined parameter space for Nm = Ng.
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Figure 7. Potential of mean force against the reduced surface-surface distance in a symmetric system of approaching grafted
silica surfaces in a melt from the SL EoS. Colors correspond to evaluations for Nm/Ng = 1/2 (red), 1 (blue) and 2 (green),
whereas the labels in brackets denote σg (nm−2) and Ng. Lines are guides to the eye.

Figure 8. Reduced density distributions corresponding to the PMFGMG panels in Figure 7, as a function of the plate-plate
distance (abscissa) and the distance from the left wall (ordinate) in reduced units. Red/green/blue colors correspond to
regions with high density (ϕc = 1) of c = g−/m/g+ chains, respectively. Grey denotes regions which lie outside the modeled
domain or have not been evaluated at all. Labels in brackets denote σg (nm−2) and Ng.

According to Figure 7, the brushes start to experience the presence of each other at
distances in the order of 4–5 h̃ss, while for larger h̃ss, PMFGMG ' 0. At lower separation
distances the brushes interact strongly with each other and PMFGMG increases. In systems
with low σg (mushroom regime), the brushes are relatively soft and thus PMF increases
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at lower h̃ss. In dense systems, on the other hand, the brushes are more compact and as
a result the PMF increases abruptly at larger h̃ss, on the order of 3–3.5 (see bottom right
panel of Figure 7). This regime coheres with the predictions of Alexander’s model for
incompressible brushes [64,65], where, regardless of Ng and σg, the predicted separation
distance of two Alexander brushes in contact is h̃ss,min = 2

√
3 ∼ 3.4; the calculation is

illustrated in Appendix A.
Regarding the effect of varying the chain length of matrix chains on PMFGMG, for

Nm/Ng ≤ 1, PMFGMG becomes strictly repulsive, with the exception of the case for densely
grafted and long grafted chains, σg = 0.4 nm2, Ng = 768. Increasing Nm/Ng leads to the man-
ifestation of attractive interactions as indicated by the formation of a minimum in PMFGMG

(autophobic dewetting). These interactions become slightly stronger with increasing Ng,
and even stronger with increasing σg. The enhancement of the attractive interactions with
increasing grafting density has been also observed in several theoretical [22,25,67] and
experimental studies [68–72].

Figure 9 illustrates the contribution of individual free energy terms to PMFGMG for a case
with σg = 0.2 nm–2 and Ng = 192. It appears that the attractive part of PMFGMG is dominated
by the entropic contribution of the grafted chains, γGMG

g , shown in Figure 9c. In addition,
the terms responsible for the cohesive and the chemical potential-density field interactions
change due to minor variations in the mean density profile and exhibit an opposite trend
to that of γGMG

g , albeit weaker. That PMFGMG becomes more repulsive when Nm < Ng is
attributed to the matrix chains being able to penetrate the space occupied by the brush,
compelling the grafted chains of the two surfaces to expand in space until they interact
with each other, thus keeping the two surfaces separated. In other words, the solvent
conditions improve with decreasing Nm/Ng; hence, the brushes prefer to interact with the
solvent molecules than with each other.

Figure 9. Free energy partial contributions to the potential of mean force, in mJ/m2, of two ap-
proaching symmetric grafted surfaces with σg = 0.2 nm–2 and Ng = 192 embedded in a melt with
Nm/Ng = 0.5 (circles), 1 (triangles) and 2 (stars): (a) cohesive interactions, (b) polymer-solid in-
teractions, (c) entropic contribution from grafted chains, (d) density-field interactions, (e) entropic
contributions of matrix chains and (f) total grand potential.

In general, the evolution of the term associated with the polymer–solid interactions,
γGMG

s , with decreasing plate-plate distance, depends on an interplay between two pro-
cesses: (i) The thinner the polymer film becomes, the fewer polymer segments can interact
with the solid, thus leading to increased γGMG

s (less attractive). (ii) The brushes can become
slightly denser with decreasing h̃ss, hence leading to decreased γGMG

s (more attractive).
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Indeed, for Nm > Ng, γGMG
s is dominated by the first process, since it increases monotoni-

cally with decreasing h̃ss. However, for Nm < Ng it features an interesting behavior where
it initially increases with decreasing h̃ss, while for h̃ss < 3.8 it decreases, indicating that the
second process dominates.

4.3.2. Asymmetric Surfaces

The present section investigates the effect of asymmetry of the opposing grafted sur-
faces in terms of the relative chain lengths and grafting densities. In particular,
Figure 10 illustrates evaluations of PMFGMG for constant chain length and grafting density
at the lower face (Ng− = 96, σg− = 0.2 nm−2) and varying Ng+/Ng− , Nm/Ng− and σg+/σg− .
Similarly, Figure S7 and Figure S8 depict the same evaluations but for four times larger
Ng− and for two times larger σg− , respectively.

Figure 10. Potential of mean force against the reduced surface-surface distance for approaching grafted silica surfaces with
σg− = 0.2 nm−2 and Ng− = 96. Colors correspond to evaluations for Nm/Ng− = 1/2 (red), 1 (blue), 2 (green) and 4 (purple),
and the labels in brackets denote the ratios σg+/σg− and Ng+/Ng− . Lines and markers correspond to evaluations with the
HFD and SL EoS, respectively. Inset: each bead denotes a segment of 24 PS monomers.

Irrespectively of the degree of asymmetry, adjacent brushes experience the presence
of each other at distances commensurate with 4–5 h̃ss, similarly to the symmetric case
in Figure 7. By keeping σg− , Ng− constant, the ratio Nm/Ng− fixed at various values
(same colors), and varying σg+ and Ng+ , some general trends are emerging: the attractive
interactions between the surfaces become stronger with increasing σg+/σg− ratios (from
top to bottom) and with decreasing Ng+/Ng− (from right to left).

That PMFGMG becomes more attractive with increasing σg+/σg− is to be expected:
upon increasing σg+ the mean grafting density increases as well, thus PMFGMG becomes
more attractive, as in the case for the symmetric surfaces in Figure 7. However, that the
interactions become more attractive with decreasing Ng+/Ng− has to be reconciled with
the findings reported in Figure 7 for symmetrically grafted surfaces. To interpret this effect,
one should take into account that during these evaluations the ratio Nm/Ng− was fixed,
whereas varying σg+ and Ng+ can have direct implications for the effective ratio of Nm
with respect to the average size of grafted chains.
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Let Ng be the average chain length of grafted chains, estimated as the weighted
average of grafted chain length with respect to the grafting densities:

Ng =
σg−Ng− + σg+ Ng+

σg− + σg+
(35)

Nm/Ng is a measure of the length of matrix chains in relation to grafted chains. Based on
Equation (35) it is evident that, upon decreasing Ng+/Ng− at constant Ng− and σg+/σg− ,
Ng decreases as well and thus the effective ratio Nm/Ng increases. Increasing the size of
matrix chains was shown to enhance the attractive interactions in Figure 7, and the results
shown in Figure 10 are consistent with this trend.

An alternative way to interpret and isolate the effect of asymmetry is to vary the ratios
σg+/σg− and Ng+/Ng− , but fix the effective ratio Nm/Ng based on Equation (35). Figure 11
depicts such evaluations, wherein the top/left panel depicts the reference symmetric case
(σg = 0.2 nm–2, Ng = 96), while the asymmetry with respect to σg (Ng) increases from top-
to-bottom (left-to-right). As can be seen, varying σg+/σg− or Ng+/Ng− individually has a
minor effect on PMFGMG. This finding is important, since it shows that minor deviations in
σg and Ng do not affect PMFGMG provided Nm/Ng is fixed. On the other hand, PMFGMG

can become very attractive in extreme cases of asymmetry where both the asymmetry in
σg and Ng increases (e.g., see bottom right panel in Figure 11), and this is mainly attributed
to the increased average grafting density.

Figure 11. Potential of mean force against the reduced surface-surface distance for approaching grafted silica surfaces.
Colors correspond to evaluations for Nm/Ng = 1/2 (red), 1 (blue), 2 (green) and 4 (purple), whereas the small legends
in brackets below the insets denote the ratios σg+/σg− and Ng+/Ng− , respectively. The top left panel corresponds to the
reference symmetric case with σref

g = σg− = σg+ = 0.2 nm–2 and Nref
g = Ng− = Ng+ = 96. The actual Ng± and σg± for

each case can be retrieved as follows: Ng± = Nref
g n±1/2 and σg± = σref

g m±1/2, with [n, m] = [Ng+/Ng+ ,σg+/σg− ] being the
numbers at the legends under the insets. It should be noted that inset schematics belonging to panels other than the corner
ones are only approximate; in these cases, σg+/− and Ng+/− are scaled by a factor of ±

√
2.

4.3.3. Surface Energy

Figure 12 presents the PMFGMG for symmetric systems as a function of the energy of
the solid surface. It seems that, regardless of σg, Ng and the ratio Nm/Ng, the strength
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of the polymer–solid interactions (wetting situation) has a minor effect on PMFGMG. The
PMFs become less pronounced with enhanced wetting situation, albeit the effect is minor.

Figure 12. Potential of mean force against the reduced surface-surface distance of approaching
symmetric grafted silica surfaces in a melt from the SL EoS for σg set to (a) 0.1, (b) 0.2 and (c) 0.4 nm–2

and Ng = 192. Colors correspond to evaluations for Nm/Ng = 1/2 (red), 1 (blue) and 2 (green),
whereas different styles denote interfaces with low (solid lines), high (dashed lines) and perfect
(dots) wetting.

4.4. Interacting Grafted Surfaces in Vacuum (GVG)

The present section discusses evaluations of the PMFGVG of approaching grafted
surfaces separated by vacuum (GVG). Figure 13 presents evaluations of PMFGVG with
Ng ranging from 24 to 768 and σg from 0.1 to 0.4 nm–2, whereas Figure 14 illustrates the
corresponding density distributions for these cases. LW conditions have been used for
surface-segment interactions.

Figure 13. Potential of mean force for approaching grafted surfaces in vacuum (GVG) with the SL-SGT EoS. Values of σg

(nm−2) and Ng are indicated in brackets. Horizontal blue lines mark minus the average surface free energy of the individual
grafted films. Vertical blue lines mark the thickness hss, that would correspond to the total mass of grafted polymer at bulk
density. Insets: each bead denotes a segment of 24 PS monomers. Bands denote scale changes along the axes.
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Figure 14. Reduced density distributions corresponding to the PMFGVG panels in Figure 13, as functions of the plate-plate
distance (abscissa) and the distance from the left wall (ordinate) in reduced units. Red/blue colors correspond to regions
with high density (ϕc = 1) of c = g–, g+ chains. White corresponds to vacuum. Grey denotes regions which lie outside the
modeled domain or have not been evaluated at all. Labels in brackets denote σg (nm−2) and Ng.

The evolution of PMFGMG with decreasing plate-plate distance can be classified in
three distinct regimes:

1. For large separation distances the adjacent polymer brushes interact weakly with each
other and the dominant contribution to PMFGVG arises due to polymer/solid and
solid/solid Hamaker interactions (e.g., compare with the dotted lines in Figure 6b–d).

2. Below a critical plate-plate distance, PMFGVG decreases abruptly, indicating the
manifestation of a phase transition where the adjacent brushes interpenetrate each
other and form a single film in the central region of the system. In addition, low
density regions are formed in the vicinity of the solid surface, indicating that the
brushes have been stretched significantly towards the bulk region.

3. Decreasing the plate-plate separation further makes the brushes more compact. The
low-density regions next to the solid become suppressed, until the free energy be-
comes commensurate to minus the mean surface free energy of the isolated brushes,
−0.5

(
γG−V + γVG+

)
. Further squeezing of the brushes leads to increased reduced

densities above unity, as indicated by the vertical dashed lines in Figure 13.

The chain configurations across these regimes are illustrated schematically in the inset
of Figure 15f.
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Figure 15. Free energy partial contributions to the potential of mean force for two approaching grafted surfaces with
σg = 0.2 nm–2 and Ng = 192 in vacuum: (a) cohesive interactions, (b) polymer-solid interactions, (c) entropic contribution
from grafted chains, (d) density-field interactions, (e) stretching contribution from grafted chains and (f) total grand
potential. The vertical lines denote plate-plate distances where the reduced density exceeds unity. The horizontal dotted

line in (f) depicts −0.5
(

γG−V + γVG+
)

. The insets in (f) depict configurations across the 1st, 2nd and 3rd regime. Bands
denote scale changes along the axes.

A more detailed picture can be unveiled by inspecting the evolution of individual
contributions to the energy terms shown in Figure 15. The thermodynamics of the merger
seems to be dominated by cohesive interactions. According to Figure 15a, below some
critical distance the abrupt drop of the cohesive term (γGVG

coh ) indicates the enthalpic gain
upon film merging. At the same time, the more positive polymer–solid interactions in
Figure 15b (γGVG

s ) indicate the enthalpic penalty due to the departure of a large portion
of the brushes from the solid surface. The term associated with the entropy of the grafted
chains (γGVG

g ) in Figure 15c is of particular interest. At first glance, it does not reflect the
entropic penalty due the stretching of the grafted chains. However, this is attributable to the
fact that γGVG

g does not reflect the total conformational contribution to the grand potential,
since it is evaluated in the presence of the field [46]. The conformational component of the
grafted chains can be retrieved as follows [46]:

γGVG
g,conf = γGVG

g + γGVG
g,field (36)

with γGVG
g,field being the field experienced by the grafted chains:

γGVG
g,fieldSsolid = −

∫
R

dr
{(

ρg−(r) + ρg+(r)
)

w′ifc(r)
}

(37)

Indeed, as indicated in Figure 15e, the conformational free energy of the grafted chains
increases abruptly below a critical distance (entropic penalty due to stretching) and then
decreases with decreasing h̃ss, as the film becomes more compact and the grafted chains
become less stretched.

In summary, the manifestation of the phase transition depends on an interplay among
three dominant factors:

• An enthalpic gain due to the lower surface area of the merged brushes that increases
with increasing surface tension.
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• An enthalpic loss due to the detachment of the grafted film from the surface that
depends on the polymer/solid interactions.

• A conformational penalty due to chain stretching.

As far as the equilibrium plate-to-plate distance after the merger is concerned, for low
σgNg products this is on the order of 1.5 h̃ss, or 0.75(hg+ + hg−). In this case the plates come
considerably closer than the sum of the individual root mean squared brush thicknesses,
since the brushes lie in the mushroom regime and can interpenetrate each other easily.
In the limit of large σgNg, however, the brushes are more compact, and therefore one
could make meaningful predictions using Alexander’s model for incompressible brushes
(see Appendix A) [64,65]. Indeed, the denser brushes investigated here become compact
(ρ > ρseg,bulk) at separation distances on the order of h̃ss,min ∼ 2

√
3 ∼ 3.4, e.g., compare

with the vertical line in the bottom-right panel of Figure 13.
Overall, the effect of asymmetry on the equilibrium distance is expected to be minor.

Indeed, according to Figure 13, brushes with equal Ngσg products become compact at
similar distances. For example, compare the case (σg,Ng) = (0.4 nm–2, 48) with (0.1 nm–2,
192) and the case (0.4 nm–2, 192) with (0.1 nm–2, 768).

5. Discussion

All of the above results concerning the potential of mean force between two planar
surfaces (or equivalently of particles with radius large in relation to the chain dimensions)
imply some design rules that one can be guided by when addressing such nanostruc-
tured systems.

As mentioned before, addressing the system of bare surfaces can give us an insight on
what happens in the limit of very low grafting density. At moderate distances the behavior
of the PMF depends on an interplay between the strength of the solid–polymer, polymer–
polymer, and solid–solid interactions, as quantified by the wetting/spreading phenomena
taking place at a single solid/polymer interface. For low wetting conditions (θ > 90◦), the
PMF becomes weakly repulsive from distances of the order of 3.5–10 nm, but the polymer
film is metastable with respect to the chains evacuating the gap and the solid surfaces
snapping into direct contact with each other. The spontaneous manifestation of cavities can
lead to eventual collapse of the surfaces, leading to agglomeration. This is a manifestation
of the allophobic dewetting phenomenon observed in the low wetting situation examined
here (see SL-SGT (LW) case). On the contrary, for high wetting (θ < 90◦) and perfect wetting
(spreading) conditions, the PMF is practically zero at large distances and starts rising
steeply below ca. 2 nm. A free energy barrier on the order of 20–80 mJ/m2 has to be
overcome for the solid surfaces to come into direct contact. The system is stabilized in
relation to the solid surfaces sticking to each other, and becomes trapped in a potential
well with a depth in the order of ca. 20 mJ/m2 with respect to a melt-free system, e.g., with
respect to the dotted lines shown in Figure 6. Matrix chains adhering to the solid surfaces
resist compression and screen the solid–solid attractive interactions, as if they were grafted.
The potential of mean force between bare solid surfaces does not depend strongly on the
length of matrix chains; therefore, varying the molecular weight of matrix chains does not
have a significant effect on the stability of the system.

In the case of low wetting of the solid by the polymer, grafted chains are necessary to
stabilize the dispersion. In particular, when the grafted chain lengths and grafting densities
are sufficiently high (e.g., as shown in Figure 12), the grafted chains effectively screen
the solid–solid interactions, preventing the two plates from approaching each other at a
distance where they would experience the full depth of the plate-plate potential. In many
cases, PMF can become strictly repulsive, but a prerequisite for this is that the grafted
chains be longer than the matrix chains. The longer the grafted chains in comparison to the
matrix chains, the steeper the repulsive potential of mean force that develops and the longer
the range over which it manifests itself. Short matrix chains are able to penetrate the brush of
long grafted chains and swell it, increasing the range of the repulsive interaction. In this case,
the most important design rule that has to be met, as already found experimentally [68–72],



Polymers 2021, 13, 1197 27 of 32

is that the grafted chains need to be larger the matrix chains, Nm/Ng ≤ 1. On the other
hand, when matrix chains start becoming larger than the grafted ones, then immediately
an attractive well is exhibited in the potential of mean force of the system (autophobic
dewetting); solvent conditions become worse for the grafted chains. Furthermore, this
behavior is intensified at high surface grafting densities. In these cases, the density of
grafted chain segments near the interface is so high, that matrix chains are not able to
penetrate into the region occupied by grafted chains, even if they have lower molecular
weight than grafted chains. Thus, the use of excessive grafting densities is to be avoided
for the purposes of steric stabilization, even if Ng > Nm.

For the asymmetric cases, where the grafting density or the grafted chain molecular
weight of grafted chains differs on each silica plate, it seems that the introduction of
asymmetries does not give rise to a minimum in the potential of mean force, as long
as deviations from the symmetric system are small, and the effective ratio Nm/Ng from
Equation (33) is fixed. Individually, adjusting the asymmetry on the grafting density or on
the molecular weight of grafted chains does not alter significantly the potential of mean
force, with the former having a stronger influence. This implies that, when experimentalists
are trying to stabilize dispersion of the two slabs (or large grafted particles) in a melt, there
is some room for deviation from symmetry, especially as regards the molecular weight of
grafted chains. On the other hand, when there are larger discrepancies between both the
grafting densities and the molecular weight ratios, then the system will eventually exhibit
an attractive well. Again, this phenomenon is more pronounced when the molecular
weight of matrix chains increases.

The characteristics of the well depth of the PMFGMG reflect the “softness” of the
brushes as well as the associated tendency to penetrate into each other. [22] Wrapping
together all the parameters which influence the attractive well of the PMFGMG between
the two plates, one can generate empirical design rules regarding the prediction of sta-
ble configurations of opposing plates (membranes or fine particles) as a function of the
mean grafting density, the chain length of grafted chains and the chain length of ma-
trix chains. According to Hasegawa et al. [25], PMF is expected to become repulsive for
σg ≤ bk

−2Nk, g
−1/2, with Nk,c = NcC∞lc−c

2/bk
2 being the number of Kuhn segments that

comprise a type c chain. In addition, as it has been demonstrated in Section 4.3, PMFGMG

becomes more attractive with increasing chain length of the matrix chains with respect
to the effective length of grafted chains, Nm/Ng (or Nk,m/Nk, g in Kuhn units). Note that
the effective ratio, Nm/Ng, takes account of the asymmetry in both σg± and Ng± . Putting
all these together, it would be instructive to present the depth of the attractive well as a
function of the dimensionless quantity, σgbk

2Nk, g
1/2
[

Nk,m/Nk, g

]
, or σgbk

2Nk, g
−1/2Nk,m,

for simplicity. Such comparisons are shown in the master plot of Figure 16 against all the
data gathered here for both symmetric and the asymmetric surfaces.

Figure 16. Well depth of PMFGMG as a function of σgbk
2Nk, g

−1/2Nk,m. Green/red shades illustrate
regimes with repulsive/attractive interactions between the opposing plates. The vertical dashed line
is a guide to the eye.
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According to Figure 16 the attractive interactions become negligible for
σgbk

2Nk, g
−1/2Nk,m< 5, therefore for such combinations the surfaces are expected to stabilize.

For larger values, on the other hand, in most cases the plates stick to each other (aggre-
gation). Nevertheless, we must take into account that in the limit of very small average
grafting density, the system will be led towards the case of bare solid plates in contact with
vacuum, thus the melt is expected to evacuate the gap and the plates will spontaneously
come in contact to each other. According to our calculations, the PS melt remains stable even
for low grafting densities on the order of 0.1 nm−2 (∼ 0.33 bk

−2), thus for these systems
the region of stability could be traced along the range 0.33 ≤ σgbk

2 ≤ 5 Nk, g
1/2Nk,m

−1.
Our findings conform with experimental studies concerning systems of the same [69–71]
or similar [68,70,72] chemical constitution and with theoretical works [22,25,67], whilst
accounting for the effect of asymmetry as well.

6. Conclusions

The present work investigates the thermodynamics of single and opposing silica
surfaces, either bare or grafted, under various wetting conditions and solvent situations.
The calculations have been realized with the self-consistent field theory. For comparison
purposes, the nonbonded dispersive interactions are based on the Helfand (HFD), or the
Sanchez-Lacombe (SL) free energy density. The polymer–solid and solid–solid interactions
were described with the Hamaker potential in conjunction with a ramp potential. By ad-
justing the depth of the ramp potential, we examined cases with low wetting (θ = 140–160◦,
depending on the EoS), high wetting (θ~67◦), and perfect wetting (spreading), whereas for
each case we derived the corresponding macroscopic wetting functions.

We investigated situations of grafted surfaces in contact with vacuum or a melt phase,
in terms of their structure and interfacial free energies. In vacuum conditions, the overall
shape of the profiles and the brush thickness are dictated by the product, σgNg; the brushes
appear collapsed and feature a sigmoid region of ca. 1 nm at the vacuum interface. In
melt conditions, the brushes expand significantly towards the bulk phase. Nonetheless,
in the high σgNg regime, the scaling of the brush thickness conforms to the prediction of
Alexander’s model for incompressible brushes, independent of whether they are in contact
with vacuum or melt. The EoS and the wetting conditions appear to have a minor effect on
the overall structure of the single brushes.

We performed a systematic and comprehensive investigation of PMF over a broad
parameter space in terms of the following aspects:

• Grafting densities; very low (σg = 0, bare surfaces), moderate and high.
• Asymmetry regarding the grafting densities and grafted chain lengths.
• Solvent conditions; good (Nm/N g < 1), theta (Nm/Ng = 1), bad (Nm/Ng < 1 ), and

very bad (vacuum) solvents.
• Wetting degree; low, high and perfectly wetted interfaces.

In doing so, we isolated the key parameters that are important to the resulting PMF and
the tendencies of the opposing surfaces (or the corresponding fine particles) to agglomerate.

Initially, we evaluated the potential of mean force (PMF) between two bare silica
plates with melt between them, each time varying the wetting situation. HFD was found
inadequate to describe these systems because it cannot describe the occurring cavitation,
whereas SL can. The LW films collapse for surface-surface distances lower than ca. 3.5 nm.
In contrast, the HW and PW films are retained during the whole compression experiment. A
difference between HW and PW is that the latter are stable with respect to cavitation down
to thicknesses of ca. 1.5 nm, since the minimum due to Hamaker potential at low distances
is located higher than the plateau free energy at large distances. In these situations, the
matrix chains adhere strongly to the surfaces—as if they were grafted—and are able to
effectively screen the solid–solid attractive interactions.

Regarding the PMF between grafted surfaces with melt in between them, a general
conclusion is that with decreasing molecular weight of matrix chains, the solvent conditions
for the grafted chains are enhanced, meaning that the grafted chains prefer to interact
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with the chains of the melt than with themselves. This behavior is manifested through the
repulsive potential of mean force between the two grafted solid plates. On the other hand,
when the melt chains are of much larger molecular weight than the grafted chains or when
vacuum exists between the two grafted plates, then the grafted chains prefer to interact with
themselves, adopting the corresponding configurations. The effect of asymmetry is minor
when adjusting the lengths and grafted chains individually, and given that the effective
ratio Nm/Ng is fixed, indicating that there is some room for error during the experimental
processes. The role of wetting and the employed EoS appear to have a minor effect on PMF.
Based on our calculations we find a region of stability (steric stabilization) traced along the
following range:0.33 ≤ σgbk

2 ≤ 5 Nk, g
1/2Nk,m

−1. This predictive behavior is in agreement
with relevant studies reported in literature [22,25,67–72].

Regarding the grafted silica plates without melt chains in the space between them, it
would be interesting to confirm experimentally the predictions derived here on how their
equilibrium distance is affected by the grafting density and the matrix to grafted chains
molecular weight ratio. For the lowest grafting densities investigated here the equilibrium
distances are on the order of 1.5 the mean brush thickness, whereas with increasing Ng and
σg the brushes become more compact and the equilibrium distance increases to about 2

√
3

mean brush thickness.
Future prospects of the study include the investigation of the potential of mean

force between opposing surfaces (or even pairs of nanoparticles) embedded in melt or
vacuum phases (particle solids) using the three-dimensional version of RuSseL [52]. These
calculations will allow us to investigate situations with homogeneous, and inhomogeneous
distributions of grafted points across the surface of the NP (plane).
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Appendix A

In planar surfaces, the edge of a brush with Ng and σg lies at [46],

hedge,g = σgNg/ρseg,bulk (A1)

thus, the separation distance of two Alexander brushes (with σg− , Ng− and σg+ , Ng+ ) in
contact is:

hss,min = hedge,g− + hedge,g+ =
σg−Ng− + σg+ Ng+

ρseg,bulk
(A2)

The root mean squared brush thickness of an Alexander brush equals
〈

hg
2〉0.5

=

hedge,g/
√

3, [46]; hence, in terms of reduced units hss,min becomes:

h̃ss,min = 2
h

edge,g−
+ h

edge,g+〈
hg−

2
〉0.5

+
〈

hg+
2
〉0.5 = 2

h
edge,g−

+ h
edge,g+

h
edge,g−√

3
+

h
edge,g+√

3

= 2
√

3 (A3)

which is about 3.4.
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