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Simple Summary: Species interactions are one of the main factors affecting community assembly,
yet the role of such interactions remains mostly unknown. Here, we investigated roles of potential
species associations in fish community assembly in the Qiupu River, China. Our results suggested that
potential species associations might have been underestimated in stream fish community assembly.
The contribution of potential species associations to fish community assembly can be reflected
by interaction network structures. Omnivorous species play an important role in maintaining
network structure as they may have more associations with other species. This study highlights the
importance of capturing species associations in river ecosystems across different geographical and

environmental settings.

Abstract: Environmental filtering, spatial factors and species interactions are fundamental ecological
mechanisms for community organisation, yet the role of such interactions across different environ-
mental and spatial settings remains mostly unknown. In this study, we investigated fish community
organisation scenarios and seasonal species-to-species associations potentially reflecting biotic as-
sociations along the Qiupu River (China). Based on a latent variable approach and a tree-based
method, we compared the relative contribution of the abiotic environment, spatial covariates and
potential species associations for variation in the community structure, and assessed whether different
assembly scenarios were modulated by concomitant changes in the interaction network structure of
fish communities across seasons. We found that potential species associations might have been under-
estimated in community-based assessments of stream fish. Omnivore species, since they have more
associations with other species, were found to be key components sustaining fish interaction networks
across different stream orders. Hence, we suggest that species interactions, such as predation and
competition, likely played a key role in community structure. For instance, indices accounting for net-
work structure, such as connectance and nestedness, were strongly correlated with the unexplained
residuals from our latent variable approach, thereby re-emphasising that biotic signals, potentially
reflecting species interactions, may be of primary importance in determining stream fish communities
across seasons. Overall, our findings indicate that interaction network structures are a powerful tool
to reflect the contribution of potential species associations to community assembly. From an applied
perspective, this study should encourage freshwater ecologists to empirically capture and manage
biotic constraints in stream ecosystems across different geographical and environmental settings,
especially in the context of the ever-increasing impacts of human-induced local extinction debts and
species invasions.
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1. Introduction

Understanding the principles governing the assembly of ecological communities is
a long-standing and critical question in modern ecology [1,2]. Although new perspec-
tives constantly converge on this issue [3,4], the emerging consensus embraces that the
key processes underlying community organization are environmental filtering, species
interactions (e.g., competition, predation and facilitation) and stochasticity [5,6]. These
mechanisms simultaneously drive the organization of ecological communities, but their
relative contributions are different across environmental gradients, spatial scales and
ecosystem types [7,8].

Although many studies have attempted to disentangle the relative importance of
niche-based vs. stochastic processes on community organisation [9,10], most of these
studies often ignored, or even failed to empirically distinguish scenarios of species sorting
by environmental vs. biotic constraints (but see Garcia-Girén et al. [11]). However, species
interactions are keystone drivers of community organisation and stability, potentially
increasing the resistance and resilience of ecosystems and mediating the negative effects
of disturbances [12]. Indeed, omitting species interactions can affect the inference and
accuracy of conventional statistical models, thereby compromising our understanding of
the mechanisms underlying community organisation [11,13].

Recently, the development of interaction network approaches (whereby species are
represented as nodes and interactions as connections) has provided ecologists with a new
toolbox to study how species interactions affect community dynamics [14,15]. Indeed, the
topology of the resulting species interaction networks (e.g., connectance and nestedness,
representing the degree of connection between species and the degree to which species-poor
communities are subsets of species-rich communities, respectively) has been found to be
one of the main mechanisms underlying the formation and maintenance of community
structure, directly or indirectly influencing the stability of natural ecosystems [16]. For
instance, habitat homogenization and food-resource limitation that are associated with
increasing urbanization can reduce stream network complexity, thereby altering stream
ecosystem functioning [17]. Similarly, Danet et al. [18] found an indirect influence of net-
work topology on stream communities, with stream size and species richness modulating
the connectance of fish interaction networks. This connection produced negative effects on
the spatial and temporal synchrony and biomass stability of stream fish communities.

The few available empirical studies suggest that species interactions are often context
dependent [19]. Indeed, interaction networks have been found to vary across space and
time [20]. More specifically, variation in species abundance and functional trait composition
along environmental and temporal gradients change the topology of species interaction
networks, leading to high temporal and spatial heterogeneity in community structure [21].
Hence, empirical effects of species interactions on community organisation should ideally
be identified with simultaneous evaluations of abiotic environmental filtering and spatio-
temporal dynamics [22].

In stream ecosystems, environmental conditions (e.g., slope, discharge and flow ve-
locity) usually co-vary from upstream to downstream areas [23]. More specifically, in
subtropical streams, fish are highly adapted to the unique abiotic environment, and their
communities vary significantly along longitudinal fluvial gradients [24]. Since different
fish dispersal abilities across stream networks lead to diverging community organisation
patterns and mechanisms [5], broad conclusions on network structure and the associated
relative importance of species interactions across stream sites from different stream orders
are still lacking [25]. To overcome these limitations, we investigate fish community or-
ganisation and seasonal changes in the signature of potential species associations across a
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mountainous stream network from the Wannan region, China. Based on latent variable
models [26] and a tree-based inference method [27], we aim to: (1) partition the relative
importance of abiotic environmental filtering, spatial factors and potential species asso-
ciations on the assembly of fish communities across different stream orders and seasons;
(2) evaluate if spatial and temporal changes in community organisation scenarios were
modulated by concomitant changes in the interaction network structure.

2. Methods
2.1. Study Area

The Wannan mountainous region is located in the southern Anhui province, central
China (Figure 1). The Qiupu River is one of the main water systems in the Wannan region,
originating from the Xianyu Mountain and running c.150 km until it eventually reaches the
Yangtze River. The Qiupu River Basin covers an area of more than 2200 km?. The average
annual rainfall of the Qiupu River Basin ranges from 1400 to 1700 mm, with precipitation
occurring mostly from April to September. The average annual temperature of this basin
is 16 °C. As a result of the highly diverse geographical landscape and the influence of the
subtropical monsoon climate, this region is considered as one of the main biodiversity
hotspots in China [28].
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Figure 1. Map of the fish-sampling sites across the Qiupu River in Wannan region, which is located
in the southern Anhui province.
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2.2. Fish Sampling

In the present study, fish were sampled in the mainstream of the Qiupu River along the
headstream to its mouth. Fish sampling was conducted during December 2019 (dry season)
and August 2020 (wet season), respectively. The sampling sites were distributed in second-
order to fourth-order streams, with a 5-8 km interval between adjacent sampling sites
(Figure 1). The sites were selected based on the principle of covering different river habitats
(e.g., pools, riffles) and operability. A total of 20 stream sites were sampled, including
8 sites in second-order streams, 4 sites in third-order streams and 8 sites in fourth-order
streams. Due to the high complexity of the stream habitat, we used two sampling methods
to ensure the most effective catch of fish [29]. A backpack electrofishing unit (CWB-2000P,
China; 12 V import, 250 V export) was used to capture fish in second-order and third-order
streams with water depth less than 1.5 m. The sampling was conducted using zigzag lines
to cover a 50-100 m river length within 1 h at each site. On the other hand, we used drift
gill nets with a mesh size ranging from 1 to 4 cm (12 m long x 1.5 m high) to capture fish
in fourth-order streams, where water depth was more than 1.5 m. At each site, two drift
gill nets were set, and fish were collected after the nets were drifted with the flow for 1 h.
The gill nets drifted approximately 100-200 m along the stream at each site. The fish were
identified to species level, counted and released back into the stream, following standard
protocols (Anhui Normal University Animal Ethics Committee).

2.3. Local Environmental Conditions and Land Use

A suite of physicochemical and land-use covariates were measured for each stream
site in December 2019 and August 2020. Specifically, eight environmental variables were
measured to characterize the local habitat conditions, including elevation (m); water tem-
perature (°C); stream width (m); water depth (m); current velocity (m/s); dissolved oxygen
(mg/L); conductivity (us/cm); and substratum coverage. Stream width was measured
along three equally spaced transects across the stream. Water depth was measured at three
equal interval points along each transect, and current velocity was recorded with a portable
flow meter (FP111, Yellow Springs, OH, USA) at 60% of the depth of the substratum inter-
face for each transect [30]. The water temperature, dissolved oxygen and conductivity were
measured with an YSI Professional Plus meter. Based on the methods that were proposed
by Kondolf [31], the stream substratum was assigned into five types, including (1) sand (<2
mm); (2) gravel (2-32 mm); (3) pebble (32-64 mm); (4) cobble (64256 mm); and (5) boulder
(>256 mm). The percentage of each substratum was evaluated with 10 transects at each
sampling site.

The land-use types around each sampling site were divided into five categories (i.e.,
forest, grassland, urban, agriculture and waterbodies) based on a 30-m digital elevation
map in ArcGIS 10.8 [30]. The percentage for each land-use type was calculated for each
individual stream site.

2.4. Partitioning the Drivers of Fish Community Organisation

Based on fish abundance (the numbers of individuals of each species that were cap-
tured at each site) data, we applied a Markov chain Monte Carlo (MCMC) method to
quantify the relative importance of the spatial factors, local abiotic environment conditions
and unexplained residuals (i.e., latent variables) of fish communities for each stream or-
der type and across different seasons. Latent variables were considered as unobserved
predictors or covariates and were used to infer the biotic signals of potential species as-
sociations [22]. Note, however, that latent variables do not strictly provide evidence for
proven species interactions, but that species interactions might have strong imprints on
these signals [32]. Based on the ‘boral’ R package, we integrated the local environment,
space, and latent variables together to build a correlated response model [26]. With ex-
planatory (environmental and spatial covariates) and latent variables, the ‘boral’ routine
fitted independent column Generalized Linear Models (GLMs) to account for any residual
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correlations between species. To quantify the effects of the spatial factors, we assumed that
fish dispersal across each stream order was random.

Before running the models, the fish abundance data and environmental factors were
standardized with Hellinger and log(x + 1) transformations, respectively [33]. In the
Bayesian models, each MCMC chain was run with 40,000 iterations, a thinning rate of 30,
and normally distributed priors with a mean of zero and a variance of 10 [26]. Then, we
checked for convergence of the MCMC chain based on Geweke diagnostics and associated
trace plots. According to the Geweke diagnostics, the Z—score exceeded 1.96 and the p-value
was less than 0.05, indicating the MCMC chain did not converge. For multiple comparisons
between stream orders, the p-values were adjusted using Holm’s method [34]. We used the
predicted variance of the local environment, spatial processes and unexplained residuals
from the MCMC model to infer the relative role of the environmental, spatial and potential
biotic associations on fish community organization [35]. All analyses were performed in
R 4.1.3 [36]. The Bayesian models were built using the function ‘boral’, and the predicted
variance of each explanatory variable was calculated using the function ‘calc.varpart’, both
from the ‘boral’ R package [26].

2.5. Constructing Poisson Log-Normal (PLN) Models

Based on environmental factors and fish abundance data, we first constructed Poisson
log-normal models (a joint species distribution model) to infer the species interaction
network of fish communities in different stream orders and across different seasons [37]. In
addition to considering the abiotic effects, the PLN models can also avoid the detection of
spurious interactions between species [27]. To control for differences in fish abundances
between different sites and seasons, fish sampling efforts (i.e., the total number of fish
caught at each site) were also incorporated in the models [25,38]. We combined different
explanatory variables to build the PLN model (including elevation, water temperature,
stream width, stream depth, current velocity, dissolved oxygen, conductivity, substratum
and land-use types) and spatial factors (using geographical coordinates from which we
calculated the shortest watercourse distances, i.e., the shortest distance from one stream
site to another along stream corridors; sensu Karna et al. [39]. Overall, a total of 13 PLN
models were built for each stream order and each season.

We evaluated the 13 PLN models and selected the best model by calculating the
Bayesian information criterion (BIC) and cumulative root mean squared error (RMSE). The
BIC scores explain the variational log-likelihood and number of parameters of the PLN
model [27], whereas RMSE is an index indicating the predictive performance. Higher BIC
values and lower RMSE scores indicate models with better fits, respectively. We selected
the model with the highest BIC score and lowest RMSE scores as the best model. If more
than one model showed the same BIC and RMSE values, we chose the one with the highest
R? value as the best model. The PLN models were run with the function ‘PLN’ of the
‘PLNmodels’ package [37,38].

2.6. Inferring Species Interaction Networks

We inferred fish interaction networks using a novel tree-based method (EMtree) that
was proposed by Momal et al. [27], which provided network visualization based on the
results of the selected PLN models. In brief, with the PLN models constructed from species
abundance as a backbone, the EMtree method uses the average values of the spanning
trees in the expectation-maximization algorithm to infer the undirected species interaction
networks [27]. The EMtree method can infer the potential direct and indirect associations
between species. In graphical models, links in the spanning trees indicated possible
interactions between species, and the links were single undirected connections between the
nodes. The number of interactions between all the nodes (here, species) were minimized
under the EMtree graphical routine. While building the final networks, a threshold was
necessary to ensure the reliability of species-to-species associations. Although a higher
threshold represented higher reliability, that threshold value needed to ensure that at least
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one node had at least one connection [40]. Here, we selected the highest threshold between
0 and 1 to construct a network that remained connected. We first computed the stability of
the frequencies for any threshold and then selected the desired stability using the function
“StATS” of an EMtree package. Then, we determined the highest threshold over a desired
stability value and before a node lost all connections. In addition, we iteratively resampled
the network 100 times to improve its robustness.

We calculated a series of indices to describe the structure of our fish interaction net-
works, including connectance, nestedness, linkage density (i.e., the average number of links
per species) and interaction evenness (i.e., the uniformity of links along different network
pathways), all of which represented different topology aspects. To verify whether network
topology contributed to the relative importance of potential biotic signals on fish com-
munity structure, we tested for correlations between network topology indices from PLN
models and latent variables (i.e., unexplained residuals underlying imprints of potential
species associations) from the Boral approach (see above) using the Spearman’s rank-order
coefficient. The network structure indices were calculated with the ‘networklevel” function
of the ‘bipartite’ R package [41].

3. Results

A total of 1629 individuals were captured during both survey campaigns, representing
53 species in 12 different families (Supplementary Table S1). Cyprinidae and Bagridae
accounted for 64.1% and 7.5% of the total number of species, respectively. In the dry season,
14, 21 and 26 fish species were captured in second, third and fourth order, respectively; in
the wet season, 18, 25 and 31 fish species were captured in second, third and fourth order,
respectively (Supplementary Table S2). Rhynchocypris oxycephalus and Sinobdella sinensis
were only captured in second-order streams, whereas some piscivore species, such as Culter
alburnus, Culter mongolicus, Silurus asotus and Cultrichthys erythropterus, were only captured
in fourth-order stream sites. Average values and ranges of the environmental covariates for
the three stream orders of the Qiupu River were shown in Supplementary Tables S3 and S4.

The relative contributions of the abiotic environment, spatial factors, and residual
variance differed between fish communities inhabiting different stream orders. Specifically,
we found that the mean environmental and spatial factors explained 7% and 10.7% of
the fish community variance, respectively. Spatial effects were pronouncedly higher in
third-order stream types (17% of explained variance) than in second-order and fourth-order
stream types (2% and 1% of explained variance, respectively), whereas abiotic environmen-
tal drivers accounted for more than 10% of variation in the structure of fish communities
across all stream orders (Figure 2). Perhaps more importantly, we found that over 70% of
variation in fish community structure could not be attributed to the observed environmental
and geographical template. After Geweke’s diagnostics, Holm-adjusted p-values of the
Z-scores for all environmental, spatial and latent variables were non-significant (p > 0.05),
suggesting that the MCMC models converged successfully.

For fish communities of each individual stream order and season, the best fitted PLN
model was selected to infer the species interaction networks (Supplementary Tables S5 and
56). The PLN models with ‘site” and ‘site” + ‘elevation” were chosen for the dry season,
whereas PLN models with ‘site” + ‘dissolved oxygen’ and ‘site’ + ‘flow velocity’ were
selected for the wet season (Table 1 and Supplementary Figure S1). We found that omni-
vores, such as Zacco platypus and Pelteobagrus fulvidraco, showed the highest betweenness
centrality (i.e., the frequency with which one species interacts with its counterparts) for
each interaction network (bigger nodes in the figures), except for those from fourth-order
streams during the wet season. On the other hand, invertivore species showed the highest
betweenness centrality values in second-order and third-order streams, while herbivore fish
achieved the highest centrality values in fourth-order streams independently of seasonal
oscillations (Figure 3).
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Figure 2. Relative contributions (i.e., mean values averages across species seasons) of abiotic environ-

mental conditions, spatial factors and unexplained residuals underlying potential species associations

to variation in fish community composition for different stream orders.

Table 1. Model fit diagnostics and prediction errors for each Poisson log-normal (PLN) models.

Season Stream Orders Selected Variables BIC RMSE R?
Dry Second-order Site + elevation —267.714 0.567 0.946
Third-order Site + elevation —256.428 0.235 0.945
Fourth-order Site —557.069 0.338 0.770
Wet Second-order Site + dissolved oxygen —385.017 0.487 0.875
Third-order Site + velocity —330.697 0.032 0.932
Fourth-order Site + dissolved oxygen —820.550 0.253 0.908

Abbreviations: BIC, Bayesian information criterion; RMSE, cumulative root mean squared error; velocity,

stream velocity.
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Spearman’s rank-order coefficients showed that different network topology indices
had different correlations with the latent residuals from the PLN models (Figure 4). More
specifically, the connectance (p = 0.041) and nestedness (p = 0.029) were positively and
negatively correlated with unexplained residuals, respectively, whereas the linkage density
and interaction evenness showed no significant associations (p > 0.05).

Interaction evenness

s
= S
= =
: 2
ey

]

g g
= E
] -

residuals
Connectance
Nestedness

Latent variable +*
residuals -0.75

Interaction evenness

Nestedness

Linkage density

Figure 4. Spearman’s correlations between unexplained residuals underlying imprints of potential
species associations (i.e., latent variable residuals) and topology indices of network structures. Positive
and negative correlations are shown in blue and red, respectively. Only the correlations of latent
variable residuals and topology indices of network structures were shown. Significant results were
presented with *.

4. Discussion

The role of potential species associations on community organisation has only recently
received increasing attention [11,42]. However, due to the difficulty in directly observing
species interactions in real-world ecosystems and the complexity of network inferences
from abundance data [43], limited evidence still exists on how these biotic signals affect
ecological communities and how they concomitantly vary across different interaction
network structures. In the present study, we studied the imprints of potential species
associations on fish community organisation across seasons and different stream orders.
In brief, we found that these biotic couplings contributed more than environmental and
spatial factors to fish community organisation. We found that community structure was
also modulated by concomitant changes in the interaction networks.

In stream ecosystems, the ‘network position hypothesis’ (NPH; Schmera et al. [44]) has
been confirmed by many studies (see Henriques-Silva et al. [45]). The NPH predicts that
(1) environmental filtering would be the dominant mechanism underlying fish community
structure in headstreams, as a result of the combined effects of isolation and environmental
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heterogeneity; (2) both environmental filtering and dispersal would drive community
organisation in downstream areas. However, most available studies to date have ignored
the imprints of potential species associations on the assembly of stream fish biotas. In
addition, abiotic environmental and spatial factors have been considered as the primary
processes explaining variation in stream fish community structure, despite the fact that
these covariates usually only contribute a small amount of variance in traditional variation
partitioning analysis [30,46,47].

Based on an MCMC modelling framework, we decomposed the effects of the abiotic
environment, spatial processes and potential species associations on fish community or-
ganisation across seasons and in sites of different stream orders along the Qiupu River
(China). We found that signals of potential species associations (>70% of residual variance)
outweighed both the abiotic environmental component and spatial processes in structuring
stream fish communities. In this sense, Mehner et al. [35] originally proposed that the unex-
plained residuals in Bayesian Markov chain Monte Carlo algorithms potentially indicate
the imprints of species associations; they also found that species interactions have strong
effects on fish community structure across European lakes. Although residual correlations
are not equivalent to species interactions that are detected under manipulative in-stream
experiments per se [32], these species-to-species associations can still provide ecological
evidence of biotic constraints and their role in community organisation [35,48]. Despite this,
we re-emphasize that caution is still needed when interpreting these biologically driven
signals [49,50]. Our results broadly agree with Darwin’s [51] original idea that biotic inter-
actions contribute to species distributional patterns at subtropical latitudes. For comparison
purposes, the influence of these associations on stream fish communities should be further
assessed and replicated in experiments and empirical studies at the community level, and
across different environmental and biogeographical contexts [35]. An additional reason
to anticipate further applications of this approach elsewhere is the relatively weak per-
formance of constrained ordinations explaining compositional variation [52], particularly
across freshwater ecosystems where more traditional analytical approaches account for
barely 50% of the total variation [53]. These exercises are be important to prevent and
foresee the consequences of anthropogenic impacts on subtropical inland waters, especially
when integrating biologically driven factors in the management of local extinctions [54]
and species invasions [55] along gradients of environmental degradation. Following our
results, for example, the new interactions and conditions that are experienced after the
addition or removal of key species are likely to influence community structure, or even
contribute to the successful establishment of invaders in recipient ecosystems, facilitating
some species, to the detriment of others. Hence, identifying and protecting these potential
species associations is key to move forward in fish conservation, especially in the context
of the highly threatened subtropical inland waters of China [56].

Various network indices have been proposed to quantify the general structure of
interaction networks, depicting information on predation, mutualism and competition [57].
Network connectance, which represents the proportion of realized interactions from all pos-
sible links between the constituent species of a network, is considered as a measure of com-
munity complexity, and is predicted to modulate community stability and resilience [58].
For instance, high network connectance can increase the robustness of a network structure
and protect species from secondary extinctions [59,60]. In this study, network connectance
was significantly and positively correlated with the unexplained residuals underlying
potential species associations, suggesting that higher connectance between species should
strengthen the importance of biotic signals on community organisation. This finding might
have implications beyond theoretical assumptions on the structuring mechanisms of fish
communities, and suggests that a complex suite of potential species associations could
confer ecosystem resiliency in streams (see Dell et al. [61] for a similar reasoning in longleaf
pine ecosystems).

On the other hand, higher nestedness values suggested lower signatures of potential
species associations for community organisation (Figure 4). Specifically, network nested-
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ness provides information of a special case of asymmetrical interactions across unique
components of the network [57]. A nested network structure is considered to minimize
species competition in a community, thereby potentially promoting species diversity [62].
Considering correlations between network nestedness and the unexplained residuals from
the Boral model, we speculate that species competition may also play a key role in struc-
turing fish communities along the Qiupu River. This is a reasonable suggestion, not least
because fish usually occupy relatively similar niches in streams, which may lead to strong
competition between co—-occurring species, especially during the dry season, when only
small habitat patches and few food resources are available for these animals [63,64].

The distribution and frequency of different feeding habits are a proxy of potential
species associations in ecological communities [11,21,65]. The species interaction network
of our fish communities showed a clear trophic pattern from second-order streams to fourth-
order streams along the Qiupu River. Specifically, invertivores, omnivores, herbivores and
piscivores achieved their highest betweenness network centrality across different stream
orders. In stream ecosystems, primary productivity in and around headwater areas is much
lower than that of downstream sites. Hence, the trophic structure of stream fish usually
shows a longitudinal invertivore-omnivore-herbivore—piscivore replacement pattern from
upstream to downstream areas [66], a pattern that was mostly confirmed by our Bayesian
modelling approach. Interestingly, however, we found that omnivorous fish showed the
highest betweenness network centrality across seasons and in sites from different stream
orders. Network centrality indicates the importance of species for the interaction network
structure and is a common measure when it comes to identifying ‘keystone species” in
ecosystems [67]. In our stream sites, many omnivorous species may have competed for
food with the remaining fish feeding groups, which probably led them to play a key role in
maintaining the stability of most interaction networks [68].

5. Conclusions

Based on latent models and a tree-based method, we studied the relative contribution
of abiotic environment filtering, spatial factors and imprints of potential species associations
on fish communities across seasons and in different stream orders. We found that biotic
signals reflecting potential species associations might have been underestimated in classical
community-based assessments of stream fish. For instance, the high betweenness network
centrality of omnivorous fish suggests that competition between different trophic guilds
may have a primary role in maintaining the seasonal stability of fish interaction networks
in streams. From an applied perspective, our findings emphasize that identifying and
protecting these potential species associations networks is key for the conservation and
management of stream communities, especially in the context of the ever-increasing, human-
induced invasions and local extinctions of key species in Subtropical Asia. We encourage
future studies to capture biotic constraints as potentially important long-term assembly
mechanisms in running waters, and to exceed more traditional analytical approaches that
only consider species sorting by abiotic environmental conditions.
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environmental covariates for the three stream orders in the wet season of the Qiupu River; Table S4:
Average values and ranges of the environmental covariates for the three stream orders in the dry
season of the Qiupu River; Table S5: Model fit diagnostics and prediction errors for each Poisson
log-normal (PLN) models in dry season. Table S6: Model fit diagnostics and prediction errors for
each Poisson log-normal (PLN) models in wet season. Figure S1: Plots of likelihood fitted curve of
each network.
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