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 Abstract: Background: Stroke is a serious neurovascular problem and the leading cause of disabil-

ity and death worldwide. The disrupted demand to supply ratio of blood and glucose during cerebral 

ischemia develops hypoxic shock, and subsequently necrotic neuronal death in the affected regions. 

Multiple causal factors like age, sex, race, genetics, diet, and lifestyle play an important role in the 

occurrence as well as progression of post-stroke deleterious events. These biological and environ-

mental factors may be contributed to vasculature variable architecture and abnormal neuronal activi-

ty. Since recombinant tissue plasminogen activator is the only clinically effective clot bursting drug, 

there is a huge unmet medical need for newer therapies for the treatment of stroke. Innumerous ther-

apeutic interventions have shown promise in the experimental models of stroke but failed to trans-

late it into clinical counterparts.  

Methods: Original publications regarding pathophysiology, preclinical experimental models, new 

targets and therapies targeting ischemic stroke have been reviewed since the 1970s. 

Results: We highlighted the critical underlying pathophysiological mechanisms of cerebral stroke 

and preclinical stroke models. We discuss the strengths and caveats of widely used ischemic stroke 

models, and commented on the potential translational problems. We also describe the new emerging 

treatment strategies, including stem cell therapy, neurotrophic factors and gut microbiome-based 

therapy for the management of post-stroke consequences. 

Conclusion: There are still many inter-linked pathophysiological alterations with regards to stroke, 

animal models need not necessarily mimic the same conditions of stroke pathology and newer tar-

gets and therapies are the need of the hour in stroke research.  
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1. INTRODUCTION 

Cerebral ischemic stroke is one of the most severe neuro-
vascular disorders [1, 2]. Ischemic stroke is accounting for 
80-87% of stroke cases, a disease that primarily curtails the 
blood flow leading to and within the brain due to occlusion 
of cerebral blood vessels by a thrombus or an embolus [3, 4]. 
Ischemia in any part of the brain results in a long-term disa-
bility (loss of neurologic function) and high rate of mortality 
[5-7]. The sudden neurological complications are related to 
the neuronal death (in core part of ischemia) within a couple 
of minutes after stroke onset, thus effective therapeutic  in-
tervention is immensely required. Importantly, the tissue 
surrounding the central core (penumbra), where cerebral 
blood flow (CBF) level falls under a functional threshold, is 
the salvageable brain region [8]. The restoration of CBF is  
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believed to save the ischemic penumbra brain regions and 
neuro-substances by either promoting neuroprotective effects 
or triggering neuroplasticity.  

The pathophysiology of ischemic stroke is multifactorial 
and dependent on several simultaneous alterations in the nor-
mal vascular homeostasis, leading to occlusion of the internal 
carotid artery and other major blood vessels that supply blood 
to brain regions [9]. These physiological events resulted in 
deprivation of oxygen and thus necrotic cell death of the neu-
ronal cells. The elevated oxidative stress increases the rupture 
of weak vasculature and neighboring nerve cells. Ischemic 
zone in tissue increases the infiltration of immune cells and 
inflammatory mediators; this physiological change produces a 
profound debilitating impact after ischemic stroke [10]. The 
stroke prevalence is more in patients who are having pre-
existing cardiovascular issues such as hypertension, diabetes, 
obesity and abnormal lipid profile [11]. The current review 
highlights critical underlying pathophysiological mechanisms 
and different experimental models of cerebral stroke, and also 
describe new therapeutic strategies for the management of 
stroke. 
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Fig. (1). Pathophysiology of ischemic stroke. Lack of oxygen and glucose supply after ischemic stroke triggers mitochondrial dysfunction, 

which resulted into the series of downstream reactions including lipid peroxidation, oxidative stress and inflammation that cause imbalances 

in the cellular homeostasis and neuronal death. SARS-CoV-2 virus also reported to triggers clot formation via ACE-2 receptors. (A higher 
resolution/colour version of this figure is available in the electronic copy of the article). 
 
2. ISCHEMIC STROKE PATHOPHYSIOLOGY 

The pathophysiology of stroke is perplexing due to com-
plex changes in the energy metabolism, ions homeostasis, 
calcium signaling, levels of cytokine, blood-brain barrier 
(BBB) integrity, inflammation, and glial cells [12]. These are 
interrelated and coordinated events, which influenced the 
ischemic-core region that later converted into necrotic cell 
death [13]. The occurrence of stroke and severity of post-
ischemic consequences have been ascribed to several factors 
as described below and in Fig. (1).  

2.1. Genetic Aberrations in Stroke 

Several studies highlighted the importance of genetic fac-
tors in the occurrence of ischemic stroke. A nested case con-
trol study reported the involvement of C-reactive protein 
(CRP) genetic variants in the prevalence of stroke, the gene 
variants rs1800947 in CRP gene and rs1169288 in the 
HNF1A gene [14]. A study conducted on the Chinese Han 
population for genetic risk of ischemic stroke reported poly-
morphisms in the three KALRN gene; SNP rs7620580, 
rs2289843 and rs1708303 [15]. TNF-α, an inflammatory 
marker that is ubiquitously expressed in ischemic stroke pa-
tients and can cause hyperinflammatory reaction, a meta-
analysis study found that TNF-α 238G/A polymorphism is 
linked with an increased risk of ischemic stroke [16, 17]. 
Mammalian homolog of Drosophila diaphanous-1 (DIAPH-
1) is an effector in Rho signaling pathway in humans; its 
effect is varied from vascular remodeling and inducing pro-

platelet formation that is implicated in the pathophysiologi-
cal alterations following stroke episodes [18, 19], case con-
trolled and cohort studies have reported that polymorphism 
associated with rs7703688 is linked to higher risk of ischem-
ic stroke [20]. Thus, stroke is governed by genetic predispo-
sition, as most of the genes that cause increased susceptibil-
ity to stroke are those of the inflammatory markers, which 
are highly overexpressed; these can cause potential oxidative 
and inflammatory damage to the regions associated with 
stroke and can further prove detrimental.  

2.2. Influence of Age, Sex and Race on Stroke  

Stroke incidence and severity are directly linked with the 
age and sex of an individual. The mortality rate of aged 
stroke patients is more irrespective of their sex [21]. The 
causal relation of hypercholesteremia, vasculature microen-
vironment and hypertension comorbidities with the occur-
rence of stroke episodes and severity was also reported in the 
aged population [22]. The stroke incidence doubled after an 
individual crosses the age of 55 years [23]. Adults, age group 
of 18-50 years, contribute 10-15% of all stroke cases [24]. 
However, the stroke incidences are stepping up in young 
adults also, which is possibly due to lifestyle alterations. For 
instance, 1008 young stroke patients in Finland were as-
cribed to stroke due to a number of vascular problems such 
as dyslipidemia, smoking and chronic hypertension [25, 26]. 
Moreover, a study on young adults concluded that the cases 
of stroke are more with individuals abusing methampheta-
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mine, this is possibly due to the hypertensive crisis following 
the excessive use of the said drug [27]. 

It has been noticed that males are more susceptible to is-
chemic stroke, whereas a longer lifespan in females indicates 
high stroke prevalence [28]. The gender differences in stroke 
incidence were reported to be related to the immune respons-
es. For instance, elevated levels of IFN-γ and T-cell func-
tions were observed in male as compared to females [29]. 
The decreased levels of sex hormones the middle aged and 
menopause women have also been linked to ischemic stroke 
[30]. The risk of ischemic stroke is higher in the final tri-
mester and early postpartum period of pregnancy [31]. Patent 
foramen ovale (PFO) related strokes are common in pregnant 
women. While PFO is of cryptogenic origins, this occurs 
mainly due to change in the hormonal and hemocoagulative 
parameters [32]. Females taking non-estrogenic oral contra-
ceptives had lower risk of occurrence of ischemic stroke as 
compared to females taking high dose estrogen derivatives 
[33]. Another sex hormone, progesterone, was found to be 
neuroprotective in females in post-ischemic conditions, the 
effects may be due to the progesterone metabolite allopreg-
nanolone which positively modulates GABAA receptors [34]. 
Post-menopause incidences of stroke episodes seem to in-
crease due to lower levels of circulating estrogen, which of-
fers neuroprotection when in optimum concentrations during 
the fertile age [35]. It is evident that stroke cases increase in 
the case of elderly and there is significant neuroprotection in 
the case of females. This can be a plausible reason in low 
occurrence of stroke incidences in females. Thus, these find-
ings suggest that both age and sex factors are pertinent in the 
outcome and occurrence of stroke.  

Apart from age and sex of an individual, it has been ob-
served that race and ethnic background also determine the 
severity and mortality in stroke. Several studies documented 
that the burden of stroke-related mortalities is higher in black 
people as compared to the white population. Such a disparity 
has also been correlated with the higher co-morbidities and 
risk factors such as hypercholesteremia, high body mass in-
dex [BMI] and obesity [36, 37]. 

2.3. Hyperinflammatory Responses after Stroke  

The endothelial cells, astrocytes, microglia, and neurons 
are known to increase the proinflammatory mediators after 
an ischemic insult. Reactive astrocytes are one of the hall-
marks in the stroke pathology, which cause glial scarring, 
oxidative stress and inhibition of dendritic and axonal 
growth [38]. A significant part of neuroinflammation in the 
penumbral region is limited to microglial activation [39], by 
producing various proinflammatory cytokines and harmful 
metabolites. Invasion of macrophages into adipose tissue 
triggers the release of leptin and inflammatory cytokines, 
which provokes macrophages activation and disruption of 
endothelial cell [40]. Thus, considering the pathophysiologi-
cal significance of microglia and macrophages in stroke, 
inflammation modulatory therapeutics may be developed 
[41, 42].  

A range of studies indicated the involvement of leuko-
cytes in the aftermath of stroke severity. The leukocytes in-
terfere with reperfusion-initiated tissue injury and microvas-
cular damage by releasing different proteases and causing 

oxidative stress, along with this, they also cause stiffening of 
the microvasculature due to occlusion by activated form of 
leukocytes [43]. Taken together, activation of brain endothe-
lial cells, extravascular CNS cells (astrocytes, microglia, 
macrophages and neurons), and intravascular cells (platelets 
and leukocytes) are responsible for brain injury following 
ischemic stroke [44]. These augmented inflammatory reac-
tions following stroke injury may negatively influence the 
BBB integrity. These complex alterations thus potentially 
lead to long-term damage of the CNS resident cells and in-
creased death of the cells due to hyperinflammatory respons-
es, thereby predisposing catastrophic outcomes.  

2.4. Lifestyle and Ischemic Stroke 

It is evident that sedentary lifestyle and unhealthy diets 
such as high salts and cholesterol containing foods increase 
the chances of cardiovascular diseases. The connection of 
cardiovascular diseases with stroke occurrence has been not-
ed in several meta-analysis studies [45]. Indeed, the inci-
dence of cardiovascular disease and ischemic stroke is re-
markably low in the population who consume unprocessed 
plant-based products, polyphenols and olive oil rich in mon-
ounsaturated fatty acids, and the Mediterranean diet [46, 47]. 
The antioxidant property of these ingredients regulates the 
levels of inflammatory cytokines [47, 48]. Meta-analysis 
data indicated that increase intake of vitamin-B and omega-3 
fatty acid reduces the incidence of stroke [49]. In contrast, 
cholesterol-rich foods and increased triglyceride levels pro-
voke the endothelial dysfunction, oxidative stress, and in-
flammation that subsequently develops atherosclerotic 
plaques [50]. Smoking also increases the proinflammatory 
cytokines and platelet aggregation and stroke incidence by 2-
4 folds [51, 52].  

2.5. Oxidative Stress and Lipid Peroxidation 

Several exploratory and clinical observations have indi-
cated the free radical generation following stroke injury [53]. 
The superoxide formation causes additional tissue damage, 
and it is believed to be a significant trigger molecule for 
apoptosis after ischemic stroke [54, 55]. Lipid peroxidation 
seems to be of profound interest in the pathogenesis of 
stroke. A portion of these record factors prompts the declara-
tion of provocative cytokines (for instance, IL-1, IL-6, and 
TNF-α) and chemokines (IL-8 and MCP-1), endothelial cell 
attachment molecules (selectins, ICAM-1 and VCAM-1), 
and other proinflammatory qualities (interferon-inducible 
protein-10] [39]. 

2.6. COVID-19 and Ischemic Stroke  

COVID-19 is a viral respiratory disease that is caused by 
the severe acute respiratory syndrome-associated corona-
virus-2 (SARS-CoV-2) variant, which has recently been de-
clared as a pandemic by the WHO [56]. The level of D-
dimer is found to be high in case of COVID-19 infected pa-
tients. The implications are increased coagulopathy that 
leads to thromboembolism causal for the occurrence of is-
chemic stroke [57, 58]. Along with this, enhanced levels of 
various proinflammatory cytokines such as IL-6, IL-1β and 
TNF-α (cytokine storm), which are associated with innate 
immune responses, increase the incidences of ischemic 
stroke [59]. The occurrence of stroke is also ascribed to in-
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creased levels of both IL-6 and CRP which also led to stroke 
episodes, possibly by the release of tissue factors (TFs) and 
hypercoagulability [60]. Presence of antiphospholipid anti-
bodies leads to a prothrombotic state [61]. The altered co-
agulative factors and endothelial dysfunction is seen in 
COVID-19 infected individuals [62]. While the putative 
mechanisms underlying the occurrence of stroke after 
COVID-19 infection is still in exploratory phase, vascular 
dysfunction due to depletion of angiotensin converting en-
zyme (ACE-2) receptors on the cerebral endothelial cells is 
one of the probable factors that can influence the occurrence 
of stroke episodes [61].  

3. IN VITRO AND IN VIVO MODELS OF ISCHEMIC 
STROKE 

3.1. In Vitro Models 

Commonly, monocultures of brain capillary endothelial 
cells (BCECs) or co-culture of BCECs, astrocytes and glial 
cells are used, in these assays ischemia is mimicked by oxy-
gen-glucose deprivation (OGD) method [63, 64]. Different 
cells are used to mimic stroke conditions in vitro, for in-
stance, thin brain slices (400 μm) can be used of both human 
and murine origin where these are perfused with OGD artifi-
cial cerebral spinal fluid focally [65, 66]. Organotypic hip-
pocampal slice cultures are also used coupled with OGD, 
particularly that of CA1 area of the hippocampus which is 
highly susceptible to stroke [67]. Primary cultures isolated 
from animals such as glial, pericytes or astrocytic cells are 
used for stroke studies [68-70].  

3.2. In Vivo Models  

3.2.1. Focal Cerebral Ischemic Models 

Focal ischemic rodent models recapitulate several symp-
toms of human stroke, in which a minimum blood flow is 
allowed to the central core of the ischemic region via the 

vertebral arteries (Fig. 2). Majority of focal cerebral ische-
mia procedures involve a transient or permanent occlusion of 
the middle cerebral artery (MCA) in rodents and large 
mammals [71, 72], which is commonly affected vessel in 
clinical ischemic stroke. A range of MCA occlusion 
(MCAO) models has been developed in rodents [73, 74]. 
Herein, some of these MCAO models are described below 
that are extensively used to produce focal cerebral ischemia 
in rodents. 

3.2.1.1. Middle Cerebral Artery Occlusion (MCAO) Model 

The filamentous arterial occlusion technique of MCA has 
been extensively used to study the pathophysiology of stroke 
and evaluation of new investigating molecules. As depicted 
in Fig. (2), this method can be employed for both permanent 
and transient focal cerebral ischemia. Koizumi et al. [75] and 
Longa et al. [76] have conducted pioneering studies using 
this method in rats. The procedure involves insertion of a 
filament from the external carotid artery (ECA) or carotid 
artery into the internal carotid artery (ICA) up to the branch 
of MCA to block the blood flow for 30-120 minutes, and 
then reperfusion can be achieved by retracting filament [76, 
77]. It has been documented that blockade of MCA severely 
affects its innervated brain structures such as striatum, hip-
pocampus, and cortex in the form of neuronal cell death by 

exacerbating the inflammatory response during reperfusion. 
While rats and mice are the most preferred species for this 
procedure, it can also be implemented on larger animals like 
primates using balloon catheters [78]. The pros and cons 
associated with this model are enlisted in Table 1. The note-
worthy part of the intraluminal filament occlusion model is 
that reperfusion (ischemic time) can be timely decided and 
thus this model plays an integral role in studies requiring 
reperfusion. Among the ischemic stroke models, the transient 
MCAO is the most popular due to its minimal invasive na-
ture, absence of craniectomy, ease of performance and re-
producible territory infarct volume. However, some pitfalls 
have also been associated to this procedure such as (i) it does 
not recapitulate the root cause of ischemia i.e., thromboem-
bolism [79], (ii) inadequate filament insertion till the opening 
of MCA or dislodged after insertion may lead to partial is-
chemia [80-82], (iii) may produce inadvertent subarachnoid 
hemorrhage (SAH) [76, 80, 83], (iv) involves instant blood 
surge during reperfusion in contrast to gradual recanalization 
of occluded vessel in stroke individuals [79], (v) a high rate 
of variability with neuroanatomical location and size of the 
lesion reported across animal species/strains [82, 84-87], (vi) 
chances of the intraluminal thrombus formation [75, 88], and 
(vii) intra-ischemic and post-ischemic hyperthermia may 
also occur [89]. Some of the procedural limitations can be 
avoided by inclusion of Laser Doppler Flowmetry (LDF) and 
using suitable size, shape and length of filament [81, 82, 84-
86, 90-92]. Moreover, live imaging techniques such as mag-
netic resonance imaging (MRI) can be employed during sur-
gery. Although inclusion of MRI during MCAO surgery 
becomes costlier to experimenter, the successful stroke and 
hemorrhagic complications in rats was 88% and 6% vs. 71% 
and 26%, respectively without MRI [93]. Vascular variabil-
ity may be circumvented using suitable animal strain. For 
instance, Howells et al. [94] suggested that Wistar-Kyoto 
could be preferred for rat ischemic stroke models. Recently, 
a new way of mimicking the aged phenotype in young mice 
has been suggested by Spychala et al. [95]. They reported 
that fecal microbiota transplantation of aged mice into young 
generates the aged animal phenotypes. They also noted in-
creased mortality, decreased performance in behavioral test-
ing, and increased levels of cytokines following MCAO. It 
has been suggested that the unwanted effects of rapid blood 
reperfusion may be minimized using the gradual flow resto-
ration in MCAO rats [96]. Long-term neurological defi-
cits/recovery may be evaluated using several behavioral tests 
as described in Table 2 [97-99]. 

3.2.1.2. Internal Carotid Artery Occlusion (ICAO) Model 

This is an alternative method of MCA occlusion, which 
bypasses the ligation of ECA. The major strength of ICAO 
model is that it may avoid the unwanted neurological deficits 
such as impeded food intake and weight loss seen after 
MCAO surgery due to disruption of the blood supply to mas-
tication muscles [100]. Similar to MCAO procedure, the 
ICAO involves the occlusion of the ICA for approximately 
90 min followed by reperfusion. This model generates mild 
to moderate lesion in the striatum that resembles human 
stroke pathology [101]. It is anticipated that this model is 
more robust and confer more similarity to human stroke epi-
sodes due to precise targeting of the ICA. 
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Fig. (2). Schematic representation of MCAO procedure. The proce-

dure involves insertion of a filament from the ECA into the upto the 

branch of MCA to block the blood flow, and then reperfusion by 

retracting filament: Abbreviations: CCA: Common Carotid Artery; 

ECA: External Carotid Artery; ICA: Internal Carotid Artery; PPA: 

Pterygopalatine Artery. 

 

3.2.1.3. Embolic Model 

Since ischemic strokes in humans are mostly caused by 
thromboembolism [102, 103], animal stroke models reca-
pitulating the clinical thromboembolism conditions are con-
sidered relevant [104]. These models are useful for assessing 
neuroprotective activity and re-canalization (thrombolytic) 
therapy after ischemic stroke [105, 106]. In embolic para-
digms, emboli (such as thrombotic clots, microspheres and 
photothrombotic) of different sizes and quantity are injected 
to interrupt the CBF of targeted arteries in mice, rats, rabbits, 
pigs, and dogs [107-110]. These animal models are suitable 
to detect the additive or synergistic effects of new treatments 
with thrombolytic drugs (like rt-PA) or to screen new throm-
bolytic agents.  

3.2.1.4. Thrombotic Model 

In thrombotic focal cerebral ischemic model, the MCA is 
selectively occluded by introducing a thromboembolic clot 
made up of autologous blood [111, 112] or a clot of human 
blood [113, 114]. This thromboembolism model has higher 
relevance to human stroke [115]. While decreased CBF in 
the ipsilateral MCA territory for at least 2 h indicates suc-
cessful modelling, multiple fibrin-rich allogeneic clots are 
also injected simultaneously into the ECA to avoid the prob-
lem of spontaneous recanalization [116, 117]. MRI can be 
used to visualize the persistent ~24-48 h of occlusion and 
thrombolysis of occluded MCA by rt-PA administration after 
ischemia [118]. Atochin et al. [107] injected fibrin microem-
boli into the cerebral circulation of mice to generate a micro-
embolic model of stroke. In 2007, a mouse model of throm-

boembolic stroke was developed using in situ microinjection 
of purified murine thrombin to the distal branches of MCA 
on the cortical surface [119]. Topical application of ferric 
chloride on brain area overlying the MCA or common carot-
id artery (CCA) is reported to generate a more robust throm-
botic MCAO [47, 120]. The important advantages pertaining 
to this model are higher reproducibility, real time In-vivo 
evaluation of the cortex feasible using laser speckle flowme-
try or 2-photon microscopy, and useful for testing thrombo-
lytic drugs [121].

3.2.1.5. Microsphere Model  

The microsphere embolic stroke is a multifocal model of 
permanent occlusion [122] that occurred primarily by depos-
iting microemboli in the pial vasculature (around 40%) and 
among the remaining [60%) by entering into penetrating 
arteries [123]. In a non-human primate model, microspheric 
emboli are reported to distribute in the watershed areas 
[124]. In a recent study, ischemic damage is induced by in-
jection of microspheres into the ICA that showed a cortical 
watershed-pattern embolism [125]. In this method, the sever-
ity of stroke and lesion volume can be controlled by the size 
and number of the injected microspheres [126-128]. Several 
different validated compounds and artificial microspheres, 
such as collagen, viscous silicone, polyvinylsiloxane, TiO2, 
Al2O3 and heterologous atheroemboli have been employed 
to induce ischemia [126, 129-131]. Sodium alginate micro-
spheres [100-300 µm) were also found useful to induce is-
chemic stroke in miniature pigs by rete mirabile occlusion 
[132].  

The clearance of microemboli is a major challenge faced 
by this model (Table 1). Lam et al. [133]  suggested that 
microemboli undergo active extravasation from the vessel 
lumen within 2-7 days of injection, which resulted in the 
clearance of emboli without inducing the ischemic stroke 
[134]. This technique is advantageous and unlike intralu-
minal suture MCAO model, it did not show hypothalamic 
infarction and hyperthermia in animals [126, 135]. Moreo-
ver, lesion development occurs at a slower rate than the 
MCAO model [136]. 

3.2.1.6. Photothrombosis Model 

The Rose Bengal model was initially proposed by Ros-
enblum and El-Sabban [137] and later on in 1985, photo-
thrombotic stroke was generated by producing a blood vessel 
occlusion. A systemic injection of photosensitizing dye 
(Rose Bengal or erythrosin B) with an irradiating beam of 
light at a wavelength (560 nm) is administered within a spe-
cific cerebral blood vessel to induce cortical infarct [138]. 
The reaction between light and the photoactive dye generates 
singlet oxygen species that cause peroxidation of endothelial 
lipids and blood elements with subsequent platelet aggrega-
tion or thrombi formation and microvascular occlusion with-
in the irradiated area [111, 138]. Studies have also confirmed 
the mechanics of targeted green laser in the noninvasive oc-
clusion of pial arterioles and venules at the brain surface 
[139, 140]. This protocol demonstrated the production of a 
larger, highly reproducible infarction in terms of lesion size 
and location in rats, mice and primates like marmosets   
[141-143] by adjusting both intensity of beam light and the 
concentration of photoactive dye. This method i.e., 
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Table 1. Summary of brain ischemia animal models. 

Type of 

Model 

Experimental 

Models 

Preferred Species and 

Procedure 
Strengths  Caveats  

Focal 

Ischemia 

Intraluminal 

filament 

occlusion model  

Rat, mouse and several other 

species including primates, 

Procedure: Introduction of 

intraluminal thread 

� Gold standard method for mechanistic 

studies of cerebral ischemia. 

� Resembles to clinical stroke (face 

validity). 

� Suitable for both permanent and 

transient MCAO. 

� Reperfusion time can be managed 

accurately. 

� Experienced surgeon can achieve high 

success rate. 

� Low mortality and highly reproducible. 

� Infarction and penumbra regions clearly 

visible. 

� No craniectomy requires which preclude 

the impact of physical injury to the 

brain. 

� Risk of partial (incomplete) occlusion of the 

MCA. 

� Challenging surgical procedure for inexperience 

person. 

� Not mimic pathophysiology of clinical stroke 

(constructive validity) where typically gradual 

blockade of blood vessel and recanalization 

occurs. 

� Not reproduce thromboembolic occlusion or 

examine the thrombolysis. 

� Infarction size highly dependent on the anatomy 

of the circle of Willis and degree/duration of 

occlusion. 

� Chances of SAH and hyperthermia 

Application of modern techniques like DWI, 

MRI, MR angiography are expensive. 

Endothelin-1 

(ET-1] 

Rat, mouse, monkey 

Procedure: Topical 

administration of ET-1 to the 

abluminal surface of the 

exposed MCA or stereotaxic 

injection of ET-1 into tissue 

adjacent to the MCA 

� The surgery is quick and straightforward 

for targeting the MCA and avoids 

damage to the facial muscles. 

� Brain region-specific delivery of ET-1 is 

possible by implanting guide cannula. 

� By targeting specific neuroanatomical 

areas, for instance white matter tracts, 

internal capsule etc., a specific 

behavioural deficit can be achieved. 

� ET-1 can be injected in conscious 

animals, thereby removing any 

confounds of anaesthesia. 

� Low invasiveness, low mortality 

� Reproducible, possible without opening 

skull. 

� Require surgical skills to carry out the 

craniectomy and expose the MCA without 

causing significant bleeding or damage to the 

underlying cortex. 

� High variability in lesion volume linked to 

variability in the response of the blood vessels 

to ET-1. 

� Production of penumbral tissue is unclear. 

� Occlusion time is uncertain. 

� Induces astrocytosis and axonal sprouting. 

� During proximal occlusion may damages 

temporalis muscle which can cause eating 

disturbances. 

� Inconsistent with single vessel theory of lacunar 

stroke. 

Embolic  

Thrombotic: Rats, mice, 

rabbits, and dogs 

Procedure: Injection of clots 

(fibrin-rich emboli) into 

cerebral vessels 

� Recapitulate the clinical situation of 

ischemic stroke. 

� Reproduce the clinical condition 

observed with rt-PA induced reperfusion 

(predictive validity). 

� New thrombolytic agents and 

neuroprotective agents can be evaluated 

Higher reproducibility and suitability for 

testing thrombolytic drugs either alone 

or alongside adjunct therapies.  

� In-vivo real time recording of the cortex 

possible using laser speckle flowmetry 

or 2-photon microscopy. 

� Display higher mortality and variability in 

lesion size. 

� High probability of multifocal ischemic lesions 

� Spontaneous recanalization occurs. 

� Challenging procedure to position the clot to the 

MCA-origin. 

� Show high incidence of gross haemorrhage. 

Microspheres: Rats, mouse, 

rabbits, and dogs 

Procedure: Injection of 

calibrated microspheres into 

MCA 

� Represent the clinical situation linked to 

rt-PA induced reperfusion. 

� Higher reproducibility, low mortality 

and suitability for testing thrombolytic 

drugs either alone or alongside adjunct 

therapies. 

� In-vivo real time recording of the cortex 

possible using laser speckle flowmetry 

or 2-photon microscopy. 

� New thrombolytic agents can be 

evaluated. 

� Ischemia severity can be managed using 

different sizes of microspheres. 

� No hyperthermia like MCAO method, 

and also avoids hypothalamic damage. 

� Challenging to induce the 

neurological/sensorimotor deficits because of 

the small size and location of the infarct. 

� Partial to complete reperfusion occurs by 

spontaneous recanalization after occlusion. 

� Low rate of successful induction of stroke 

� Highly variable histologic and behavioural 

outcome. 

� rt-PA dose in rodents is 10 times more as 

compared to humans. 

(Table 1) contd…. 
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Type of 

Model 

Experimental 

Models 

Preferred Species and 

Procedure 
Strengths  Caveats  

- 

 

Photothrombosis: Rats, mice, 

marmoset, piglets, rabbit  

Procedure: Inject 

photosensitive dye 

� Produces thrombi similar to the thrombi 

observed in human stroke. 

� Relatively simple and quick surgical 

procedure. 

� Lower rate of variability. 

� Circumscribed lesions possible with 

anatomical precision. 

� Impact of reperfusion with thrombolysis 

(i.e. rt-PA) and/or neuroprotectants is 

doable. 

� Cellular mechanisms can be studied 

using application of MRI, 2-photon 

microscopy etc. 
� High throughput assay. 

� Vasogenic edema and BBB breakdown occurs. 

� End-arterial occlusive nature of the model. 

� Not suitable for investigating neuroprotective 

agents. 

� Creates narrow ischemic penumbra. 

� Not suitable to screen anti-thrombotic agent. 

Electrocoagulati

on  

Rat, cat, monkey, dog, rabbit 

and pig 

Procedure: Surgical occlusion 

of MCA by 

electrocoagulation 

� Distal or proximal occlusion of the MCA 

can be planned in order to induce a 

stroke affecting cortical or both cortical 

and sub-cortical territory. 

� Display good reproducibility and less 

variability in lesion size. 

� Avoid damages to hypothalamus, 

hippocampus and mid-brain. 

� Low mortality rate. 

� Owing to the craniectomy required to 

visualise and occlude the MCA which 

limits the effects of oedema. 

� It induces permanent MCAO. 

� Reperfusion studies are not possible. 

� May damage the underlying cortex or lead to the 

rupture of blood vessels. 

� Perturb the intracranial pressure and BBB 

function. 

Global 

Ischemia 

4-vessel 

occlusion 

Rat 

Procedure: Atraumatic 

clamps loosely placed around 

both CCA and electro-

cauterization of vertebral 

arteries  

� Perform on awake and freely moving 

animals. 

� Induces reversible bilateral forebrain and 

brainstem 

ischemia. 

� Visualisation of vertebral arteries is difficult 

� Neurological effects highly dependent on 

animal strain. 

2-vessel 

occlusion or 

Bilateral carotid 

occlusion 

Rat and gerbil 

Procedure: Bilateral CCA 

occlusion  

� Simple surgical procedure. 

� Better histological assessments. 

� Rapid screening technique. 

� Induces reversible forebrain ischemia. 

� Induces hypotension. 

� Use of anaesthesia complicates the assessment 

of results. 

Decapitation 

Rat and mouse 

Procedure: Decapitation after 

anaesthetizing animals 
� Simple surgical procedure. 

� Produce irreversible global ischemia without 

recirculation. 

� Obsolete method. 

Cardiac arrest 

Rat, cat, dog and monkey 

Procedure: Intra-cardiac 

injection of KCl or other 

cardioplegic agents or 

introducing a hook into the 

chest  

� Mimic a common cause of ischemic 

stroke in humans. 

� Can be performed in different strain of 

animals. 

� Display high variability. 

� Complicate the systemic effects and increases 

morbidity. 

Systemic 

hypotension and 

hypoxia 

Procedure: Hypoxia is 

induced by 4% oxygen and 

96% nitrogen and for 

hypotension different 

pharmacological agents can 

be used 

� No surgical procedure involved. � Reproducibility issue in terms of infarct size. 

 

photothrombosis of MCA was also tried on infant piglets for 
ischemic stroke [144]. Recently, Clark et al. [145] demon-
strated the artery-targeted photothrombosis to create selec-
tive infarcts in the forelimb regulating region of motor cortex 
that resulted in a deficit of forelimb motor function.  

Few drawbacks of this technique are (i) if adopted for 
distal MCAO, it leads to infarction in the cortex [146], which 
is not mimicking the clinical stroke i.e. in basal ganglia 
[147], (ii) it creates a small ischemic penumbra [148] thus it 
is challenging to study the cellular mechanisms of recovery 
associated with improved functional outcomes [149], (iii) it 
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does not replicate the inflammatory and protective milieu of 
MCAO model [150], and (iv) non-specific application of 
illumination affects a large number of vessels in brain, 
whereas a single artery is affected in clinical stroke.  

The advantage of this stroke model is that (i) it produces 
thrombi similar to the clinical cases by occluding the pial 
vessels around the illuminated zone, (ii) it is a non-invasive 
technique in which animals display long-term sensorimotor 
deficits and survival [151], (iii) it can create a circumscribed 
lesion in discrete brain structures like cortex which may fa-
cilitate reliable behavioural impairments [138, 148], and (iv) 
it is useful for identifying new therapeutic agents for endo-
thelial damage and examining molecular mechanisms under-
lying brain plasticity in transgenic mice [138]. 

3.2.1.7. Models Requiring Craniectomy (Electrocoagula-
tion) 

Another invasive procedure of MCAO includes a crani-
otomy surgery to coagulate or ligate the MCA at the proxi-
mal or distal end [152]. It involves direct occlusion of the 
MCA by electrocoagulation, microaneurysm clips or liga-
tures. Apart from successful implementation in rats and mice 
for inducing experimental stroke [153], this procedure has 
also been used in non-human primates, cats, dogs, rabbits 
and pigs [154, 155]. The infarction size depends on whether 
the MCA and CCA are permanently or transiently occluded 
[156]. The cortical lesion is induced by a distal occlusion of 
the MCA, whereas a proximal occlusion leads into a larger 
sub-cortical and cortical infarct.  

As summarized in Table 1, advantages of this model in-
clude low mortality, visual confirmation of successful 
MCAO, reproducible infarct size, reperfusion possible in 
ischemic region, and occurrence of noticeable neurologic 
deficits. Upon comparison of the intraluminal suture model 
to the craniotomy model, the latter produces smaller infarcts 
as well as avoids damage to the hypothalamus, hippocampus 
and mid-brain. This method mostly targets the cortical and 
striatal regions and produces ischemia. However, the major 
concern with this model is the surgical damage inflicted to 
the cortex or the rupture of blood vessels, which affects the 
intracranial pressure and blood brain barrier (BBB) function 
[157]. To overcome this problem, photochemical application 
through intact skull was suggested to induce a distal MCAO 
in mouse model [158]. Furthermore, application of MRI dur-
ing MCAO may prevent non-specific brain damage [159]. 

Despite promising efficacy of investigational molecules 
in the experimental preclinical models, only few compounds 
achieved success in the clinical trials. Thus, question on the 
predictive validity of animal experimental models has been 
raised to preclinical consortium. However, lack of efficacy in 
clinic may be due to the multifaceted nature of stroke patho-
physiology and presence of multiple comorbidities. To ad-
dress this translational problem, Stroke Therapy and Aca-
demic Industry Roundtable [STAIR] have defined some 
guidelines for conducting the preclinical studies [160, 161]. 
For instance, in 2009, STAIR recommended the use of fe-
male, hypertensive, aged, and diabetic animals in preclinical 
stroke research to better simulate human stroke [160]. They 
also suggested testing the efficacy in at least two independ-
ent laboratories performed in blinded and randomized man-

ner, with supported histological and functional data. The 
STAIR committee also advised researchers to focus on the 
test compound’s therapeutic time window, route of admin-
istration, pharmacokinetics and dose-response relationships. 
Nonetheless, yet most of the animal models of stroke are too 
dissimilar to the human stroke and implementation of the 
STAIR recommendations do not satisfy the clinical demand 
in stroke. Therefore, more refined preclinical testing is still 
warranted to achieve successful stroke therapies in the fu-
ture.  

4. NOVEL EXPLORATORY TARGETS IN ISCHEMIC 
STROKE 

Current therapeutic interventions for ischemic stroke are 
mainly aimed at reopening the blocked blood vessel using 
mechanical or pharmacological (thrombolysis) strategies. To 
date, only one thrombolytic drug, recombinant tissue plas-
minogen activator (rt-PA), has been approved by the U.S. 
Food and Drug Administration for acute ischemic stroke 
[162]. However, rt-PA treatment has few limitations like 
narrow time window (i.e. mostly useful when administered 
within 6 h of stroke onset), exhibits a risk of a cerebral hem-
orrhage in some cases [163], and found effective only in a 
small subset of patients. Thus, there is an unmet medical 
need in this area. Several new treatment modalities have 
been tested in experimental stroke models [164], and many 
of these also demonstrated substantial preclinical success. 
For instance, restorative treatment using stem cell therapy 
showed a dramatic reduction of neurological disability [165]. 
But, till today, no therapeutic entity showed promising clini-
cal recovery in stroke patients. Thus, there is a pressing need 
for developing newer and improved therapies for the man-
agement of post-stroke neurological and neuropsychiatric 
aberrations.  

The alteration in tight junction proteins and transporters 
such as Mrp1, Mrp2 and Mrp4 represented the compromised 
BBB integrity following stroke injury [166]. The antioxidant 
drug such as Tempol has shown a great promise in preserv-
ing the integrity of tight junction proteins. The Mrp inhibi-
tors also showed promising effects in in vivo models of 
stroke [167]. Therefore, antioxidant drugs that repair the 
compromised BBB integrity can be developed for post-
stroke complications.  

Circular RNAs (circRNAs) are endogenous and stable 
RNAs in the CNS, which are reported to be overexpressed in 
case of patients with ischemic stroke. The knockdown of this 
protein reduces the post-stroke infarct size in mice [168]. 
Similarly, circTLK1 was reported to upregulate in patients 
with acute ischemic stroke, and injection of shRNA 
circTLK1 lentivirus reduces the plasma levels of this circR-
NA variant and thereby reducing the infarct zone [169]. 
Thus, circRNA can be one of the possible targets for neuro-
protection after an ischemic injury. However, the underlying 
mechanisms are still unclear and need further investigation.  

Caveolin-1 is a cholesterol binding protein important for 
neuronal survival and growth [170]. In this connection, drugs 
that upregulate caveolin-1 have been reported to promote 
neuronal plasticity and growth via PI3K and GSK3β signal-
ing [171]. In recent times, the role of fatty acid binding pro-
tein 4 isoform (FABP4] has also been envisaged in ischemic 
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Table 2.  Behavioral models for neurological deficits testing in stroke research. 

Behavioral Test Type of Assessment Merits Demerits Clinical Relevance 

Neurological deficits 

scoring 

Sensorimotor screen-

ing 

Simple testing; Good for acute 

neurological scoring. 

Subjective; Not useful for long-

term assessment. 

Post-stroke early onset pheno-

types: weakness of arms/legs, 

gait disturbances and muscle 

strength. 

Rotarod 
Motor coordination 

and balance 

Simple testing; Good for acute 

neurological scoring. 

Pre-training required; Not suita-

ble for long-term neurological 

evaluation. 

Gait disturbances and muscle 

strength. 

Adhesive label 
Forelimb sensorimo-

tor asymmetry 

Helps to differentiates between 

sensory and motor functions at 

both short- and long-term inter-

vals. 

Removal time affected by motor 

learning and repeated exposure. 

Numbness or loss of sensations 

of arm/leg. 

Cylinder test 
Spontaneous use of 

forelimbs 

Simple testing; No pretraining 

required; Sensitive to long-term 

neurological evaluation. 

Not suitable for time-dependent 

repeated testing. 

Numbness or loss of arm/leg 

sensations. 

Grid walking (Foot 

fault test) 

Forelimb and 

hindlimb coordina-

tion 

No pretraining; Assessment of 

both fore- and hindlimbs. 

Severely sick animals scrumbled 

on grid. 

Gait disturbances and motor 

coordination. 

Wire hanging 

Muscle strength, 

balance and endur-

ance 

Simple testing; Good for early 

and late neurological scoring. 

Pre-training required; Stressful to 

animals. 

Numbness/weakness of 

arms/legs or muscle strength.  

Beam walking test 
Test hindlimb func-

tion 

Easy assessment; Sensitive to 

detect hindlimb placing deficits. 
Pre-training required. 

Gait disturbances and motor 

coordination. 

Corner Test 
Turning preference 

and asymmetry 

Simple testing; Sensitive to long-

term neurological evaluation. 

Not perform when tested repeat-

edly. 

Numbness/weakness of 

arm/leg or muscle strength. 

Skilled reaching 

tasks 
Skilled forelimb use 

Detailed analysis of movements 

and compensatory strategies. 
Laborious pretraining. 

Numbness/weakness of 

arm/leg or muscle strength. 

Montoya’s staircase 
Forelimb reaching 

and grasping 

Independent use of both fore-

limbs; Sensitive to lesion size. 

2-week pretraining necessary; 

Food deprivation. 

Numbness/weakness of 

arm/leg or muscle strength. 

Open Field test 

Motor function and 

normal exploratory 

locomotion 

Simple testing; Automation pos-

sible. 

Habituation decreases the move-

ment. 

Gait disturbances and motor 

activity. 

Single pellet reach-

ing 
Skilled forelimb use 

Detailed analysis of movements 

and compensatory strategies. 

Laborious, Pretraining required, 

Food deprivation. 

Numbness/weakness of 

arm/leg or muscle strength. 

Pole test 

Motor function and 

coordination, brady-

kinesia 

Simple testing; Good for acute 

neurological scoring. 

Anxiety and learning effects 

performance. 

Numbness/weakness of limb or 

muscle strength. 

Nest‐building deficit 

test 

Sensorimotor indica-

tor 
Natural and spontaneous activity. Long‐term assessment feasible. 

Numbness/weakness of 

arm/leg or muscle strength. 

Catwalk 
Accurately record 

gait 

Automatically record data on 

several variables; Long term 

sensitivity. 

Body weight, light intensity, and 

walking speed of animals affects 

results. 

Gait disturbances and motor 

coordination. 

Kinematics Fine digit control 
Differentiation between true 

recovery and compensation. 
Time consuming. 

Numbness/weakness of 

arm/leg and muscle strength. 

 
stroke. FABP4 increases the COX-2, inflammatory cytokines 
and chemokines, and subsequently provokes the inflam-
masome formation in the macrophages and aggravates the 
post-stroke brain injury [172]. Moreover, upregulation of 
FABP4 after stroke resulted in the disruption of BBB by the 

enhanced levels of MMP-9. Thus, FABP4 has been suggest-
ed as a potential target for the treatment of post-ischemic 
deleterious effects [173].  Post-ischemic release of platelet 
activating factor led to neuronal damage by increased intra-
cellular Ca

2+
 levels and triggering inflammatory cascades 
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[174]. Administration of platelet activating factor receptor 
(PAF-R), antagonist LAU-0901 showed an improved is-
chemic infarct 2 h post-MCAO injury [175]. Adropin, a 
small polypeptide, is downregulated in stroke. Administra-
tion of synthetic adropin was reported to show neuroprotec-
tive effects and reduction of infarction by activating the 
eNOS [176]. Similarly, another active peptide cerebrolysin 
may reverse post- stroke deleterious consequences by in-
creasing neuronal survival and reversing glutamate-induced 
necrotic and apoptotic cell death [177, 178].  

Macrophages and microglial transformation to active 
form play a key role in the progression of post-stroke brain 
injury. M1 microglia is believed to exacerbate the injury by 
releasing the proinflammatory cytokines, whereas M2 phe-
notype was found to be protective [179]. Several repurposed 
drugs are under clinical trials, for instance, drugs that pro-
mote M1 to M2 polarization (Rosuvastatin), decrease M1 
macrophages (Fingolimod, Minocycline and Erythropoietin) 
and promote M2 phenotype-like responses (Rapamycin and 
Xinomiline) [180]. Minocycline, a second-generation tetra-
cycline drug, has been repurposed for neuroprotective and 
anti-apoptotic responses. It inhibits the COX, MMPs and 
inflammatory mediators and reduces inflammation and mi-
croglial activation [177, 181]. Edaravone is a free radical 
scavenger and has been implicated in treating acute ischemic 
stroke; it works by inhibiting the free radical formation and 
anti-apoptotic effects [182, 183]. Inhibition of astrocytes 
activation by fluorocitrate has shown promising effects in a 
focal ischemic mice model [184]. Thus, targeting reactive 
astrocytes may render greater plasticity and neuronal recov-
ery [185]. The cilostazol which offers neuroprotective effects 
and is generally safer than aspirin and significantly reduces 
the infarct size in patients receiving the drug [186]. Some 
other drugs that are extensively used in the clinical setup are 
anti-thrombotic agents such as argatroban, rivaroxaban, 
apixaban and dabigatran etexilate [187].  

4.1. Neuroprotective Approaches 

4.1.1. Neurotrophic Agents  

Neurotrophins belong to a class of growth factors which 
dimerize to form the biologically active species [188, 189]. 
This family includes 5 prominent members such as BDNF, 
NGF, neurotrophin 3 (NT3), neurotrophin 4/5 (NT4/5) and 
neurotrophin 6 (NT6). These neurotrophins are involved in 
the regulation of neuronal differentiation, axonal and den-
dritic growth, and synaptic plasticity. A profound increase in 
neurotrophic factors such as NGF and BDNF was reported 
after brain injury [190]. Administration of neurotrophins 
reported to shift the expressions of antioxidant enzymes 
[191, 192] and repair injured brain tissue [193-195]. In Table 
3, we summarized few key findings relating to the use of 
endogenous and exogenous neurotrophins such as BDNF and 
NGF in the management of stroke complications in In-vitro 
and In-vivo animal models. 

4.1.2. Neurogenesis in Ischemic Stroke 

Neurogenesis centers in the brain i.e., subventricular zone 
(SVZ) and subgranular zone (SGZ) of the dentate gyrus 
(DG) that may offer neuroblast migration to the ischemic 
boundary [204]. Neurogenesis process is regulated by the 
levels of glucocorticoids, excitatory neurotransmission, 

nerve growth factors and physiological stress [205]. It can 
also be controlled by pharmacological interventions [206]. In 
adults, the occurrence of focal cerebral ischemia induces the 
proliferation and differentiation of neural stem and progeni-
tor cells in the SVZ and SGZ. Many evidence showed that 
vascular (niche) were progenitor cells which regulate the 
stem cell-renewal, progenitor differentiation and neuroblast 
migration [207]. In adults SVZ region is composed of A, B 
and C types of cells [208, 209]. It has been reported that 
stroke triggers these SVZ cells during neurogenesis after 
stroke [210, 211]. Endothelial cells release neurotrophic fac-
tors like brain-derived neurotrophic factor (BDNF) and vas-
cular endothelial growth factor (VEGF), which play a role in 
stimulating the self-renewal of adult neural stem cells, and 
promote the production of neurons [212, 213]. These reports 
suggest that neurogenesis increases after ischemic stroke 
induction. 

4.2. Stem Cell Therapy in Stroke 

Neural stem cells (NSC) envisage to form new synaptic 
connections and protect neurons after ischemic brain injury 
[214]. NSC therapy also stimulates the secretion of endoge-
nous neurotrophins like BDNF [215], which may protect 
BBB integrity and avoid subsequent damage [216]. Apart 
from NSC, induced pluripotent stem cells (iPSCs) and mes-
enchymal stem cells (MSCs) are popular stem cell-based 
treatments. Administration of bone marrow derived MSC is 
reported to increase angiogenesis and neuronal growth by 
releasing angiogenic factors and neurotrophins [217]. Intro-
duction of BDNF gene into human bone marrow derived 
MSCs reported to increase the neurogenesis in a rat MCAO 
model [218]. Administration of bone marrow stem cells in-
duces astrogliosis in the MCAO mouse model [219]. Injec-
tion of human induced pluripotent stem cells showed an in-
crease in neurogenesis and decreases of microglial activation 
in a pig model of stroke [220]. Adult pluripotent like olfacto-
ry stem cells have also shown beneficial effects in stroke 
models of pig via their differentiation into neuronal, glial cell 
types in the injury site and thus better functional recovery 
post intracerebral injection [221]. Newer therapies targeting 
both the areas of interest and other peripheral mechanisms 
that are altered in ischemic attack can be of some clinical 
importance, such as neurotrophins and stem cell therapy 
[10]. Stem cell-based treatments definitely seem to be effec-
tive in preclinical models, but variability in responses due to 
the source of the cells and biochemical modifications that 
can potentially alter the properties can be a definite chal-
lenge. The time window for stroke therapy is narrow, and 
stem cell therapy is a long process. Thus some clinical vali-
dations in this regard need to be answered. Moreover, condi-
tions for transplant differ and may not be possible logistical-
ly, thus there are still several unanswered doubts before stem 
cell therapy turns out to be a golden tool for the management 
of stroke patients.  

4.3. Management of Stroke by Gut-Microbiome Enrich-
ment 

It has been proposed that increased proinflammatory me-
diators, compromising BBB integrity and activation of mi-
croglia following ischemic insult are linked with gut dysbio-
sis [222, 223]. Moreover, perturbation of gut microbiota and 
metabolites of the intestine are accompanied by low levels of 
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Table 3.  Importance of BDNF and NGF in the management of ischemic stroke. 

Neurotrophic Agents Outcomes Reference 

BDNF 

Emphasis on critical role of BDNF-AKT/cAMP-responsive element‐binding (CREB) pathway in 

the neuroprotection and proneurogenic effects of tetramethylpyrazine nitrone in MCAO model. 
[196] 

Demonstrated a potential influence of the Val66Met polymorph of BDNF gene in the functional 

recovery of aphasia in patients of stroke and concluded that the polymorph has no significant 

difference in terms of activity and that it promotes recovery in a similar way. 

[197] 

The expression of BDNF and NGF mRNA in the hippocampus is regulated by glutamate and 

GABA, and involved in the activity-dependent synaptic plasticity in ischemic stroke. 
[198] 

Progesterone improved neurological deficits and neuroprotective responses in the MCAO model 

by triggering an endogenous BDNF system. 
[199] 

The neuroprotective effects of neural stem cells/neural progenitor cells are reported to be mediat-

ed by release of BDNF. 
[200] 

NGF 

The increase levels of NGF are noted for 1-3 days post injury and important for tissue repair 

process. 
[201] 

Nanocarriers with the NGF can cross the artificial BBB and promote neurite outgrowth in PC12 

cells, the nanocarrier loaded NGF and small molecule MEK inhibitor U0126 reduced the infarct 

size as compared to the control group of animals in a transient MCAO rat model. 

[202] 

Proline-rich AKT substrate phosphorylation and its interaction play a role in neuroprotection 

which is mediated by the NGF in apoptotic neuronal cell death after stroke. 
[203] 

 
short-chain fatty acids (SCFAs) may represent a decrease in 
neuroprotective effects [223, 224]. The reduced levels of 
anti-inflammatory cytokines such as IL-10 and TGF-β after 
stroke have been linked with gut dysbiosis [225]. The migra-
tion of T cells from Peyer’s patches to peri-infarct zone of 
brain occurs after stroke episode, linking a possible role of 
the immune system in the stroke pathophysiology and its 
relationship with gut dysbiosis [226].  Perturbation of gut 
microbiota is also linked to the formation of atherosclerotic 
plaques, which is one of the pathological features of ischem-
ic stroke [227]. Thus, restoration of gut microbiome could be 
an emerging target in the modulation of neurological disor-
ders [228]. 

4.3.1. Probiotics 

Oral administration of probiotics like Lactobacillus casei, 
Bifidobacterium breve, Lactobacillus bulgaricus and Lacto-
bacillus acidophilus was reported to reduce the infarct size 
and normalize the TNF-α levels in rodent MCAO model 
[229]. Administration of butyric acid also enhances the α-
diversity of gut microbiome and offers neuroprotective ef-
fects following stroke [230]. Lone effects of Tong-Qiao-
Huo-Xue decoction and FMT of the treatment groups to 
stroke induced rats led to increased expressions of IL-10 and 
reversed the increase in the detrimental population of Bac-
teroides, thus promoted functional recovery [231]. The prin-
cipal target is the production of metabolites viz- SCFAs 
which are transported to the brain via the vagal nerve, which 
are good neuroprotectants [232]. Thus, probiotic administra-
tion confers normalisation of the gut microbiome or causes a 
“gut-eubiosis” and is beneficial for prophylaxis and treat-
ment of stroke patients. The therapeutic outcomes are i) in-
creas.ed neuroprotection ii) correction of imbalances in im-
mune responses, and iii) reduction in cytokine production. 

4.3.2. Fecal-microbiota Transplantation (FMT) 

In recent years, importance of FMT has been growing in 
the treatment of various diseases. FMT confers normaliza-
tion of the α-diversity, which is reported to increase the neu-
roprotection via production of SCFAs [233]. Changes in the 
infarct size were noted in the antibiotics-treated mice which 
indicates a key role of gut microbiota in the regulation of 
post-stroke consequences. Indeed, FMT obtained from anti-
biotics-treated mice showed neuroprotective effects in pre-
clinical stroke model [234]. Secondly, FMT collected from 
sodium butyrate treated mice was also reported to reverse 
neurological deficits and confer neuroprotection via reduc-
tion in apoptosis and neuronal loss in MCAO mice [235]. 
Interestingly, transplantation of young mice microbiota into 
the aged animals showed rapid recovery of stroke-generated 
problems and reduced the inflammatory processes in the gut 
and brain [236]. Thus, replenishment of commensal microbi-
ota with the FMT may be a preferable choice for the neuro-
protective effects. Moreover, identification of personalized 
microbiome approaches is also growing in this field.  

CONCLUSION  

Stroke is one of the most prevalent neurovascular diseas-
es and cause of mortality and locomotor disability. Indeed, a 
root cause of stroke incidence in humans is heterogeneous in 
nature and entails complex pathophysiology, thus replication 
of all the traits of human stroke into a single animal model 
looks challenging. However, refilling this gap in the transla-
tional experimental stroke models may reverse the paucity of 
effective therapeutics available to stroke patients. This re-
view comprehensively summarizes the strengths and caveats 
associated with the currently available preclinical stroke 
models. An ideal experimental stroke model should mimic 
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the characteristics of clinical relevance, ease of experimental 
procedure, reproducibility, and absence of collateral effects 
unrelated to ischemia. Newer targets and therapies are press-
ing the need of the hour as there is low to insignificant clini-
cal translation of preclinical candidates. The deeper insights 
into the neurobiology of stroke and newer experimental 
stroke models may provide new avenues for development of 
newer therapeutics. 
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