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Abstract

Only thirteen microRNAs are conserved between D. melanogaster and the mouse; however, conditional loss of miRNA
function through mutation of Dicer causes defects in proliferation of premeiotic germ cells in both species. This highlights
the potentially important, but uncharacterized, role of miRNAs during early spermatogenesis. The goal of this study was to
characterize on postnatal day 7, 10, and 14 the content and editing of murine testicular miRNAs, which predominantly arise
from spermatogonia and spermatocytes, in contrast to prior descriptions of miRNAs in the adult mouse testis which largely
reflects the content of spermatids. Previous studies have shown miRNAs to be abundant in the mouse testis by postnatal
day 14; however, through Next Generation Sequencing of testes from a B6;129 background we found abundant earlier
expression of miRNAs and describe shifts in the miRNA signature during this period. We detected robust expression of
miRNAs encoded on the X chromosome in postnatal day 14 testes, consistent with prior studies showing their resistance to
meiotic sex chromosome inactivation. Unexpectedly, we also found a similar positional enrichment for most miRNAs on
chromosome 2 at postnatal day 14 and for those on chromosome 12 at postnatal day 7. We quantified in vivo
developmental changes in three types of miRNA variation including 59 heterogeneity, editing, and 39 nucleotide addition.
We identified eleven putative novel pubertal testis miRNAs whose developmental expression suggests a possible role in
early male germ cell development. These studies provide a foundation for interpretation of miRNA changes associated with
testicular pathology and identification of novel components of the miRNA editing machinery in the testis.
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Introduction

The expression and modification of miRNAs have been an area of

intense interest. In brief, miRNA biosynthesis involves primary

miRNA (pri-miRNA) transcription by RNA polymerase II and

folding of the pri-miRNA into a secondary structure that is

recognized and cleaved by the microprocessor complex, Drosha

and DGCR8, to yield a stem-loop or pre-miRNA. This pre-miRNA

is exported from the nucleus by exportin 5 and cleaved by Dicer

in the cytoplasm to yield a double-stranded RNA of 21–22 nts

containing both strands of the hairpin, designated 5p and 3p

[1,2,3,4]. Subsequently, the two strands are separated and generally

one of the two (the guide strand) is incorporated into the RISC

effector complex, containing Argonaute proteins, while the passenger

or star strand is degraded. However, some star strands may be stable

and functional. Using the specificity contained within nucleotides 2–7

(59seed) and 13–16 (anchor) of the guide strand, the RISC complex

targets mRNAs through complementary sequences in their 39 UTR

for cleavage or translational repression [5,6]. During miRNA

biosynthesis, RNA-binding proteins, such as LIN28, can associate

with the small RNA, preventing or altering its processing [7].

Genetic studies disrupting miRNA functions in mammals by

targeting Dicer, Drosha, DGCR8, or individual miRNAs have

revealed specific and global roles of miRNAs a variety of

developmental processes and pathologic states. Germ cell-specific

deletion of Dicer2/2 shows that miRNAs are required for

regulation of male gonocyte proliferation [8]. MicroRNAs have

also been implicated in the pathogenesis of human germ cell

tumors (e.g., mir-372 and mir-373) [9] or several cancers including

testicular cancer (e.g. let-7c) [10].

Localization studies of miRNAs and their associated enzymes

suggest that they may contribute to post-meiotic male germ cell
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function. Complexes of miRNAs and their targets as well as Dicer

accumulate in the chromatoid body of spermatids [11]; however,

their function and localization have not been described in earlier

spermatogenic cells. A number of mRNAs are associated with the

chromatoid body that are first transcribed in spermatocytes but

have no detectable protein expression until some days later [12].

Therefore, this translational delay may result from the action of

miRNAs localized in other germ cell RNA granules such as

intermitochondrial cement, MIWI2 pi-P bodies, chromatoid

bodies, etc. [13]. This correlates with the dramatic increase in

overall miRNAs at postnatal day 14 (P14) when pachytene cells

are first abundant in the testis. Several groups have described the

complement of miRNAs present in the adult mouse testis

[14,15,16] or human testicular tumors [10,17,18] using low-

throughput assays and more recently Next Generation Sequencing

methods [19]. Next Generation Sequencing of female tissues has

uncovered novel small RNAs missed by prior analyses and

allows the identification of sequence differences reflective of

potential post-transcriptional modification relevant to target

regulation [20].

Editing of a variety of RNAs occurs frequently in mammals with

the majority of modifications caused by A-to-I editing and 39

terminal A and U additions with C-to-U editing occurring less

frequently [21,22]. Sixteen percent of miRNAs are also modified

[23,24,25], predominantly by adenosine deamination of precursor

miRNAs by ADARs [26,27,28,29,30]. ADAR-dependent editing

can control targeting specificity and the stability and processing of

miRNA precursor transcripts [30,31,32]. The editing of nucleo-

tides in the vicinity of Dicer or Drosha processing sites can prevent

the further maturation and expression of the miRNA

[31,33,34,35]. In the rat, the highest degree of ADAR-dependent

editing occurs in brain followed by testis [36]. The second major

class of miRNA editing events (C-to-U) depends on the APOBEC

(apolipoprotein B mRNA editing enzyme, catalytic polypeptide)

family of cytidine deaminases which can prevent translational

inhibition of miRNA targets [37]. Additional types of editing

yielding variant miRNAs, sometimes called isomiRs [38], have

been described in the adult ovaries and testes including variations

in the 59 end cleavage by Drosha or Dicer and nontemplated

nucleotide addition to the mature miRNA [19,20,39,40]. Varia-

tions in the miRNA 59 end alter their 59seed sequence, lowering

the affinity of miRNA to target mRNAs. Uridylation of the

miRNA 39 end results in their destabilization. LIN28-dependent

uridylation of let-7 miRNAs by polyuridine polymerase

ZCCHC11 is the most notable example of this modification

[41,42,43]. Thus, editing events act to oppose or modulate the

action of miRNAs.

Previously, we reported the presence of miRNAs in the testis

prior to P14 [44] but did not describe the profile in detail. Our

current studies demonstrate that the miRNAs most enriched at P7

and P14 derive predominantly from chromosome 12, and then

chromosomes 2 and X, in contrast to those from the adult that are

expressed from more diverse chromosomal locations. To date, the

description of miRNA editing from deep sequencing in a

developmental context has only been described in vitro [45]; our

current study is the first to analyze editing in the in vivo context of

pubertal spermatogenesis, preceding the high degree of editing

described in the adult testis. All types of editing events are

modestly higher at P7, overlapping with only a fraction of the

editing events in the adult testis. We believe that profiling miRNA

changes during normal testicular development will aid in the

interpretation of significant changes in miRNAs occurring in

pathologic states (i.e., infertility and cancer) and may suggest novel

regulation of miRNAs in male germ cells.

Methods

Animal husbandry and tissue isolation
Mice were generated from our mating colony bearing the Gasz

mutant allele, Gasztm1Zuk, by intercrossing heterozygous sires and

homozygous null dams of B6;129 mixed background (129S7/

AB2.26C57BL6/J) [44]. Breeders were housed as trios (one male

and two females) with pups in microisolator cages on a 12 hr light/

dark cycle (7am-7pm) at 70uF62uF. Mice were provided Harland

Teklad 2919 (breeder chow), acidified water; and nestlets for

environmental enrichment. Testes were collected under inhaled

anesthesia from two GASZ+/2 mice with litter-matched GASZ

null controls from two different litters on postnatal day 7, 10, and

14. Additional details of the animal husbandry and experimental

design can be found in the ARRIVE checklist (Checklist S1).

These studies were carried out in accordance with the NIH Guide

for the Care and Use of Laboratory Animals under Baylor College

of Medicine IACUC approved protocol AN-716.

Small RNA isolation and sequencing
Testicular small RNAs were isolated using the mirVana kit

(Ambion, Austin, TX) and sequenced by Illumina-Solexa sequenc-

ing as described previously [44]. RNA quality and the presence of

small RNAs were evaluated on a 2100 Bioanalyzer (Agilent). After

passing the quality controls, 15 ug of total RNA was used in the

Illumina DGE small RNA sample prep kit to synthesize a small

RNA library. Small RNA populations were sequenced on the

Illumina 1 G Genome Analyzer (University of Houston).

Identification of alternatively processed miRNAs
Reads which differed from the mature miRNA sequences as

described in microrna.org by 1 nucleotide at the 59 end and

mapped to the pre-miRNA sequence were identified as alternative

59 isoforms. Those reads which matched 100% to the mature

miRNA sequence but contained additional nucleotides A(n) or

U(n) that did not match the pre-miRNA sequence were identified

as alternative 39 adenylated or uridylated miRNAs. Those reads

which contained a single A to G mismatch within the mature

miRNA sequence were identified as candidate ADAR-edited

miRNAs. Finally those reads which contained additional uridines,

but the surrounding sequence matched 100% to the mature

miRNA (similar to an insertional polymorphism) were identified as

miRNAs affected by internal uridylation. The ratio of alternative

reads to canonical mature miRNA reads were analyzed for

developmental trends.

Identification of putative novel testicular miRNAs
Reads which do not match to mature miRNAs or other

ncRNAs including snoRNAs, and tRNAs were mapped and

contigs were assembled through the annotation pipeline described

previously [39]. Criteria, including the presence of a stem-loop,

reads indicating the presence of a miRNA star strand, and

consistent 59 end processing, were used to rank candidate

miRNAs. We initially evaluated candidates independent of size;

however, to achieve high confidence miRNAs we ultimately chose

to subject candidates to a size cutoff of ,25 nt present in Gasz2/2

controls to exclude possible novel piRNAs.

Results

Developmental analysis of testicular miRNAs by deep
sequencing

Using Illumina-Solexa deep sequencing, we analyzed the small

RNA populations in testes of mice on postnatal day 7 (P7), 10

Prepubertal Testis miRNAs
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(P10), and 14 (P14) to assess piRNA populations in GASZ null

mice compared to controls [44]. In the course of the analyses of

our piRNA findings we recognized that analysis of the miRNA

population in controls might provide an insight into their roles in

pubertal spermatogenesis. We identified reads belonging to the

682 mature miRNAs (608 pre-miRNAs) present in miRBase 13.0

version (http://www.mirbase.org/) and used these to describe

miRNA signatures for these ages, similar to our characterization of

human ovarian miRNAs [39]. Since biologically effective changes

in miRNA suppression of respective mRNA targets appears to

have some minimal threshold, we initially focused on the top 50

miRNAs by read abundance at these three time-points (Figure 1A-

B, Table S1). We initially hypothesized that meiotic initiation at

P10 may be correlated with a unique miRNA signature; however,

we found a lack of evidence for such an enrichment arguing

against possible miRNA-mediated initiation of meiosis at P10.

Therefore, we focused our subsequent analysis on a comparison

between P7 and P14, identifying those miRNAs that showed

greater than a two-fold enrichment at P7 or P14 as potential

candidate miRNAs important for spermatogonial and spermato-

cyte functions.

Several abundant miRNAs showed greater than a two-fold

enrichment at P7 (i.e., let-7e, 127, 181b-2, 503, and 181b-1), while

those showing the greatest fold enrichment (i.e., mir-122, 370, 770,

383, 410, 335, 615, 543, 665) were generally expressed at modest

levels (Figure 2A). By contrast, more than half of the miRNAs

most enriched at P14 (i.e., 449c, 34b, 34c, 743b, 471, 204, 878,

880, 883a, 743a, 881, 375, 760, 741, 470, 871, 465b-1, 465b-2,

883b, 465c-1, 465c2, 465a, 467a) were abundantly expressed

(Figure 2B). It is also notable that those miRNAs with the most

dramatic enrichment at P14 were clustered on a single region of

the X chromosome (discussed in greater detail below). MicroRNAs

are often enriched either early (in stem cells/early transit

amplifying cells) or late (in differentiating cells) in the differenti-

ation process. Consistent with the latter, many of the miRNAs

abundant at P14 were also previously reported as abundant at P21

and adult testes by low throughput methods [15] although the

Figure 1. The MicroRNA signature of the testis differs over
prepubertal development. MicroRNA signature of postnatal day 7
(P7) (A) and 14 (P14) (B) testes. The top 25 miRNAs (by percent read
abundance) at each age were plotted. Representative miRNAs are
labeled with those with greater abundance at P7 (putative spermato-
gonial role) in green and at P14 (putative spermatocyte role) in red.
Levels at P10 were intermediate between P7 and P14 indicating a lack
of miRNAs specific to meiotic initiation. ,80% of all miRNAs in the testis
at all three time-points were let-7 family miRNAs.
doi:10.1371/journal.pone.0015317.g001

Figure 2. MicroRNAs with the most dramatic enrichment are
associated with chromosomes 2, 12, and X. Roughly 2% of
miRNAs were enriched more than five-fold at P7 (left). Of these miR-122
was the most enriched (43-fold). By contrast, nearly 10% of miRNAs
were enriched to the same degree at P14 (right). The most enriched was
miR-449c (41-fold). A number of miRNAs most induced at P7 are located
on chromsome 12 (boxed in green) while those most induced at P14
cluster on chromosomes 2 and X (boxed in red).
doi:10.1371/journal.pone.0015317.g002

Prepubertal Testis miRNAs
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profiles were distinct. Thus the miRNA pools within pre-meiotic

and meiotic are likely to be different, and a subset of miRNAs

arising from the X chromosome during meiosis may continue to

remain prominent in post-meiotic spermatogenesis.

X chromosome miRNAs escape meiotic sex chromosome
inactivation

Part of the dosage compensation that occurs between X- and Y-

bearing male germ cells is a spermatocyte-specific alteration of sex

chromatin through a process similar to X chromosome inactiva-

tion. The loss of mRNA transcription on the X chromsome during

male meiosis is often compensated by intronless retrogene

autosomal paralogs [46]. Prior reports by Yan and colleagues

demonstrated that nearly all miRNAs on the X chromosome

display continuous expression during meiosis in contrast to most

protein-coding genes on the X chromosome [47]. We performed

similar analysis using deep sequencing and found abundant reads

for many X chromosome miRNAs. Intriguingly, when their

position was mapped on the X chromosome, domains of

developmental expression patterns were seen in which transcrip-

tion predominated at either P7 or P14. The intergenic distances

for most are large enough (.5 kb) to indicate that they are not

transcribed from a common primary transcript unlike the miR-

17,92 cluster. In our prior analysis of piRNAs [44], we had

observed a number of miRNA variants, previously missanotated as

piRNAs, derived from this cluster on Xq. This region (including

mir-743a to mir-547) represents a discontinuity in the synteny

between rodents and primates. However, the primate X

chromosome contains an analogous cluster of clade-specific

miRNAs (hsa-mir-890 to hsa-mir-514-3). In addition to the X

chromosome, we also found enrichment for miRNAs derived from

chromosome 2 at P14 (Figure 3B) and for chromosome 12 at P7

(Figure 3C). In the mouse, miRNAs are non-randomly distributed

over the genome with 40% deriving from these three chromo-

somes (Table 1). During mouse pubertal spermatogenesis the

miRNA complement comes predominantly from limited chromo-

somal domains, shifting from expression of chromosome 12 at P7

to chromosomes 2 and X at P14.

Analysis of miRNA hairpin cleavage products
Dicer cleavage of the pre-miRNA yields two products, the 59

and 39 portions of the base-paired regions of the stem-loop.

Initially, it was believed that only one strand (guide) is

incorporated into the RISC effector complex while the other

strand (star) was nonfunctional and degraded. Now both mature

miRNAs derived from the pre-miRNA are believed may have

activity against targets. Due to speculation that there might be

differential processing during testicular development or differences

in the relative stability of the two strands in the testis, we analyzed

the 5p and 3p miRNA strands during prepubertal testis

development. The representative 5p (blue) and 3p (red) sequences

from mouse miR-125 are shown (Figure 4A). We found that 359 of

the 465 mouse pre-miRNAs, produced reads from one or both

strands during P7-P14 of testicular development. After calculating

the ratio of 5p to 3p reads from each processed pre-miRNA, we

determined that the majority (.86%, Figure 4B and Table S2)

showed a ratio that was significantly different from one at all three

ages (range 0.0001–780,000). This indicates that the testis is not

distinct from other organs with respect to pre-miRNA processing,

showing differential abundance of the hairpin cleavage products

(5p or 3p) for nearly all pre-miRNAs. Most reads derive from the

5p half of their respective pre-miRNAs. Since the majority of reads

in the testis at the ages assessed are composed of let-7 family

miRNAs, predominantly represented by their 5p reads, this

further inflates this bias. In very rare cases (,1%), the strand

preference changed over development, but most showed the same

preference at all three time-points. We further assessed the

developmental differences (P7 vs. P14) in the abundance of 5p and

3p miRNAs individually. This demonstrated that roughly an equal

number of 5p miRNAs were increasing with age (32.8%) as

decreasing (37.8%) with a small amount (7.6%) remaining

constant over time (Figure 4C). A similar distribution of

developmental patterns was seen on 3p miRNAs. We also detected

Figure 3. Chromosomes 2, 12, and X predominant source of
pubertal-associated testis miRNAs. (A–C) Plots of miRNA expres-
sion ratios (P14/P7). (A) A large cluster miRNAs on chromosome X (ChrX)
and most miRNAs on chromosome 2 (Chr2) are enriched for expression
at P14 (ratio .2, red line). While those from chromosome 12 (Chr12) are
enriched for expression at P7 (ratio ,0.5, green line). Those on the
distal arms of the X chromosome show enrichment at P7, as expected
for genes showing the classical meiotic sex chromosome inactivation
(MSCI) pattern of repression on P14. The large number of miRNAs on
the mid-arm of chromosome X that escape this repressive process,
displaying a greater abundance at P14, is in agreement with prior
reports. We found a number of miRNAs falling within this cluster were
ones that we had previously determined were misidentified as piRNAs
in public databases (red dashed box).
doi:10.1371/journal.pone.0015317.g003

Prepubertal Testis miRNAs
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24 examples (7%) in which the developmental pattern of 5p and

3p miRNAs from the same pre-miRNA were in discordance. Thus

we reject the hypotheses that a) the selection of the more abundant

strand (5p vs. 3p) may shift and b) the stability of all miRNAs are

coordinately regulated over pubertal testicular development.

Alternatively processed miRNAs
We determined to capture developmental miRNA variation in

multiple locations relative to the mature miRNA including 59 end

variation, internal editing, and nontemplated nucleotide addition to

the 39 end. We summarize the major events in which .5% of the

reads are of the edited form (Table S3). To address 59 end variation,

we took an approach similar to the discovery of genomic insertions

or deletions. The reads mapping with up to two nucleotide

mismatches to mature miRNAs, but which matched the pre-

miRNA (and genomic sequence), resulting from the utilization of

distinct 59 end cleavage sites by Dicer or Drosha were identified.

Prior reports of adult mammalian tissues, including testis, describe

59 end heterogeneity as affecting 8% of all miRNA reads, with

greater variability on star strands [19]. We found that (Table S4)

alternative 59 end processing was rare with the exception of twenty

miRNAs in which the 59 cleavage variant was elevated at P7 relative

to P14. Reads which matched the miRNA precursor with 1–3

mismatches were designated internally edited miRNA isoforms

(Table S5). Most high abundance (104 reads) miRNAs such as let-7

family member let-7b-5p showed very little internal editing.

However its less abundant (103 reads) star strand let-7b-3p, showed

a developmental shift in editing at position 15 (A.G), likely to

represent an ADAR-dependent event. At P7 the levels were 26% of

the total let-7e-3p reads, but this declined on P14 to 15%. The effect

of this editing event would be to enhance the inhibition of target at

P14 relative to P7. Since Let-7 family members are believed to

restrain proliferation reduced effectiveness of let-7 against its targets

due to editing may be beneficial in the predominantly mitotically

active testis at P7. In contrast to the editing of let-7b-3p, 34b-5p and

376b-3p, four of eighteen miRNAs showed a peak of editing at P10

and the eleven others showed a developmental increase from P7 to

P14. Reads matching the mature miRNA sequence with additional

39 (A)n or (U)n that did not match the pre-miRNA sequence were

designated as 39 edited miRNAs (Table S6). Slightly more than half

(61%) of the thirty four miRNAs in this category showed a greater

proportion of their edited forms at P14. Overall variant miRNAs

compose a greater proportion of the miRNA pool at later

developmental stages, suggesting that miRNA effects may weaken

with increasing pubertal testicular development.

Table 1. Positional analysis of pubertal miRNA expression.

Chr Total % Total
P7
high

% P7
high

P14
high

% P14
high

1 21 4% 2 3% 7 7%

2 59 12% 1 2% 29 29%

3 20 4% 0 0% 5 5%

4 22 5% 0 0% 6 6%

5 15 3% 1 2% 1 1%

6 21 4% 1 2% 3 3%

7 26 5% 5 8% 5 5%

8 15 3% 3 5% 0 0%

9 19 4% 0 0% 6 6%

10 10 2% 1 2% 0 0%

11 28 6% 2 3% 3 3%

12 61 13% 37 61% 0 0%

13 20 4% 0 0% 5 5%

14 21 4% 1 2% 3 3%

15 14 3% 1 2% 0 0%

16 17 4% 2 3% 1 1%

17 11 3% 1 2% 1 1%

18 11 2% 1 2% 1 1%

19 7 1% 0 0% 4 4%

X 64 13% 2 3% 21 21%

Total 482 61 101

MicroRNAs are distributed nonrandomly over the mouse genome with
predominant enrichment on chromosomes 2, 12, and X (in bold). Most miRNAs
on chromosome 12 were enriched at P7, while those on chromosomes 2 and X
are enriched at P14.
doi:10.1371/journal.pone.0015317.t001

Figure 4. Mature miRNAs and star strands are differentially
expressed in the testis. (A) Example miRNA identifying the 5p (red)
and 3p (blue) miRNAs that will result from Dicer cleavage of the mmu-
mir-125a pre-miRNA hairpin. Levels of 5p and 3p often are dramatically
different in abundance in non-reproductive tissues, producing a 5p/3p
ratio different from 1. (B) Shown are representative miRNAs in which
reads were detected for both mature 5p and 3p sequences. Contrary to
one report arguing for equivalent levels of both strands in the testis, we
found that the pubertal testis was similar to other non-reproductive
tissues. 73–87% of miRNAs displayed a 5p/3p ratio ,0.5 or .2 (range
0.0001–240,000), consistent with differential stability of most 5p/3p
miRNA pairs. (C) Most miRNAs showed predominant expression of
either 5p or 3p reads. In 87% of miRNAs the 5p miRNA was more
abundant compared to 3p (13%). Among the 5p miRNAs roughly one
third were enriched at P7 (blue), P14 (teal), or unchanged (gray). Equal
amounts of the 3p miRNAs were enriched at P7 (red) and P14 (pink).
doi:10.1371/journal.pone.0015317.g004

Prepubertal Testis miRNAs
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Discovery of novel testicular miRNAs
We subjected our reads that mapped to pre-miRNA sequences

(putative star strands) as well as those that did not map to a known

mature miRNA to a miRNA discovery pipeline described in

Creighton et al. 2009 that identified those reads whose

surrounding 200 nucleotides had some capacity to fold into a

double-stranded RNA using the Vienna secondary structure

prediction package. We screened for those hairpins that captured

a number of reads typically mapping to one side of the stem,

rejecting those which did not cluster tightly, overlapped with the

loop, or mapped to known non-coding RNAs. We identified 198

putative novel miRNAs and determined their developmental

abundance (Tables S7, S8, S9). These were assigned to several

categories based on a) their ability to be produced by predicted

Drosha and Dicer cut sites and b) the presence of a putative star

strand. We found 107 high confidence novel miRNAs, 104 lacking

star strands, and three (76, 131, 143) with a corresponding star

strand. Thirteen of 107 (12%) of the high confidence class mapped

to repetitive elements including SINEs, LINEs, LTRs, and DNA

transposons. These candidates likely represent endo-siRNAs,

piRNAs, or SINE-associated small RNAs rather than true

miRNAs. Since 17 of the 52 (32%) that met fewer criteria -

‘‘potential miRNAs’’ - were also mapped to repetitive elements,

this provides some validation for the cut site criteria. Most of the

candidates were expressed at very low levels while a significant

fraction of those expressed at a higher level were associated with

repeats (Table S9). Greater than 75% of all high confidence

candidates were expressed at P7 or P10 alone or P7-P10, which

would have been most likely undetectable in the prior sequencing

study involving adult testis [19]. The least differentiated cells in the

testis may be the source of undiscovered miRNAs just as

embryonic stem cells possess miRNAs distinct from those in adult

tissues [48]. An additional 143 pre-miRNAs have been described

in the latest miRBase 15.0 version but only candidate 185 has been

identified as mir-3099-3p, first isolated in newborn ovaries [40].

We assessed evolutionary conservation of the 59seed sequence of

our candidates to rat and human syntenic regions using the UCSC

genome browser and found relatively few were conserved to

human (26/198 or 13%) although nearly half (45%) were

conserved to rat. Most candidates had 59seed sequences distinct

from known miRNAs; however the following candidates, con-

served with humans, were similar to those in parentheses: 5 (miR-

190/190b), 19 (miR-29b-2), 92 (miR-1195), 93 (miR-134), 132

(miR-486), and 183 (miR-345-3p). Those that were abundant but

not conserved with humans (34, 69, 76, 88, 94, 100, 105, 110, 144,

176) had novel 59seeds with the exception of 110, which was

similar to miR-411. Another criteria that may increase our

confidence in candidates representing miRNAs rather than other

types of ncRNA could include close linkage to known miRNAs

(,5000 bp). Two of our candidates show this association (85 to

miR-700 and 90 to miR-805). Nine pairs of candidate reads

displayed close linkage to other candidates, all mapped to mRNA

exons. We assigned these candidates overlapping with exons as

gene-associated piRNAs rather than miRNAs, which are more

commonly contained within introns when they overlap an mRNA.

After excluding those candidates mapping to exons or repetitive

elements, 75 candidates remained. Of these, 12 were 24 nt or less

while the remainder were 25–30 nt in length. A length assessment

of all mouse mature miRNAs identifies only 1.3% of miRBase

miRNAs larger than 24 nts (4.5%,20 nt and 94.2% 20–24 nt).

Since we have observed that the number of miRNA reads is

proportionally increased in GASZ null testes lacking piRNAs [44],

we tested the value of excluding those candidates which are

absent or not increased in GASZ null testes as probable piRNAs.

Eighty-three percent (10/13) of the candidates ,25 nt long were

increased in GASZ null testes relative to controls, while of the

larger size category only candidates 5 and 90 (3%) showed a

similar increase. Forty percent of the candidates in the larger size

were determined to partially overlap with known piRNAs or map

within piRNA clusters. Thus, we identified 11 putative novel testis

miRNAs with high confidence and detected miR-3099-3p

previously described in newborn ovary (Table 2). We believe that

the remaining 64 are likely piRNAs. Using the 59seed sequence

target prediction analysis in TargetScan 5.1, we analyzed the

targets of the 11 putative novel candidates. Most showed a very

restricted target repertoire between 4–100 targets. A small fraction

of targets overlapped between the novels, but was not correlated

with similar developmental pattern.

Discussion

The mouse testis displays a distinct microRNA profile during

prepubertal development with miRNAs enriched putatively in

spermatogonia (e.g., miR-122) and spermatocytes (e.g., miR-409c).

MiRNAs from particular chromosomes are active at specific times

during spermatogenesis (e.g., chromosome 12 at P7 and chromo-

somes 2 and X at P14). We have identified 11 putative novel testis-

expressed miRNAs in addition to the miRNA variants on the X

chromosome described previously [44]. Compared to adult testis

sequencing results, the complexity of the juvenile miRNA profiles

are much lower. Let-7 family members contribute 80% of juvenile

miRNA reads but compose only 11% of adult testis reads. While

the top 50 miRNAs by abundance in the adult testis include let-7

family members and many X chromosomally encoded miRNAs,

167 miRNAs are .5-fold enriched in adult testes compared to P14

testes. Many of these miRNAs are also enriched at P14 compared

to P7, but a number of miRNAs are specifically enriched in the

adult including the mir-17 to -92a-1 cluster on chromosome 14,

mir-135a, mir-135b, mir-190, and mir-215.

It is intriguing that newborn ovaries, predominantly composed

of meiotic oocytes, show a similar enrichment for expression of

miRNAs from chromosomes 2 and X, potentially indicating some

common regulation of meiotic miRNAs in both sexes [40].

However, the particular cluster on the X chromosome highly

expressed in ovaries (miR-450b to miR-322) is centromeric to a

similar cluster in testes (miR-743a to miR-465a). Furthermore, the

majority of the ovarian cluster is conserved with human, with the

exception of mir-322, nearest to the male cluster, whereas, the

male cluster is almost entirely rodent-specific miRNAs. One might

be tempted to speculate that the enrichment of miRNAs on mouse

chromosomes 2 and X may suggest a possible role in spermatocyte

function.

Although i12p, duplication, or increased expression of pluripo-

tency factors encoded on the p arm of human chromosome 12 is

common to seminomas [49,50], the enrichment of mouse

chromosome 12 miRNAs at P7 does not have an obvious

importance to testicular cancer since this mouse chromosome is

syntenic to human chromosome 14. The only gene mapped to

mouse chromosome 12 and human chromosome 14 with

polymorphisms associated with azoospermia is MLH3, which

causes a meiotic arrest [51]. However, we speculate that miRNAs

from human chromosome 14 may be abundant in differentiated

spermatogonia and deficient in testicular tumors arrested at an

earlier stage of germ cell development. Assessment of possible

mechanistic action of miRNAs abundant in human testicular

cancer would be greatly benefited by comparison of the miRNA

complement from newborn mouse testis or isolated gonocytes with

their corresponding mouse testicular cancer models.
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Differential processing of some pre-miRNAs, leading to tissue-

specific differences in the relative abundance of their 5p and 3p

mature miRNAs, has been described by deep sequencing [19].

These differences could theoretically reflect differential pre-

miRNA processing in dividing versus post-mitotic cells or cell

cycle-specific processing, the abundance of which differs by tissue.

Such regulation could derive from regulation of pre-miRNA-

binding proteins. The relatively synchronous development of the

first wave of spermatogenesis should allow detection of such

regulation during the shift in the germ cell compartment from a

mitotic to meiotic state and be favorable to purification of the

processing regulator. However, we found that the mature miRNA

strand (5p versus 3p) that was predominant does not appear to

differ during mitotic or meiotic testicular development, nor does

destabilization of microRNA star strands appear to be develop-

mentally regulated in the testis during this interval. By contrast,

about 20% of miRNAs expressed in the adult testis switch from the

strand predominant at P14 (Table S10). Seventy-five percent of

the shifts favor the increase of the star strand in the adult testis,

independent of the predominant strand (5p or 3p) at P14.

Although there is no evidence for a global shift of processing (i.e.,

favoring the 5p at earlier and the 3p at later time-points), the same

pre-miRNA may be processed distinctly in early and late

spermatogenesis. Were transcription of the pre-miRNA to remain

constant, preferential accumulation of the star strand could favor

translational de-repression due to loss of the corresponding strand

or inhibition of a distinct set of targets.

Analysis of miRNA editing in the testis showed that most types

of editing events were higher at P14 than P7. Questions have been

raised about the possibility that apparent editing of miRNAs

outside the 59 and 39 ends could derive from Dicer-dependent

processing of other ncRNAs, such as tRNAs, followed by 39

uridylation or adenylation [45]. We were able to detect several

miRNAs, which showed evidence of significant internal editing

(.5%) in juvenile mice. Presumptive ADAR- or APOBEC-

dependent affects were detected affecting adenosines and cyti-

dines, respectively, but nearly half of internal editing events in

juvenile testis miRNAs affects uridines and occurs at sites near the

39 end. The necessity of ADAR-dependent editing is unclear since

no reproductive defects have been described in ADAR1- or

ADAR2-deficient mice, but SPNR (spermatid perinuclear RNA-

binding protein) has similarity to ADARs outside the deaminase

domain and is essential to spermatid function [52,53].

Twenty juvenile mouse testis miRNAs display variation in 59

end cleavage including let-7a-1-5p. However, we did not identify

those from adult testis such as miR-133, -223, or -155 [19].

Confounding our analysis of 39 variation, poly(A) or poly(U) tracts

in the pre-miRNA follow the canonical 39 cleavage site in 17%

and 35% of mouse miRNAs. 39 end cleavage resulting in longer

miRNAs may mimic post-transcriptional adenylation or uridyla-

tion, conferring inherent instability upon 39 cleavage variants. For

those miRNAs in which 39 end adenylation or uridylation could be

distinguished from differential cleavage site selection, we found a

relative increase in this modification from P7 to P14. Ninety-one

miRNAs in the adult testis display 39 nucleotide addition (A or U,

range 10%–100%) [19]. The majority of miRNAs uridylated in

juvenile testes were distinct from those modified in adult testis, but

some were affected in both including mir-24-1, -24-2, -103-1, 103-

2, -199a, and -342 [19]. Abundant P14 X-chromosomally encoded

miRNAs do not display 39 uridylation with the exception of let-7f-

2. The increase in uridylation at P14, decreasing target specificity

and miRNA stability, argue for a relatively lower effectiveness of

these miRNAs against target at this time. However, differences in

miRNA uridylation between P7 and P14 are modest compared to

the high degree of uridylation of specific miRNAs in the adult

testis. Since the majority of cells in the adult testis are spermatids,

these modifications may be targeted to pre-miRNAs by spermatid

proteins that bind to the loop domain of pre-miRNAs similar to

LIN28 binding to let-7 pre-miRNAs. The semi-synchronous

nature of the first wave of spermatogenesis may facilitate in the

identification of possible testicular cofactors for miRNA modifying

enzymes and such factors may be associated with the chromatoid

body.

By utilizing Next Generation Sequencing, our studies charac-

terized the complete miRNAome and its editing in vivo during

prepubertal testicular development. The peculiar behaviors of a

large number of miRNAs expressed in the germline (i.e., resistance

to meiotic sex chromosome inactivation and strong chromosomal

Table 2. Identification of putative novel testis-expressed miRNAs.

Candidate miRNA Mature sequence length chr:start-stop (strand) Intronic to mRNA

149 UGGACACUGGAGAGAGAGCUUUU 23 chr4:58453895-58453917 (2) Lpar1

139 UGGGUAGACUGAGCCUGGCUGA 22 chr4:133904334-133904355 (+) Slc30a2

138 UGUUGAUCGGCGUUCUUGGUUAUG 24 chr7:6594138-6594161 (2) -

185/mir-3099-3p UAGGCUAGAGAGAGGUUGGGGA 22 chr7:6756349-6756370 (+) Usp29

19 GAGCACCCCAUUGGCUACCCACA 23 chr7:108030821-108030843 (2) Arhgef17

91 ACCGGGGACUGCGGCUUUCAGU 22 chr7:133723020-133723041 (2) Cln3

71 GCUGGAGGAUGAAGUAAGGAGUGA 24 chr8:112363200-112363223 (+) Ap1g1

190 UGGCGGCAGUCAGGAUACCUGU 22 chr11:117863593-117863614 (+) Pgs1

186 CUUAGAUCGAUGUGGUGCU 19 chr12:37542836-37542855 (+) -

148 AACUGAGUUGAAGGCAAAGGU 21 chr15:40862391-40862411 (+) Zfpm2

120 ACGCCCUUCCCCCCCUUCUUCA 22 chr15:84781975-84781996 (2) 5031439G07Rik

196 AGGGGAGCUAGGUAGAAAGCCA 22 chr19:4623929-4623950 (2) Rce1

After excluding known miRNAs, clusters of Solexa reads showing evidence of hairpin formation were identified (203 candidates). We set strong inclusion criteria for
maximal length (,24 nt) and enrichment in GASZ2/2 testes due to piRNA depletion. Seventeen putative novel miRNAs were identified, 12 of which displayed
enrichment in GASZ null testes. Most are expressed at relatively low level, have limited conservation, and map to introns of autosomal genes.
doi:10.1371/journal.pone.0015317.t002
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association) argues for the need to identify additional miRNA

transcriptional regulators capable of acting in cis on chromosomes

2, 12, and X. We expect that the developmental associations with

these three chromosomes in this study will frame future

investigations of translational control of spermatogonial or

spermatocyte mRNAs. The very low copy number and poor

evolutionary conservation of the novel miRNAs identified in this

study is consistent with other attempts to identify tissue-specific

miRNAs, suggesting that few additional abundant conserved novel

miRNAs remain undiscovered in the mouse genome. While our

miRNA catalog did not identify a class of miRNAs that regulates

meiosis initiation, they do provide a normative control by which to

evaluate miRNA changes in murine and human testicular cancers.

Comparison of these findings in the pubertal mouse testis to

published studies of adult mouse testis highlights the need to focus

future studies of the regulatory consequences of miRNA editing

during the terminal differentiation of spermatids and their

potential physical connection to the chromatoid body and its

associated translationally-regulated spermatid mRNAs. Our

findings of miRNA regulation in spermatogenesis may be

generalized to other somatic cell types, most notably to neurons.

Analogous to the translational regulation required to assemble

structures accessory to the sperm tail axoneme, the brain displays a

similar temporal-spatial compartmentalization of translation

associated with neuronal axons and an even greater fraction of

edited miRNAs. Future efforts to identify the mechanism for

selectivity in editing of miRNAs during testicular development

may ultimately offer potential new avenues to therapeutic

intervention in human infertility and neurologic disorders.
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Table S1 Developmental analysis of miRNA expression
in the testis (P7-P14). Excel table containing the number of

reads, percent of total miRNA reads, chromosomal position, and

quantification of modified reads at internal and 39 positions. The

number of reads at each age were normalized by calculation of

their percentage in the miRNA pool at each age. Ratios were

calculated to compare the relative expression. Those miRNAs with

significant effects (.2-fold enrichment at P7 or at P14) are bolded.

Str, strand; Chr, chrosomosome.

(PDF)

Table S2 Developmental analysis of 5p vs. 3p miRNAs
in the testis (P7-P14). Excel table containing the number of

reads, percent of total miRNA reads, chromosomal position, and

predicted secondary structures of candidate novel testicular

miRNAs. The number of reads at each age were normalized by

calculation of their percentage in the miRNA pool at each age.

Ratios were calculated to determine the bias of pre-miRNA

processing (5p/3p) at each age. The predominant miRNA (i.e. the

non-star strand) was identified. Developmental change of both 5p

and 3p mature miRNAs was also calculated using ratio calculation

and annotated as increasing (i) or decreasing (d) from P7 to P14.

(PDF)

Table S3 Editing of miRNAs during prepubertal testic-
ular development. Four types of editing were evaluated by

assigning reads that were not an exact match to the mature

miRNA sequence: a) alteration of 59 end cleavage, b) A to G

transitions representing putative editing by ADARs, c) internal

insertions of uridine by an unknown process, and d) 39 addition of

A(n) or (U)n. [Indel, insertion/deletion]

(PDF)

Table S4 59 cleavage variants of miRNAs during
prepubertal testicular development. 59 variants are gener-

ally highest at P7 in the juvenile testis but represent a small

fraction of total reads.

(PDF)

Table S5 Internal editing of miRNAs during prepuber-
tal testicular development. Most internal editing events are

highest at P14 in the juvenile testis, but other patterns are detected

less frequently. Increased editing is associated with declining levels

of the miRNA in 55% of cases. Uridine was the most common

base affected. The affected positions are bolded within the mature

miRNA sequence.

(PDF)

Table S6 39 nuclotide addition to miRNAs during
prepubertal testicular development. 39 nucleotide addition

increased over juvenile testis development (61% of cases), but the

portion of modified reads represent a small fraction of total reads.

(PDF)

Table S7 Hairpin candidate evaluation. All testicular small

RNA reads not identified as known miRNAs were analyzed for 1)

their ability to form a stem loop structure, 2) minimum free energy

less than -20 kcal/mol, 3) strong clean signal in the specific region

of the 15–25 nt reference hairpin, 4) signals should not fall in the

loop, 5) predicted Drosha and Dicer cut sites must be able to yield

a mature miR sequence that matches the read, 6) stable 59 end

(61 nt), 7) highly variable 39 end, 8) presence of star sequence at

lower copy number and matching miR with 39 2 nucleotide

overhang, 9) does not map to rRNA, tRNA, snoRNA, or snRNA.

Those matching all nine criteria were designated high-confidence

novel miRNAs with star sequences. Those reads that passed all but

criteria 6–8 were designated high-confidence miRNA without star

sequence. Those that also did not pass criteria 5 were designated

as potential miRNAs and the reads that failed criteria 1–4 were

identified as non-candidates. Manually curated Dicer and Drosha

cleavage sites on the hairpins were marked in blue and red lines.

(PDF)

Table S8 Description of novel testicular candidate
miRNAs. Hairpin candidates were mapped to the mouse genome

(mm9) using the UCSC Blat tool. Those that overlapped with other

genomic elements were identified including repetitive elements

(LINE, SINE, LTR). Conservation of the SEED sequence with

syntenic sequences on the rat (R.n.) and human (H.s.) was assessed

through the UCSC genome browser (Y, yes; N, no; M, mutated).

(PDF)

Table S9 Developmental expression of candidate miR-
NAs. The number of reads from two testes of each age and

genotype (GASZ+/2 or GASZ2/2) are shown with the reads

assigned to the 5p and 3p sections of the hairpin. A summary of

their developmental pattern is given. The majority of those

expressed at 50 reads or greater had some similarity to repetitive

elements, suggestive they represent piRNAs, endosiRNAs, or

SINE-associated small RNAs.

(PDF)

Table S10 Comparison of predominance of 5p vs. 3p
between P14 and adult testes. The expression of 5p versus 3p

mature miRNAs were compared between this study and adult testes.

Those miRNAs which shifted from a high to low 5p/3p ratio or vice-

versa are shown with the abundant mature miRNA at each time-point.

(PDF)
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