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Abstract
Hepcidin is the master regulator of iron homeostasis in vertebrates. The synthesis of hepci-

din is induced by systemic iron levels and by inflammatory stimuli. While the role of hepcidin

in iron regulation is well established, its contribution to host defense is emerging as complex

and multifaceted. In this review, we summarize the literature on the role of hepcidin as a

mediator of antimicrobial immunity. Hepcidin induction during infection causes depletion of

extracellular iron, which is thought to be a general defense mechanism against many infec-

tions by withholding iron from invading pathogens. Conversely, by promoting iron seques-

tration in macrophages, hepcidin may be detrimental to cellular defense against certain

intracellular infections, although critical in vivo studies are needed to confirm this concept. It

is not yet clear whether hepcidin exerts any iron-independent effects on host defenses.

Introduction
Iron is necessary for the function of many proteins, including hemoglobin, myoglobin, and
enzymes involved in oxidative phosphorylation, and is therefore essential to the survival of vir-
tually all organisms. On the other hand, ionic iron is toxic because of its reactivity with oxygen
in the so-called Fenton reaction, which generates the hydroxyl radical and other reactive oxy-
gen species. As an element that is both essential and dangerous, iron availability is tightly regu-
lated. The vast majority of iron is associated with proteins in biological systems, with free iron
ions present in extremely low concentrations [1]. In multicellular organisms, this low availabil-
ity of iron imposes a severe nutritional restriction on invading microbes, and hosts have
evolved methods to further limit iron availability in the context of infection. Conversely, pro-
fessional pathogens have evolved strategies to scavenge iron from the iron-binding proteins of
the hosts [2]. Multiple lines of evidence suggest that this battle for iron is a critical component
of antimicrobial defenses in many infections [3].

The peptide hepcidin is the master regulator of iron homeostasis in vertebrates [4–6]. Hep-
cidin was first described as a cationic antimicrobial peptide with microbicidal properties
against many microorganisms in vitro [5,7]. Hepcidin is strongly induced during inflammation
[8], and emerging data support its role in the pathogenesis of a number of infections. In this
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article, we review the literature on the role of hepcidin in the resistance and susceptibility to
infectious diseases.

Hepcidin, inflammation, and the regulation of systemic iron availability
The global distribution of iron in mammalian hosts is depicted in Fig 1. The majority of the
iron is in hemoglobin of circulating erythrocytes and bone marrow erythroid precursors and in
splenic and hepatic macrophages that process senescent red blood cells. Hepatocytes serve as
an important reservoir that stores or releases iron to maintain homeostasis. Extracellular iron,
which constitutes a small proportion of total body iron, is transported in association with the
protein transferrin. Stores of intracellular iron are maintained in association with ferritin. Dur-
ing steady state, little iron is absorbed from the diet or lost, with most of the iron requirement
being met by recycling iron from red blood cell turnover.

The hepcidin–ferroportin axis controls both extracellular iron concentrations and total
body iron levels. Ferroportin is a membrane protein that is the major exporter of iron from
mammalian cells, including macrophages that recycle iron, duodenal enterocytes that absorb
iron, and hepatocytes that store iron. Hepcidin limits the pool of extracellular iron by binding
ferroportin and mediating its degradation, thus preventing iron release from intracellular
sources (Fig 2) [9]. Sustained elevations of hepcidin result in insufficient iron availability for
erythropoiesis, causing an iron-restricted anemia [10]. In contrast, inability to produce or
respond to hepcidin causes hereditary hemochromatosis, a group of iron overload disorders
resulting from excessive dietary iron absorption and inability to sequester iron in macrophages
[4].

Fig 1. Overview of host iron homeostasis. Iron is absorbed from the diet by duodenal enterocytes and transported into the bloodstream, where it is bound
by transferrin. Most iron is incorporated into erythrocytes for heme synthesis. Splenic macrophages recover iron from senescent erythrocytes and release
iron into circulation via ferroportin. Smaller amounts of iron are imported into other tissues as needed. Iron loss is not directly regulated and occurs through
minor bleeding and shedding of duodenal enterocytes. Approximate iron content of adult human tissues is represented in parentheses.

doi:10.1371/journal.ppat.1004998.g001
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Most hepcidin is synthesized by hepatocytes. Hepatocyte hepcidin expression is stimulated
by elevated extracellular or stored iron and, independently, also by inflammatory stimuli. Con-
versely, hepcidin expression is inhibited by hypoxia and erythropoiesis [11,12]. Regulation of
hepcidin by iron depends on the hemojuvelin (HJV) and bone morphogenetic protein receptor
(BMPR) complex activating the SMAD signaling pathway (Fig 3) [13–15]. The study of hepci-
din regulation in mice housed under standard conditions is confounded by the high iron con-
tent of most commercial mouse chow blends. For mice, an iron-sufficient diet contains
approximately 35 parts per million (ppm) iron, while commercial feed contains 150–300 ppm
iron, resulting in high basal hepcidin expression [16].

During inflammatory states, hepcidin expression is induced by the cytokine IL-6 via the
Janus kinase (JAK) signal transducer and activator of transcription (STAT) 3 pathway [17].
Bone morphogenetic protein (BMP) signaling is also necessary for hepcidin induction during
inflammation [18]. In animal models, diverse inflammatory and infectious stimuli, including
Streptococcus species, Pseudomonas aeruginosa, Aspergillus fumigatus, influenza, turpentine,
and lipopolysaccharide (LPS) robustly induce hepcidin in the liver via the induction of IL-6,
resulting in rapid reduction in serum iron levels [16,19–21]. Sustained elevation of hepcidin
expression, as occurs in many inflammatory states, results in anemia due to reduced availability
of iron for erythropoiesis, a condition previously known as “anemia of chronic disease” and
more accurately renamed as “anemia of inflammation” [16,22,23].

In addition to hepatocytes, many cell types, including myeloid leukocytes, express low levels
of hepcidin [24,25]. Phagocyte hepcidin expression can be induced by autocrine and paracrine
production of IL-6 and, at least in vitro, also by direct engagement of pathogen recognition
receptors [24,26–29]. Hepatocyte-specific deletion of hepcidin recapitulates the hemochroma-
tosis phenotype of global hepcidin-deficient animals, indicating that hepatocyte-derived hepci-
din is necessary for iron homeostasis in steady state [30]. The role of leukocyte-derived
hepcidin has not been formally examined but is hypothesized to contribute to host defense
[31,32].

Fig 2. The effect of hepcidin on iron homeostasis. In the absence of hepcidin, iron absorbed from the diet by duodenal enterocytes is transported into the
serum via ferroportin, and iron captured from senescent red blood cells is exported from splenic macrophages. In the presence of hepcidin, iron is retained in
duodenal enterocytes, which eventually shed from the intestinal tract, blocking iron absorption from the diet. Mononuclear phagocytes retain and accumulate
recycled iron rather than releasing it back into circulation, causing a drop in serum iron levels.

doi:10.1371/journal.ppat.1004998.g002
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The Role of Hepcidin in Specific Infections

Intracellular infections
Hepcidin causes accumulation of iron within cells of the mononuclear phagocyte system,
potentially benefiting pathogens that occupy this niche. Type I hemochromatosis, the most
common form of hereditary hemochromatosis, is caused by loss-of-function mutations in the
Hfe gene. HFE protein regulates hepcidin expression in response to increased extracellular
iron. Loss of Hfe decreases hepcidin expression, increases iron absorption and extracellular
iron concentrations, and releases iron from macrophages.Hfemutations have arisen indepen-
dently in several populations [33,34], and the most common mutation, C282Y, has a heterozy-
gous prevalence of up to 10% in northern European populations [35]. Although difficult to
test, it is hypothesized thatHfemutations became prevalent by conferring a survival benefit
during population bottlenecks caused by host-adapted pathogens that reside within macro-
phages as part of their life cycle [36–38].

Salmonellosis. Although in vitro data generally support the role of hepcidin in promoting
Salmonella growth in macrophages, in vivo studies have provided conflicting results. In macro-
phages experimentally infected with Salmonella enterica serovar Typhimurium in vitro, hepci-
din expression is induced via autocrine or paracrine mechanisms, causing intracellular iron
accumulation and allowing for greater bacterial growth. In vitro infection of murine macro-
phages with Salmonella also resulted in lower intracellular bacterial burdens when macro-
phages were transfected to overexpress ferroportin [39,40]. In addition, hepcidin treatment
increased bacterial burden in cells expressing wild-type, but not hepcidin-resistant, ferroportin

Fig 3. Mechanisms of hepcidin induction. In hepatocytes, hepcidin induction is mediated primarily by BMP ligands binding with the HJV/BMPR complex.
BMP6 is induced by high iron levels via an undefined mechanism. The protease TMPRSS6 inhibits hepcidin production by degrading HJV in response to low
iron levels [95]. High holo-transferrin levels stabilize the transferrin receptor 2 (Tfr2)/HFE complex, which promotes hepcidin induction, possibly by direct
binding with HJV or BMPR [100]. Hepcidin can also be induced by IL-6 via STAT3 signaling in hepatocytes and myeloid leukocytes. Inflammation can
stimulate hepcidin production in myeloid leukocytes through pathogen recognition receptor signaling and through autocrine and paracrine production of IL-6.

doi:10.1371/journal.ppat.1004998.g003

PLOS Pathogens | DOI:10.1371/journal.ppat.1004998 August 20, 2015 4 / 14



[39]. Similarly, elicited peritoneal macrophages fromHfe-deficient mice had lower iron content
and, when infected with S. Typhimurium in vitro, yielded fewer bacteria than wild-type cells
[40].

In vivo, mice develop increased hepcidin levels and hypoferremia after oral infection with S.
Typhimurium [41]. This induction was proposed to be detrimental to the host because preven-
tion of hepcidin induction by an inverse agonist of estrogen-related receptor gamma was asso-
ciated with improved mouse survival after S. Typhimurium infection. In a different study,
however, opposite results were reported. Intravenous infection with S. Typhimurium did not
increase hepcidin mRNA levels in the liver, and hepcidin-deficient mice were more susceptible
to infection than their wild-type counterparts [42]. The literature on the susceptibility ofHfe-
deficient mice to salmonellosis is also contradictory.Hfe-deficient mice have been reported to
have attenuated intestinal inflammation but higher fecal and systemic bacterial burdens after
oral infection in studies that used streptomycin-pretreated mice [43]. In other studies,Hfe-defi-
cient mice were reported to have reduced death and bacterial burdens after intraperitoneal
inoculation of S. Typhimurium that was ascribed to the greater production of lipocalin-2 in
Hfe-/-macrophages [40].

The reasons for the discrepancies between in vivo studies of salmonellosis are unclear, but
may relate to factors such as the age and diet of the experimental animals, which could influ-
ence the extent of iron overload at the time of infection and potentially alter the pathogenicity
of bacteria. Furthermore, extrapolation of data fromHfe-deficient animals to the role of hepci-
din is not straightforward, since hepcidin expression in Hfe-deficient mice is not abrogated,
but only attenuated, relative to degree of iron overload [44]. In addition, there are conflicting
reports as to whetherHfe influences hepcidin induction to inflammatory stimuli [21,44–46].
Finally, outcomes may be affected by variations in the extracellular portion of the bacterial life
cycle, depending on the route of infection.

Mycobacterial infections. African iron overload, a condition caused by a combination of
high dietary iron intake and non-Hfe hereditary hemochromatosis, is strongly associated with
death from tuberculosis [47,48], potentially implicating iron homeostasis in host defense
against mycobacteria. Consistent with this, macrophages from humans with type I hemochro-
matosis have lower iron accumulation and lower bacterial burden when infected withMyco-
bacterium tuberculosis as compared to cells from healthy donors; conversely, mycobacteria
acquire iron more efficiently from macrophages of healthy subjects as compared to cells from
patients with hemochromatosis [49,50]. These data suggest that hepcidin-mediated increase in
intracellular iron may be harmful to the host during mycobacterial infections, but this hypothe-
sis has not been addressed directly in vivo. On the other hand, Hfe-deficient mice with iron
overload had increased tissue bacterial burden after intravenous infection withM. avium com-
pared to wild-type animals [51], an unexpected result for animals predicted to have iron-
depleted macrophages. As with studies in salmonellosis, however, it is difficult to extrapolate
data from theHfemouse model to the role of hepcidin during the infection.

The direct roles of hepcidin and ferroportin in mycobacteria have only been assessed in
vitro. Ferroportin overexpressing macrophages have lower mycobacterial burden as compared
to normal macrophages when infected withM. tuberculosis in vitro [52]. Interestingly, ferro-
portin overexpressing macrophages also have reduced inducible nitric oxide synthase (iNOS)
production and phagocytic ability, suggesting that depletion of intracellular iron stores may
interfere with macrophage effector functions [52]. Exposure of macrophages to mycobacteria
and IFN-γ synergistically induce the expression of hepcidin in vitro, and macrophage-derived
hepcidin colocalizes withM. tuberculosis in coincubation studies [32,53], but the relevance of
macrophage-derived hepcidin to in vivo host defense has not been evaluated. Similarly, very
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high concentrations of hepcidin have been shown to inhibitM. tuberculosis growth in vitro
[32], but it is unknown whether these concentrations are relevant to in vivo infections.

Other intracellular pathogens. An in vitro study of murine bone marrow-derived macro-
phages infected with Leishmania amazonensis showed that they up-regulate hepcidin in a
TLR4-dependent manner, reduce cell surface ferroportin, and accumulate intracellular iron.
Macrophages from hepcidin-deficient mice had lower intracellular burden of parasites as com-
pared to wild-type macrophages after in vitro infection, and hepcidin treatment of wild-type
macrophages results in higher parasitic burdens [54]. Similar data have been published with
macrophages infected with Chlamydia and Legionella species [55].

Infections caused by siderophilic bacteria
Individuals with hereditary hemochromatosis are notably susceptible to sepsis caused by spe-
cific microorganisms whose pathogenicity is augmented in the presence of free iron. These so-
called siderophilic bacteria include some Vibrio and Yersinia species, and possibly other Gram-
negative bacteria, including Salmonella and Escherichia species [56,57]. Susceptibility to sidero-
philic infections in hemochromatosis is thought to be mediated by increased availability of
extracellular iron, but in observational studies it is difficult to exclude the contribution of other
mechanisms, such as possible immune dysfunction as a result of iron overload and chronic
liver disease [58].

Vibrio infection. Wild-type mice rapidly up-regulate hepcidin and develop hypoferremia
after subcutaneous infection with Vibrio vulnificus, whereas hepcidin-deficient mice exhibited
only mild hypoferremia and are much more susceptible to the infection [59]. The susceptibility
of hepcidin-deficient mice was associated with high blood and tissue burden of V. vulnificus
and was specifically attributable to high levels of extracellular iron, since hepcidin-deficient
mice with low iron stores (but high serum iron) were also susceptible to infection. Treatment
of iron-overloaded hepcidin-deficient mice with a hepcidin agonist was sufficient to restore
hypoferremia (without changing iron stores) and to protect hepcidin-deficient mice from
infection. Ex vivo studies of bacterial growth in sera from treated animals showed that hepcidin
agonists prevented the growth of V. vulnificus by restricting iron availability rather than by
direct antimicrobial activity. Hepcidin agonists did not provide any further protection from V.
vulnificus infection in wild-type mice, again arguing against a direct microbicidal effect of these
peptides. Overall, these studies point to hepcidin acting by lowering the concentration of iron
species that are not bound to transferrin, and therefore available to V. vulnificus as nutrients
and signals for rapid growth.

Sepsis
Patients presenting with sepsis syndromes have elevated hepcidin levels that fall during recov-
ery, consistent with activation of the acute phase response during sepsis [60]. Whether hepci-
din plays any role in modulating the course of sepsis is unknown, although several mouse
studies suggested a protective effect. Hepcidin-deficient mice are more susceptible to death
from lethal challenge with LPS as compared to wild-type controls, and administration of an
unvalidated synthetic hepcidin protected both wild-type and hepcidin-deficient mice against
LPS [61,62]. In murine cecal ligation and puncture model of polymicrobial intra-abdominal
sepsis, mice treated intravenously with an adenovirus carrying anti-hepcidin shRNA had
higher mortality and bacterial burden associated with increased serum iron levels, whereas
conditioning mice on a low-iron diet or treating with an iron chelator resulted in protection
following anti-hepcidin shRNA treatment [63]. Similarly, mice that received inhaled anti-hep-
cidin shRNA adenovirus had higher mortality and more severe lung injury after cecal ligation
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and puncture compared to mice that received control adenovirus [64]. These studies suggest
that expression of hepcidin may be protective during sepsis caused by resident gut flora.

Malaria
In human studies, iron supplementation is associated with increased incidence and severity of
malaria in some [65–67], but not all [68,69], studies, whereas dietary iron deficiency is associ-
ated with reduced malaria parasitemia and death [70–72]. Iron deficiency also promotes pro-
tection against infection with Plasmodium berghei in mice [73,74], suggesting a role for
hepcidin in this infection. As expected, humans and mice infected with malaria have elevated
plasma hepcidin levels, which correlate positively with parasitemia and plasma IL-6 [75–78],
but patients with the most severe anemia in the context of P. falciparum infection have reduced
hepcidin levels, perhaps suggesting negative feedback, such as the effect of compensatory eryth-
ropoiesis, on hepcidin expression [75]. In vitro, P. falciparum-infected erythrocytes induce
hepcidin mRNA expression in human peripheral blood monocytes and monocyte-derived
macrophages in an IL-6 independent but IL-10 dependent manner [79,80], but the relevance of
leukocyte-derived hepcidin for host defense is unknown.

Hepcidin has complex effects in malaria [81]. On one hand, by causing iron restriction, ele-
vated hepcidin likely contributes to anemia. On the other hand, hepcidin may have protective
effects in mice during experimental malaria [77,78]. Immunoneutralization of hepcidin results
in increased parasitemia and death in P. berghei infection, whereas pretreatment of animals
with a hepcidin-expressing lentivirus protected against parasitemia and death as compared to
mice treated with a control lentivirus [78]. Increased hepcidin protected hosts with parasitemia
against a second malaria infection [77]; such super-infections are associated with increased
mortality in endemic areas. Hepcidin was thought to act by causing the movement of iron
from hepatocytes that could host superinfecting parasites to macrophages that cannot. In sup-
port of this mechanism, transgenic over-expression or administration of hepcidin to infected
mice provided protection by reducing the burden of the parasites in the liver. These data sug-
gest that hepcidin protects against malaria by reducing iron availability to parasites.

Viral infections
While the induction of serum hepcidin has been documented in several human and murine
viral infections [19,26,82], relatively little is known about the contribution of hepcidin to path-
ogenesis of most viral infections. In an interesting study of serial samples, plasma hepcidin
induction during early HIV infection correlated with subsequent viral load set point [83],
although the mechanism underlying this correlation is unclear.

Hepatitis C. Hepatic iron accumulation is common in hepatitis C virus (HCV) infection
and contributes both to liver fibrosis and to increased risk of hepatocellular carcinoma [84].
Patients with hepatitis C who have Hfemutations are further predisposed to hepatic iron over-
load and worse liver fibrosis [85,86]. Although circulating hepcidin levels correlate positively
with the severity of iron overload in chronic HCV infection, patients with HCV infection have
a relative deficiency of hepcidin: compared to uninfected controls, HCV patients had lower
hepcidin levels for given serum ferritin level, suggesting that hepcidin expression may be
blunted in infected patients [87–89]. Similarly, hepcidin was not induced even during acute
phases of HCV infection [83], unlike most other infections. Consistent with this, in vitro infec-
tion of a hepatocellular carcinoma cell line with HCV resulted in suppression of hepcidin tran-
scription that was associated with higher production of reactive oxygen species [90,91]. This
effect was attributable to reduced binding of the transcription factor CCAAT/enhancer-bind-
ing protein alpha (C/EBPa) to the hepcidin promoter, and both binding and hepcidin
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expression could be restored by treatment with antioxidants [91]. In the context of animal
models, transgenic mice expressing HCV core protein develop increased serum and hepatic
iron, but reduced splenic iron over time as compared to wild-type control animals [92]. This
phenomenon was associated with suppressed hepcidin expression and higher ferroportin pro-
tein in liver, spleen, and duodenum. Primary hepatocytes from transgenic mice that were trans-
fected with a hepcidin promoter and luciferase reporter construct showed lower luciferase
activity compared to hepatocytes cultured from control mice, again associated with reduced
binding of C/EBPa to the hepcidin promoter and increased levels of reactive oxygen species
[92]. Taken together, these experiments suggest that HCV-mediated hepcidin suppression con-
tributes to iron overload and disease pathology in HCV infection. Whether decreased hepcidin
levels and consequent tissue iron loading play any role in viral replication is still unknown.

Iron-Independent Functions of Hepcidin
Some studies have proposed that hepcidin can influence immune responses independent of its
role in iron homeostasis, but it remains to be demonstrated whether iron-independent func-
tions of hepcidin have pathophysiological relevance. One study proposed that hepcidin regu-
lates the production of cytokines and dampens inflammatory responses by activation of the
Jak2 pathway [61]. However, it was subsequently shown that Jak2 is not activated by hepcidin
and does not interact with ferroportin [93], challenging the proposed mechanism.

Another study showed that iron-deficient macrophages had a more pronounced inflamma-
tory response to LPS treatment, and the inflammatory responses could be dampened with
hepcidin treatment alone [94]. To confirm the role of hepcidin, mice deficient in the serine
protease TMPRSS6 were used, as these animals have iron deficiency due to high constitutive
expression of hepcidin [95]. Tmprss6-deficient mice demonstrated a blunted inflammatory
response to LPS despite their iron-deficient status [94,96], suggesting that hepcidin may modu-
late inflammatory responses independently of iron. Other studies, however, reached opposite
conclusions: iron-depleted macrophages from Hfe-deficient mice, which also have low hepci-
din, had attenuated inflammatory response to LPS and Salmonella [43]. Thus, studies that dis-
sect the separate effects of hepcidin and macrophage iron on inflammation are needed.

Although defensins and hepcidins are structurally distinct, the hepcidin molecule, like
defensins, is an amphipathic peptide with a net cationic charge, is rich in cysteine bonds, and
has a β-sheet structure [97]. Consistent with this, hepcidin has microbicidal activity against
many classes of microbes in vitro, leading to the hypothesis that such a direct antimicrobial

Table 1. Summary of the role of hepcidin in specific infections. Hepcidin-mediated iron restriction is protective against some extracellular infections and
potentially detrimental in host defense against pathogens that reside in the intracellular compartment. Hepcidin has complex effects in infection by Plasmo-
dium species and HCV.

Location of infection Pathogen Purported role of hepcidin Quality of evidence

Intramacrophage S. Typhimurium M.
tuberculosis, M. avium

Detrimental, by promoting sequestration of iron in
macrophages

In vitro data support proposed mechanism;
in vivo data are conflicting [32, 39–43, 49–
53]

Chlamydia sp., Legionella
sp., L. amazonensis

In vitro data support proposed mechanism;
unaddressed in vivo. [54, 55]

Extracellular Siderophilic bacteremia,
polymicrobial sepsis

Protective, via plasma iron restriction; possibly
attenuates inflammation

Correlative human data and experimental
mouse infection [56, 57, 59, 61–64]

Erythrocytes and
hepatocytes

P. falciparum, P. berghei Anemia promotes clearance of infected
erythrocytes; hepcidin promotes depletion of iron in
hepatocytes

Human correlative data and experimental
mouse data [65–80]

Hepatocytes HCV HCV infection suppresses hepcidin expression,
contributing to iron overload

Correlative human data, experimental mouse
data, and in vitro data [82, 83, 85–92]

doi:10.1371/journal.ppat.1004998.t001
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effect may be relevant in vivo during infection [5,7,98]. Serum hepcidin concentrations, how-
ever, are 1–2 orders of magnitude lower than those required for antimicrobial effects, making it
unlikely that hepcidin directly kills pathogens in the bloodstream [59,98]. While local hepcidin
production in infected tissue, and by leukocytes in particular, has been reported, it is unknown
if local hepcidin concentrations reach antimicrobial concentrations [24,32]. There is currently
little evidence in the literature that hepcidin plays a directly antimicrobial role in vivo in mam-
malian infections.

Conclusions and Areas for Further Study
Hepcidin is potently increased by inflammation, but the role of hepcidin in innate immunity is
only beginning to be understood, as summarized in Table 1. Hepcidin restricts access to extra-
cellular iron, and this form of “nutritional immunity” is important in at least some extracellular
bacterial infections. In contrast, hepcidin induces iron accumulation in macrophages and may
be detrimental in defense against pathogens that occupy this intracellular niche. This effect has
been demonstrated convincingly in vitro but is not supported by in vivo data [32,39–43,49–
55]. Interrogating the role of hepcidin in animal models of intracellular infections should fur-
ther clarify the complex relationship between iron distribution and pathogenesis of such infec-
tions in humans.

In the absence of in vivo data, any iron-independent role of hepcidin in host defense
remains speculative. In particular, there is little evidence to support a direct microbicidal role
for hepcidin in mammalian infections. The current literature suggests that hepcidin may
dampen inflammatory cytokines through a mechanism that is not well understood. As exces-
sive inflammation is damaging in many infections, the potential role of hepcidin as a mediator
of the innate immune response is a new and unexpected area of study.

The role of hepcidin remains undefined in most infections and awaits further investigation.
For example, although hepcidin is induced in response to several viral and fungal pathogens
[20,99], its contribution to host defenses against these infections is largely unknown. With the
exception of malaria and Leishmaniasis, hepcidin has not been investigated in parasitic
infections.
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