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Abstract 

Genome architecture describes how genes and other features are arranged in genomes. These arrangements reflect 
the evolutionary pressures on genomes and underlie biological processes such as chromosomal segregation and the 
regulation of gene expression. We present a new tool called Genome Decomposition Analysis (GDA) that character-
ises genome architectures and acts as an accessible approach for discovering hidden features of a genome assembly. 
With the imminent deluge of high-quality genome assemblies from projects such as the Darwin Tree of Life and the 
Earth BioGenome Project, GDA has been designed to facilitate their exploration and the discovery of novel genome 
biology. We highlight the effectiveness of our approach in characterising the genome architectures of single-celled 
eukaryotic parasites from the phylum Apicomplexa and show that it scales well to large genomes.
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Background
Genome architecture is the arrangement of functional 
elements within the genome [1] and can be thought of in 
a linear fashion, or in the three-dimensional arrangement 
found in nuclei [2]. The architecture of genomes differs 
greatly across the tree of life. For example, bacteria tend 
to have small genomes, consisting mainly of single-exon 
protein coding genes, often arranged in co-expressed 
operons, with well-defined regulatory regions [1]. Eukar-
yotic genomes are diverse, ranging from those that are 
relatively compact, with genes lacking introns (e.g. Leish-
mania spp.), to large, repeat-rich genomes, sparsely 
populated by multi-exon genes with large introns which 
employ long range regulatory interactions [3]. Although 
we have an excellent understanding of the evolution of 
protein-coding genes and how they are shaped by natu-
ral selection, we know very little of the forces that shape 
many aspects of genome architecture, and random drift 
may be the dominant force in many eukaryotic genomes 

[4]. Despite this, there are many features of genome 
architecture that are functional, and which provide clues 
to understanding more about the biology of an organism 
and its evolutionary history. For instance, in the para-
sitic protozoan Plasmodium falciparum, genes involved 
in evading host immunity are located in the subtelom-
eric regions of chromosomes where the heterochromatic 
environment enables clonal variability in gene expres-
sion [5, 6]. In mammals, the immunoglobulin and T-cell 
receptor loci comprise ordered arrays of duplicated 
genes, allowing the generation of variant antibody and 
T-cell receptor proteins [7]. Operons of co-expressed 
genes are found in some eukaryotes such as kinetoplas-
tids [8] and nematodes [9]. Some fungi have genomes in 
which different regions have distinct evolutionary rates 
(https://​www.​scien​cedir​ect.​com/​scien​ce/​artic​le/​pii/​
S1749​46132​03002​57?​via%​3Dihub). There are also chro-
mosomes that have distinct architectural patterns within 
a genome. These include sex chromosomes [10] and 
accessory B chromosomes, such as those found in plants 
and fungi [11]. In the nematode worm C. elegans, repeti-
tive sequences have accumulated mostly at the ends of 
chromosomes [10]. However, some repeat families have 
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their own distinctive patterns that are repeated across 
each chromosome, suggesting a variety of forces at work 
[12].

A key problem hampering our understanding of 
genome architecture has been a lack of chromosome-
scale genome assemblies. However, steady advancements 
in the quality of long-read genome sequencing [13] and 
scaffolding technologies [14, 15] are beginning to solve 
this. Furthermore, projects such as the Darwin Tree of 
Life (https://​www.​darwi​ntree​oflife.​org/) and the Earth 
BioGenome Project (https://​www.​earth​bioge​nome.​org/) 
are planning to deliver chromosome-scale assemblies 
for all species across the eukaryotic kingdom. A second 
problem is that there is no recognised approach for char-
acterising chromosome architectures, something that 
would greatly facilitate studies on their evolution.

We present a new approach to characterise the linear 
architecture of genomes called Genome Decomposi-
tion Analysis (GDA). A genome sequence is divided into 
windows of arbitrary length and features are calculated 
for each window. Features can be derived solely from 
the sequence itself, including GC content, protein-cod-
ing potential, and repeat content, or include properties 
derived from other sources, such as sequence homology, 
gene expression, chromatin modifications, and recombi-
nation frequencies. The dimensionality of the resulting 
data matrix of windows and features is reduced and the 
results clustered. Parameters are explored to produce 
distinct clusters with a minimum of unclassified win-
dows. Features are then identified that characterise these 
clusters. The pattern of clusters across chromosomes is 
inspected to reveal, for example, that the centres of chro-
mosomes are distinct from the ends and that they are 
enriched in repeats. GDA includes an easy-to-use web 
application for data exploration and visualisation.

Apicomplexan parasites are well-studied due to their 
importance in disease and have well-understood genome 
architectures, making them ideal candidates for develop-
ing and testing GDA. We use GDA to: (i) refine our ear-
lier definition of the genome architecture of the malaria 
parasite P. falciparum and characterise variation in its 
relatives; (ii) show that bands of repeat-rich sequence 
cover all chromosomes of the chicken parasite Eimeria 
tenella and compare its architecture to that of the canon-
ical coccidian Toxoplasma gondii, revealing they both 
have distinctive but gene-poor subtelomeres; and (iii) 
demonstrate the potential of GDA for understanding the 
genome architecture of much larger genomes such as 
that of Homo sapiens.

GDA is under the MIT licence and is available from 
GitHub: https://​github.​com/​eeaun​in/​gda

Results
Design of the GDA pipeline
We developed GDA to identify features of genome archi-
tecture from highly contiguous genome assemblies as a 
basis for further study of genome evolution. The tool 
consists of three main parts: a genomic feature extrac-
tion pipeline that calculates feature values in windows 
across the genome; dimension reduction and clustering 
of these windows; and visualisation and data explora-
tion using a web-browser application (Fig. 1). The mini-
mal required input for the pipeline is a genome assembly 
FASTA file. The features that are extracted from the 
FASTA file are: GC content, GC skew, AT skew, CpG 
dinucleotide frequency, k-mer frequencies, stop codon 
frequency, matches to a telomeric sequence motif, low 
complexity sequence content, tandem repeat content, 
coverage of simulated reads, retrotransposons, inverted 
repeats and repeat families (Supplementary Table  1). A 
more exhaustive repeat analysis can be included by run-
ning RepeatModeler which produces features describing 
the distribution of individual complex and simple repeats 
as well as features describing the sums of complex and 
simple repeats. Gene annotations can be used to produce 
bedgraph tracks of mRNA, tRNA and rRNA gene densi-
ties, average exon count, exon length and intron length. 
Where gene annotation files are unavailable, the pipeline 
can annotate genes. Likewise, if proteome FASTA files 
are provided for related species, the pipeline can produce 
bedgraph tracks based on the counts of predicted para-
logs, orthologs, conserved proteins and species-specific 
proteins. It is also possible to add any user-generated 
tracks, using coordinates of the genome being analysed, 
to be included as input to the clustering step.

Each feature is examined in sliding windows across the 
genome, the output of which is stored in bedgraph files. 
We chose to use non-overlapping windows so that each 
part of the genome is classified into a distinct cluster. 
The size of window will strongly affect the results of the 
analysis. Architectural features relating to individual ele-
ments of genes such as promoters, for instance, may only 
be visible at higher resolution (smaller window sizes). 
Conversely, the presence of regions with increased num-
bers of intergenic repeats might only be apparent at lower 
resolution (larger window sizes). Larger genomes tend 
to have larger, more dispersed genes, so good choices of 
window sizes will tend to be larger in larger genomes. 
We try a range of window sizes to see what they tell us 
about a genome’s architecture. The bedgraph files can 
be visualised in a genome browser such as IGV [16]. The 
data in the bedgraph files are merged into a tab separated 
(TSV) file and are scaled to fit the range between 0 and 
1. The resulting table is then analysed using UMAP,-a 
dimensionality reduction approach [17]. Dimensionality 
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reduction algorithms aim to reduce the number of vari-
ables in a complex dataset while retaining the key prop-
erties of the data. HDBSCAN [18] is then run to detect 
clusters of genomic windows in the UMAP results. Next, 
the user can explore different values of key parameters 
for UMAP and HDBSCAN and compare the clusterings 
obtained. Low values of the N neighbours parameter 
of UMAP (n) tend to result in larger numbers of small 
groups of windows, while higher values tend to pull the 
data together into smaller numbers of large groups. The 
minimum cluster size parameter of HDBSCAN (c) lim-
its the size of clusters identified in the UMAP results. 
It is not straightforward to determine what are the best 
parameters to use for the clustering and so users can 
assess clusterings generated with a range of parameters. 
The coherence of the clustering can be measured with the 
silhouette score – a high score, closer to one, means that 

windows are well clustered. However, we also consider 
the proportion of windows which fall outside of clusters, 
which we would like to be low, and the total number of 
clusters. Very low or very high numbers of clusters tend 
to be less informative about genome architecture. When 
suitable parameter values have been chosen, the clus-
tering and analysis script is run, producing a set of out-
put files. One of the output files is a BED file that marks 
which cluster each genomic window belongs to. We iden-
tify characteristic features for each cluster using the two-
sample Kolmogorov-Smirnov test. Using this test, we 
compare the distribution of values for a feature in a clus-
ter against the distribution of values for that feature in all 
other clusters. The test is two-sided and we look to see 
whether the test statistic D, is significantly greater (D +) 
or lower (D-) than expected. Where D + is significant, 
the cluster being examined tends to have higher values 

Fig. 1  Overview of the GDA pipeline. A Feature sets are derived from the genome reference sequence (seq), repeat finding (rep), gene annotations 
(gene) and evolutionary relationships between genes (orth). The genome is divided into user-defined, non-overlapping windows (e.g. 5kbp in 
length) from which the value of each feature is determined. B The resulting matrix of feature values per window is embedded in two dimensions 
and clustered to identify groups of windows with similar properties. C The data can be explored in a number of ways using a web-browser based 
app. The clustering labels are mapped back to the chromosomes to highlight architectural features and a heatmap displays the features which 
define the clusters
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for that feature, while they tend to be lower if D- is sig-
nificant. In some cases, both D + and D- are significant, 
indicating the distribution of values for that feature in the 
cluster of interest is more spread out than for other clus-
ters. The clustering and analysis results can be explored 
using the GDA web app that includes a scatter plot of 
clustered windows, how these clusters are arranged over 
the genome, heatmaps of features enriched in each clus-
ter, and the cluster composition of each chromosome.

Redefining Plasmodium falciparum genome architecture
A complete chromosomal genome assembly of the 
human malaria parasite Plasmodium falciparum has 
been available for almost 20  years [19, 20]. Given the 
importance of the P. falciparum genome as a refer-
ence for studying one of the most persistent and deadly 
human infectious diseases, it is not surprising that there 
is a good understanding of its architecture. Each chromo-
some end has a region adjacent to the telomere known as 
the subtelomere. In Plasmodium spp. subtelomeres con-
tain multiple members of expanded gene families which 
are highly variable between species. The central, core 
regions of chromosomes contain much more well con-
served genes.

We first tested the ability of GDA to identify the known 
architectural features of the P. falciparum genome using 
only features derived from the genome sequence itself 
(seq feature set). We chose a window size of 5kbp to cap-
ture a small number of genes per window and to reflect 
the resolution of the genome architecture we expect to 
see. For genomes where the architecture is unknown we 
recommend choosing several window sizes and com-
paring results. We explored a range of UMAP nearest 
neighbour (n) and HDBSCAN minimum cluster size (c) 
parameters but picked n = 5 and c = 50 as these resulted 
in a relatively high silhouette score of 0.28, with 100% of 
windows being classified (Sup Fig. 1; Fig. 2A). The three 
resulting clusters defined the core (cluster 2), the multi-
gene family arrays (cluster 1) and the GC-rich Telomere 
Associated Repeat Element (TARE) region adjacent to 
the telomeres (cluster 0; Fig.  2B). The core was char-
acterised by uniqueness of sequence (simulated map-
ping coverage of 9.94x, p = 1.23e-96), tandem repeats 
(p = 1.09e-36) and low GC percentage (18.6% in the core 
vs. 22.2% across other clusters, p = 8.43e-43) (Fig.  2C). 
The multigene family-rich regions were defined by high 
CpG percentage (0.96 vs. 0.66, p = 9.00e-32) and low 
uniqueness as measured by mapping coverage of simu-
lated reads (3.9 × compared to the maximum 10 × gener-
ated by the algorithm, p = 4.44e-131). This was caused by 
highly similar regions in tandemly duplicated gene clus-
ters. The TARE region was defined by high GC percent-
age (32.4%, KS test p-value = 4.90e-146), high stop codon 

frequency (0.24, KS test p-value 1.43e-87), and k-mer 
deviation (3-mer, p = 1.30e-69 and 4-mer, p = 6.69e-48) 
(Fig. 2C). This definition of P. falciparum genome archi-
tecture required only the genome sequence and simple 
parameters derived from it yet characterised both the rel-
atively GC-rich telomere-adjacent regions, gene-family 
rich subtelomeres and the conserved core.

To improve on this definition of the genome archi-
tecture we generated features from three additional 
sources, adding protein-coding gene annotations 
(seq + gene), then repeat classification (seq + gene + rep) 
and finally protein-coding gene conservation 
(seq + gene + rep + orth). The gene feature set adds an 
additional eight features. The rep feature set added 
35 complex repeat features, 85 simple repeat features 
and features for the sum of all complex and the sum of 
all simple repeats. The number of repeat features will 
vary between genomes depending on the complex-
ity of repeats. The orth feature set added four features 
describing the homologous relationships between P. 
falciparum protein-coding genes and those in a selec-
tion of related species (Supplementary Table  1). For 
each of these feature sets we re-ran the feature extrac-
tion pipeline and chose clustering parameters that 
minimised the number of unclustered windows, while 
providing several large, well-separated clusters, with a 
high silhouette score. Adding gene annotations altered 
the definition of the subtelomeres, extending them 
inwards towards the centromeres. This was because 
the extended regions are similarly less gene-dense 
compared to the core regions of the chromosomes 
(Fig.  3). Adding repeat classification (seq + gene + rep) 
differentiated the TARE2-5/SB-2 region (named com-
plex_repeats_rnd-3_family-6 by GDA) closest to the 
telomeres [19] from the TARE6/SB-3/rep20 repeat 
(named complex_repeats_rnd-3_family-4 by GDA). 
Repeat identification altered the definition of the mul-
tigene family regions to be more like that found when 
only sequence-based information was used. This was 
because the larger multigene families were identified 
as repeats and this excluded the smaller multigene 
families. Including all this information, plus analysis 
of gene conservation (seq + gene + rep + orth) allowed 
improved definition of the multigene family-contain-
ing subtelomeric cluster-all 65 var genes, 155/157 rifin 
genes and 31/32 stevor genes overlapped cluster 3. It 
also highlighted the more conserved, distal subtelom-
eric regions containing smaller gene families, where 
there is conservation of synteny within P. falciparum, 
but not between species (cluster 4; Fig. 2D-F; Fig. 3B). 
Our analysis provides a much richer definition of the 
genome architecture compared to that developed pre-
viously [21]. One reason for large gene families such 
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as var and rif being localised to the ends of chromo-
somes appears to be that they are regulated by facul-
tative heterochromatin formation in the subtelomeres 
(typified by the binding of Heterochromatin Protein 
1 – HP1) and this method of gene expression control 
extends to internal var gene arrays [6]. The role of 
HP1 in regulating other gene families is less well stud-
ied. We examined HP1 occupancy measured by ChIP-
seq across GDA clusters, using an existing dataset [6]. 
We found that HP1 occupancy was higher in the var/
rif-containing cluster 3 regions than cluster 4 regions, 
which contain the more well-conserved, smaller multi-
gene families, as expected (Sup Fig. 2). However, while 
internal and subtelomeric cluster 3 regions had similar 

HP1 occupancy, genes in internal cluster 4 regions had 
less HP1 bound than those in subtelomeric cluster 4 
regions. This suggests that whereas var-gene-contain-
ing cluster 3 regions are regulated by HP1 to a similar 
extent in subtelomeric and internals locations, the mul-
tigene families in cluster 4 are less strongly regulated by 
HP1 in internal locations.

Defining the unique arrangement of the P. knowlesi 
genome
Most Plasmodium species have similar genome archi-
tectures to P. falciparum, with large multigene families 
localised largely to the subtelomeres. The clear exception 
is P. knowlesi, a related species that also causes malaria 

Fig. 2  GDA analysis of the Plasmodium falciparum genome. A UMAP embedding (n = 5) and HDBSCAN2 clustering (c = 50) of 5kbp windows using 
simple features derived from the genome sequence (seq feature set). B Projection of clusters onto the chromosomes highlights the localisation 
of cluster 0 windows at the very ends of chromosomes, with cluster 1 windows adjacent to these and within the cores of some chromosomes. 
C Heatmap showing features enriched in each cluster with seq feature set. Colours indicate the relative value of the feature in each cluster 
(red = highest, blue lowest), icons indicate significance (‘∧’ = KS test greater p-value <  = 1e-20, ‘∨’ = KS test lesser p-value <  = 1e-20, ‘-’ = great and 
lesser p-values <  = 1e-20) (D) UMAP embedding (n = 20) and HDBSCAN2 clustering (c = 50) of 5kbp windows with seq + gene + rep + orth feature 
set. E Projection of clusters onto chromosomes shows that the additional features break the subtelomeric regions into four distinct regions and that 
two types of islands (clusters 3 and 4) interrupt the core (cluster 2) on some chromosomes. F Heatmap showing features enriched in each cluster 
with all features
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in humans and other primates. In this species, the larg-
est, most rapidly evolving multigene families (in this case 
sicavar and pir) are found in islands throughout chro-
mosomes associated with telomere-like repeats [22]. 
We used this example to examine the utility of GDA for 
comparative genomics—identifying differences in archi-
tecture between related species. P. vivax is a closer rela-
tive to P. knowlesi than P. falciparum but has a genome 
split into gene-family rich subtelomeric regions and a 
well conserved core like P. falciparum. We ran GDA on 
the P. vivax genome with a seq + gene + rep + orth fea-
ture set, identifying two clusters characterising the whole 
genome. This confirmed that like P. falciparum, most P. 
vivax chromosomes are made up of cores with well-con-
served genes (cluster 0; Fig. 4A-C), while the subtelom-
eres contain species-specific genes with high numbers of 
paralogues (cluster 1).

GDA analysis of P. knowlesi resulted in four clusters 
with 82.96% of the windows assigned falling into clus-
ter 3, representing well-conserved genes (Fig.  4D-F). 
Note that while the window size was the same, cluster-
ing parameters were slightly different to those used for 
P.vivax. Clustering parameters were chosen to separately 
to maximise the silhouette score while minimising the 
number of unclustered windows in each case. This may 
mean that some detailed comparisons of the datasets 
are not appropriate. Cluster 1 (12.41%) represented the 
multi-gene family-rich regions which are interspersed 
throughout the chromosomes, rather than concentrated 

towards the telomeres as observed in other Plasmodium 
spp. This cluster was also enriched for complex repeat 
families (sum of complex repeats p = 0). Several of these 
repeat families contained telomere-like repeats (e.g. 
TT[T/C]AGGG) as expected from previous analysis [22]. 
Cluster 2 made up 1.8% of the genome and was enriched 
only for simple_repeats_C (p = 1.47e-176). This relates to 
a previously unidentified feature of the genome: 63 polyC 
repeats of ~ 20 nucleotides. Twenty-eight of these repeats 
were found in introns, while others tended to lie close to 
genes. Here, GDA makes clear the alteration in genome 
architecture between closely related species, while also 
identifying previously hidden features.

Identification of repeat‑rich bands and large gene‑poor 
subtelomeres in Eimeria tenella
Eimeria spp. parasites have been found in a wide range of 
vertebrates and commonly cause coccidiosis in domesti-
cated chickens. We have previously shown that their ~ 50 
Mbp genomes contain a banded pattern of regions rich 
in CAG and telomere-like (TTT​AGG​G) repeats [23]. 
Coding regions are enriched for the CAG repeat, which 
tends to encode Homopolymeric Amino Acid Repeats 
(HAARs) of alanine, serine or glutamine and litter even 
very well-conserved genes. We recently sequenced the 
genome of Eimeria tenella using long reads and Hi-C 
scaffolding, producing a nearly chromosomal assembly 
[24].

Fig. 3  Detailed view of Plasmodium falciparum chromosome 4. A A selection of the features used as input to GDA displayed across the 1.2Mbp 
chromosome 4. These features were identified as significant in one or more clusters of one or more GDA runs. Data range indicates minimum 
and maximum values for the y axis of each feature. B Chromosome architectures generated using different feature sets with comparison to the 
definition of Otto et al. which captures only the core [21]. GDA was run with basic sequence features, with the addition of gene annotation, with 
gene annotations and complex repeat finding, with gene annotations, complex repeat finding and orthology analysis
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We investigated whether GDA was able to identify the 
repeat rich bands and other distinctive features in this 
genome using the new chromosome-scale assembly. 
Using the seq feature set resulted in three clusters. Fig-
ure 5 shows that this simple input was sufficient to define 
the repeat-rich bands across the genome. 95.2% (3,927) 
of genes containing HAARs fell into cluster 1. This high-
lights that when using only simple features, GDA is able 
to accurately capture this aspect of genome architecture, 
and furthermore, that E. tenella genome architecture is 
dominated by this feature.

To better understand the repeats present in the dif-
ferent regions, we ran GDA again, adding in the rep 
feature set (silhouette score = 0.32; Fig.  6A-C). We saw 
that cluster 8 (41.69% of the genome) was enriched for 
simple_repeats_CTA​AAC​C (p = 0; i.e. the telomere-
like repeat) and simple_repeats_GCT (p = 0; i.e. CAG 
repeat) as well as inverted repeats and several complex 
repeat families (Fig.  6C). This cluster overlapped 93.8% 

of HAARs (26,728/28,483). With this feature set, cluster 
9 represented the gene-rich parts of the genome lacking 
repeats (23.61%), while cluster 10 (9.04%) —intermedi-
ate between clusters 8 and 9 in the UMAP plot — was 
enriched in inverted repeats and sum of complex repeats. 
Cluster 5 captured the LTR retrotransposons, which are 
not a common feature in apicomplexan genomes and 
were first identified in E. tenella and then subsequently 
in avian malaria parasites [25, 26]. Cluster 4 was enriched 
for TGT​TGC​ repeats, which were the only enriched sim-
ple repeats to not colocalise in the repeat-rich cluster 8 
regions, instead being more evenly dispersed through-
out the chromosomes. On chromosome 6 it is repeated 
between tRNA genes in a tRNA cluster, but otherwise 
does not have an obvious pattern.

Adding in gene features (seq + rep + genes) distin-
guished gene-poor regions at the subtelomeres and inter-
nally within chromosomes (Fig. 5). Clusterings with high 
silhouette scores and relatively few unclassified windows 

Fig. 4  GDA analysis of the Plasmodium vivax P01 and P. knowlesi H genomes. A The P. vivax genome neatly separates into two clusters with 
seq + rep + gene + orth feature sets. B These represent core (magenta) and subtelomeric (cyan) regions. C The clusters are typified, amongst other 
things, by having one-to-one orthologous genes versus highly paralogous species-specific genes, respectively. In the heatmap colours indicate the 
relative value of the feature in each cluster (red = highest, blue lowest), icons indicate significance (‘∧’ = KS test greater p-value <  = 1e-20, ‘∨’ = KS 
test lesser p-value <  = 1e-20, ‘-’ = great and lesser p-values <  = 1e-20). D P. knowlesi separated into four clusters. E None of the clusters were localised 
to the subtelomeres. F The cluster with large species-specific gene families equivalent to the subtelomeric cluster of P. vivax (cluster 1; green) is 
dispersed throughout each chromosome
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failed to distinguish the repeat-rich regions. We picked 
parameters which resulted in a separate cluster for win-
dows intermediate between repeat-rich and repeat-poor 
clusters, with a relatively moderate 13.68% unclassi-
fied windows and silhouette score = 0.18 (n = 10, c = 50; 
Sup Fig. 3). This allowed the identification of gene-poor 

subtelomeric (and sometimes internal) regions with 
repeat-rich regions still well-characterised (26,566/28,483 
HAARs in cluster 9; Fig.  5). Gene-poor subtelomeric 
regions have not previously been described as a feature of 
Eimeria chromosomes. These subtelomeric gene deserts 
(clusters 4 and 5) have high CpG content and cluster 5 

Fig. 5  Repeat-rich bands and gene-poor subtelomeres of Eimeria tenella are captured more or less well by different feature sets. A A number of 
features are shown in 5kbp windows across chromosome 6 of E. tenella. The repeat-rich bands, defined here by GCT (CAG) repeats are highlighted 
in yellow. The gene-poor subtelomeres are highlighted in blue and a sag multigene family array in pink. Data range indicates minimum and 
maximum values for the y axis of each feature. B Four different architectures, based on different feature sets are shown below. The seq, seq + rep 
and seq + rep + genes feature sets capture the repeat-rich regions very well, with the last of these also capturing the gene-poor subtelomeres. The 
seq + rep + gene + orth feature set does not capture the repeat-rich regions in a single cluster but instead focuses more on whether a window 
contains more well-conserved genes or not. It retains the cluster identifying the gene-poor subtelomeres and highlights arrays of sag genes

Fig. 6  GDA analysis of Eimeria tenella with the seq + rep feature set. A Analysis of E. tenella with the seq + rep feature set identified 11 clusters. The 
majority of the genome was separated into three or four clusters found in bands across each chromosome (B). C These include the repeat rich 
region (cluster 8; dark blue), a cluster which is similar but lacks repeats (9; purple) and an intermediate cluster (10; magenta) which is enriched 
for sum of complex repeats and inverted repeats, but not the GCT/CAG and telomere-like (CTA​AAC​C) repeats found in cluster 8. In the heatmap 
colours indicate the relative value of the feature in each cluster (red = highest, blue lowest), icons indicate significance (‘∧’ = KS test greater 
p-value <  = 1e-20, ‘∨’ = KS test lesser p-value <  = 1e-20, ‘-’ = great and lesser p-values <  = 1e-20)
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has high stop codon frequency, while cluster 4 has low 
uniqueness, despite not being enriched for any particular 
repeat families.

We wanted to determine whether gene poor subtelom-
eres were also present in other Coccidia and so we ran 
GDA on the related species Toxoplasma gondii with 
seq + gene + rep + orth feature sets. The genome resolved 
into 5 distinct clusters, with no unclassified windows 
(Fig. 7). Chromosomes often ended in gene-poor regions 
falling into cluster 1 (mRNA_annotations lower than 
other regions; p = 5.6e-310). These had high stop codon 
frequency (p = 5.35e-74), high GC skew (p = 8.05e-30) 
and were enriched for complex repeats (p = 1.03e-26), 
although no individual repeats in particular, much like E. 
tenella.

Next, we ran GDA on E. tenella including the orth 
feature set (seq + rep + gene + orth) to see if we could 
identify patterns of gene conservation amongst the com-
plexity of the repeat regions (6 clusters, n = 10, c = 100, 
1.9% windows unclassified). The gene-poor subtelomeres 
remained well classified (Fig. 5), but the sag gene arrays 
on chromosomes 6, 9 and 11 were now also well-cap-
tured by cluster 0. Of 78 sag genes, 51 overlapped clus-
ter 0 windows. In this clustering the repeat-rich cluster 
was lost. Instead, much of each chromosome was split 
into windows with well-conserved genes (cluster 4 – 
46.61% windows) or more species-specific genes (clus-
ter 5 – 15.61%). Both these clusters were enriched for 

“simple_repeat_GCT” (i.e. CAG repeats; KS-test one-
sided p-value 1.03e-234 for cluster 4, 1.43e-82 for cluster 
5).

The E. tenella genome highlights how some important 
properties of genome architecture are not well captured 
with a single parameter set. Using different feature sets, 
and parameters such as window size, enabled different 
aspects of genome architecture to be represented.

GDA can be run on large genomes and with high 
resolution
We measured the time taken to run the genomic feature 
extraction pipeline of GDA with the genome assem-
blies of four different species representing a range of 
genome sizes: Plasmodium falciparum (~ 23 Mb), Cae-
norhabditis elegans (~ 100  Mb), Schistosoma mansoni 
(~ 410  Mb) and Homo sapiens (~ 3300  Mb) (Table  1). 
In each case 5kbp windows were used, meaning that 
for H. sapiens, features were calculated over 654,762 
windows. Memory requirements were roughly corre-
lated with genome size and were not greatly affected by 
repeat finding. Run time was roughly correlated with 
genome size, however C. elegans took longer to process 
than S. mansoni. The major factor contributing to long 
run times was using RepeatModeler to identify repeats 
de novo (rep feature set). Without this step, analysis of 
the P. falciparum genome was completed in 17 min and 
the human genome in less than 12  h. When de novo 
repeat finding was included these analyses took ~ 11  h 

Fig. 7  GDA analysis of Toxoplasma gondii highlights gene-poor subtelomeres and gene family-rich islands. A Using the seq + rep + gene + orth 
feature set, the T. gondii genome separated into 5 distinct clusters. B Cluster 1 (gold) was often found at the ends of chromosomes and was 
typified by low numbers of mRNA annotations, high GC skew, complex repeats and stop codon frequency (C). This is similar to what we see in E. 
tenella subtelomeres. In the heatmap colours indicate the relative value of the feature in each cluster (red = highest, blue lowest), icons indicate 
significance (‘∧’ = KS test greater p-value <  = 1e-20, ‘∨’ = KS test lesser p-value <  = 1e-20, ‘-’ = great and lesser p-values <  = 1e-20)
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and 87  h respectively. However, it is clear that GDA 
can be run effectively on large genomes with resources 
commonly available on bioinformatics compute clus-
ters, even including time-intensive repeat finding. In 
an analysis of the human genome with 50kbp windows, 
GDA clearly identified centromeres and pericentro-
meric repeat-rich regions known to be important fea-
tures of chromosome architecture [27] (Sup Fig. 4). The 
bulk of the genome was divided into regions rich in 
protein coding genes and those lacking protein coding 
genes. These clusters highlighted chromosome 19 as 
particularly dense with protein coding genes and chro-
mosome 13 as having a relative deficit of protein coding 
genes. A fifth cluster highlighted regions primarily con-
taining retrotransposons, an especially common feature 
of the human genome [28].

Discussion
We have presented a new tool, GDA, which decomposes 
a genome sequence into windows, identifying those 
with similar properties and enabling the characterisa-
tion of genomic architectural features. This is achieved 
most simply using properties derived from the genome 
sequence alone, but a wide range of additional prop-
erties can be used as input. We have shown that GDA 
recapitulates the well-described architecture of the 
malaria parasite Plasmodium falciparum and in doing so 
defines regions of interest that can be further explored. 
The description of the P. falciparum genome was robust 
to different feature sets, suggesting that each part of 
the genome has multiple features distinguishing it from 
other regions which are correlated with each other. In 
the Eimeria tenella genome, GDA analysis highlighted 
the banded pattern of repeats observed previously [23, 
25] and shows for the first time that it is present across 
all chromosomes. A previous attempt to define these 
regions involved arbitrary cutoffs, but GDA provides a 
straightforward and data-driven approach to define the 
repeat-rich regions. This will facilitate the comparison of 
different Eimeria spp. genomes in studying the evolution 
of these repeat-rich regions across species.

The power of GDA lies in the way it allows visualisa-
tion of genome architecture to suggest hypotheses about 
genome function and evolution. Applied to closely related 
species, substantial changes in organisation of genomic 
features can be quickly recognised (as in the example of 
P. vivax and P. knowlesi). The drivers of these features can 
be readily determined and investigated (as in the CAG 
repeats in protein-coding genes of E. tenella). This makes 
GDA a powerful tool for any de novo genome sequenc-
ing or comparative genomics project involving well-
assembled genomes. We foresee a range of applications 
such as sex and accessory chromosome identification, 

genome assembly curation and interpretation of epig-
enomic datasets (e.g. ChIP-seq/ATAC-seq). In fact, simi-
lar approaches to ours have been used to analyse patterns 
of chromatin modifications in isolated genomic regions 
[29] and patterns of relatedness across genomes [30]. 
However, we are not aware that similar approaches have 
been applied to characterise genome-wide architecture 
and we have not found any tool which has this aim.

When considering application of GDA for different 
purposes and on different sizes of genome, window size 
is an important parameter. The choice of window size 
should reflect the resolution of features that the user 
is interested in. A window size of 1kbp in a 100Mbp 
genome may reflect individual parts of genes such as 
separate exons, introns and promoters which would be 
appropriate for understanding patterns in many types of 
ChIP-seq data. On the other hand, windows of 5-10kbp 
may reflect one or a handful of genes or complex repeats 
per window, while 1Mbp windows will reflect more broad 
aspects of genome architecture.

All Apicomplexan genomes appear to be relatively 
small and compact, however their architectures are 
diverse. Unlike some larger genomes, in which there is 
little linear architectural coherence based on sequence 
properties, repeats and homology, these genomes display 
quite definite ordering. Current work on mammalian 
genomes suggests that important aspects of architecture 
relating to the control of gene expression are manifest in 
the third dimension, i.e. the arrangement of the linear 
chromosomes in space [31]. These arrangements can be 
assayed by techniques such as Chromatin Conformation 
Capture (e.g. Hi-C). Although not linear in nature, the 
data from these assays could be reframed as linear fea-
tures (for instance regions of high connectivity between 
chromosomes) and used as input to GDA. GDA is not 
limited to the examination of apicomplexan genomes, 
or even just eukaryotes, but can be used with any DNA 
sequence. Despite the large amount of computation 
involved, GDA can be run on large genomes with large 
feature sets in about a week. The most time-consuming 
step is repeat finding, and we are exploring alternatives 
that would bring the overall run time down substan-
tially. Despite its large size and great degree of complex-
ity, GDA is able to identify the major features of human 
genome architecture.

Methods
Genome decomposition analysis pipeline
Version 1.0 of GDA was used throughout, with default 
parameters unless otherwise specified. A window size 
of 5kbp was used throughout as this represents roughly 
the size of a gene in apicomplexans (e.g. Plasmodium 
spp.). The GDA v1.0 code was cloned from a private git 
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repository to a Linux server and a Conda environment 
that includes all software dependencies established using 
the create_gda_conda_env.py script provided. This instal-
lation was used for running the feature extraction, clus-
tering and analysis parts of the pipeline.

The pipeline extracts the values of various sequence 
features (e.g. GC content) with a sliding window 
(default size 5kbp) along all sequences in the assembly. 
The values are stored as separate bedgraph files (one 
per feature). The pipeline consists of a master script 
that is written in Nextflow [32]. The rest of the code 
of the pipeline has been written mostly in Python. The 
Nextflow script triggers multiple third party software 
tools that are used to detect genomic features. As an 
alternative to using the Conda environment, the pipe-
line and its dependencies are packaged as a Singularity 
[33] image, thus simplifying its installation in a shared 
environment.

Using a genome assembly FASTA file as the input, 
the genomic feature extraction pipeline determines low 
complexity sequence content using Dustmasker 1.0.0 
[34], tandem repeat content using Tandem Repeats 
Finder 4.09.1 [35], 10 × coverage of simulated reads 
using WGSIM 1.0 (https://​github.​com/​lh3/​wgsim), ret-
rotransposons using LTRharvest and LTRdigest from 
GenomeTools 1.6.1 [36], inverted repeats using ein-
verted from EMBOSS 6.6.0 [37] and repeat families 
using either RepeatMasker + RepeatModeler 2.0.1 [38] 
or Red (05/22/2015) + MeShClust2 2.3.0 [39, 40]. GC%, 
AT skew, GC skew, and the frequency of CpG dinucleo-
tides, stop codons and telomeric motifs in each window 
are determined using Python code. If the user does not 
provide the pipeline with a gene annotation file, the pipe-
line can annotate genes itself using Augustus 3.3.3 [41], 
tRNAscan-SE 2.0.6 [42], and Barrnap 0.9 [https://​github.​
com/​tseem​ann/​barrn​ap]. It is possible to provide hints 
for Augustus using annotation transfer from a GFF3 file 

of a related genome with Liftoff 1.6.1 [43]. With addi-
tional input data, the pipeline can detect ectopic mito-
chondrial and apicoplast sequences using BLAST 2.10.1 
[34], and RNA-Seq read coverage using HISAT2 2.2.1 
[44]. If the user provides proteome FASTA files of spe-
cies that are related to the target species, the pipeline can 
run OrthoMCL 1.4 [45]. A more detailed description of 
the variables can be found in Supplementary Table  1. 
Note that telomeric motifs, stop codons and kmers are 
not counted if they are broken up by a border between 
two windows. However, in the OrthoMCL results analy-
sis part (when calculating the values of variables per gene 
in the window) a gene that is split between two windows 
is counted as a part of both windows.

The code for the dimensionality reduction and cluster-
ing of the data from genomic windows uses the Python 
UMAP [17] and HDBSCAN [18] libraries. The scaling of 
variables before running UMAP is done using MinMax-
Scaler from the scikit-learn package [46].

In the script for optimising the clustering parameters 
(gda_parameters.py), Silhouette score, Davies-Bouldin 
index and Calinski-Harabasz score are calculated for each 
clustering result using scikit-learn. These scores help to 
find the clustering settings that work the best for separat-
ing the genomic windows into distinct clusters.

After determining the optimal settings for n_neighbors 
and minimal cluster size, the pipeline runs the final clus-
tering. Kolmogorov–Smirnov test is used to determine 
whether the distribution of values of a variable in a GDA 
cluster is significantly different from the distribution of 
the values of the same variable in the rest of the genomic 
windows. The test is performed using the ks_2samp func-
tion from the scipy package [47]. The Fisher test with 
Benjamini–Hochberg multiple hypothesis testing correc-
tion (using scipy.stats [47] and statsmodels.stats.multit-
est libraries [48] are used to determine if some types of 
cluster junctions occur with a different frequency than 

Table 1  Resource requirements for running the GDA feature extraction pipeline on a range of genomes. The GDA feature extraction 
pipeline was run with four genomes of different sizes. De novo repeat detection had a large effect on run time while genome size 
caused increases in both run time and memory usage

Feature set P. falciparum C. elegans S. mansoni H. sapiens

Assembly size (Mbp) 23.33 100.29 409.57 3272.09

Seq + gene + orth (without 
RepeatModeler)

Run time 17 min 1 h 1 min 1 h 37 min 11 h 42 min

CPU time (s) 2475.22 13,444.56 16,204 126,110

Max memory use (Mb) 4573 8878 11,738 145,277

Seq + gene + rep + orth (with 
RepeatModeler)

Run time 11 h 16 min 8 h 59 min 41 h 13 min 86 h 6 min

CPU time (s) 408,912 238,074 1,184,172 1,862,049.88

Max memory use (Mb) 4278 9326 11,730 128,683

https://github.com/lh3/wgsim
https://github.com/tseemann/barrnap
https://github.com/tseemann/barrnap
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what is expected by chance. For example, this test yields 
a statistically significant result when windows belonging 
to a given cluster are located next to windows belonging 
to the same other cluster significantly more often than 
expected by chance.

While the clustering and visualisation parts of the 
GDA pipeline rely on bedgraph files, none of the third 
party software tools used by GDA produce output files 
in bedgraph format. We therefore use Python code writ-
ten for the GDA pipeline to derive bedgraph files from 
the diverse set of output files produced by the third 
party tools. In some cases, the output of a software tool 
is first converted to GFF format and then the GFF file 
is converted to a bedgraph file. All bedgraph files cor-
responding to one assembly are merged into a tab-sep-
arated table. The code for merging bedgraph files into a 
table and for downsampling the table has been written 
in C +  + instead of Python, in order to gain execution 
speed.

In this work, we distinguish four different feature sets: 
seq requires only the genome sequence as input, gene 
features are derived from a set of gene annotations (e.g. 
mRNA, rRNA, tRNA etc. features in a GFF file), rep fea-
tures derived from running the RepeatModeler repeat 
classification and analysis tool, orth derived from running 
the OrthoMCL tool for determining orthologous and 
paralogous relationships between protein-coding genes. 
These feature sets are frequently combined, as stated. In 
this work “full feature set” refers to the combination of 
these four feature sets, e.g. seq + gene + rep + orth. GDA 
is capable of generating additional feature sets and any 
arbitrary genome data tracks can be added to incorporate 
novel features.

Datasets
Genome sequences and annotation for the follow-
ing species were downloaded from VEuPathDB release 
51 (https://​toxodb.​org/​toxo/​app/​downl​oads/​relea​se-​
51/)—Plasmodium falciparum 3D7, P. knowlesi H, P. 
chabaudi AS, P. vivax P01, Toxoplasma gondii ME49, 
Babesia bovis T2Bo, B. microti RI, Theileria annulata 
Ankara, T. parva Muguga and Cryptosporidium parvum 
Iowa II. Features in the GFF files labelled protein_cod-
ing_gene were changed to gene. Eimeria tenella Houghton 
data was downloaded from ENA (https://​www.​ebi.​ac.​uk/​
ena/​brows​er/​view/​GCA_​90531​0635.1). For OrthoMCL 
runs (excluding large genome analysis), all the above spe-
cies were included.

Analysis of Plasmodium falciparum
The feature extraction module of GDA was initially 
run using just the sequence as input, producing the fol-
lowing features: at_skew, cag_freq, cpg_percentage, 

dustmasker_low_complexity_percentage, einverted_
inverted_repeat, N_percentage, gc_percentage, gc_skew, 
kmer_deviation_kmer_size_3, kmer_deviation_kmer_
size_4, LTRdigest_protein_match, LTRdigest_LTR_retro-
transposon, stop_codon_freq, tandem_repeats_fraction, 
telomere_freq, wgsim_depth_minimap2. A description of 
these features is available in Supp. Table 1.

The clustering_params function of GDA was used to 
determine suitable clustering parameters, with all combi-
nations of n neighbours (n) = {5, 10, 15, 20} and minimum 
cluster size (c) = {50, 100, 200 500} explored. Parameter 
values were chosen to minimise the percentage of unclas-
sified windows and maximise the silhouette score. This 
was achieved with n = 5 and c = 50. Feature extraction 
was also performed with the addition of gene annota-
tions (seq + gene), resulting in the following additional 
features: exon_count, gene_average_exon_length, gene_
average_intron_length, gene_length, mRNA_annota-
tions, pseudogene_annotations, rRNA_annotations and 
tRNA_annotations. Clustering parameters were n = 10 
and c = 40. To this feature set, repeat identification with 
RepeatModeler was added (seq + gene + rep), incorporat-
ing sum_of_simple_repeats, sum_of_complex_repeats, 
as well as numerous, specific simple and complex repeat 
family features. Clustering parameters for this feature 
set were n = 15, c = 50. The final feature set added fea-
tures derived from an analysis of orthologues across the 
Apicomplexan phylum: apicomplexa_ortholog_count, 
apicomplexa_paralog_count, apicomplexa_protein_con-
servation_ratio and apicomplexa_species_specific_pro-
teins_ratio (seq + gene + rep + orth). Here, the clustering 
parameters were chosen as n = 20, c = 50.

We wanted to determine whether cluster 3 (var/rif 
genes) and 4 (smaller multigene families) regions in the 
seq + gene + rep + orth run of P. falciparum were more 
or less well covered by HP1 chromatin modifications in 
internal regions versus subtelomeres. We defined sub-
telomeric windows as those within 200kbp of chromo-
some ends. To test whether there was a difference in HP1 
occupancy between subtelomeric and internal multigene 
family regions, bedgraph files of log2 ratios of HP1 in 
trophozoites were downloaded from PlasmoDB, origi-
nally derived from [49]. We used bedtools intersect to 
identify genes overlapping windows of each cluster. Box-
plots were drawn using the graphics v4.0.2 package in R. 
Kolmogorov–Smirnov tests, using the stats v4.0.2 pack-
age in R, were used to determine statistical significance.

Analysis of P. vivax and P. knowlesi
Full feature sets (seq + gene + rep + orth) were used for P. 
vivax and P. knowlesi. For P. vivax we chose parameters 
n = 20, c = 50, for P. knowlesi n = 10, c = 50. Clustering 

https://toxodb.org/toxo/app/downloads/release-51/
https://toxodb.org/toxo/app/downloads/release-51/
https://www.ebi.ac.uk/ena/browser/view/GCA_905310635.1
https://www.ebi.ac.uk/ena/browser/view/GCA_905310635.1
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parameters were chosen using the clustering_params 
function of GDA as for other species.

Analysis of Eimeria tenella
We used parameters n = 10 and c = 100 with the seq fea-
ture set, resulting in exclusion of 2.74% of windows and a 
silhouette score of 0.53. The default CAG repeat feature 
was excluded because this feature was originally added 
specifically to help identify repeats in Eimeria spp. Here, 
we wanted to demonstrate that these repetitive regions 
could be identified without prior knowledge. We added 
rep features (n = 5, c = 50, silhouette score = 0.32), then 
gene features (13.68% unclassified windows and silhou-
ette score = 0.18, n = 10, c = 50), then orth features (6 
clusters, n = 10, c = 100, 1.9% windows unclassified).

Homopolymeric Amino Acid Repeats (HAARs) were 
identified using Python regular expressions, looking for 
runs of A, S, Q, L and N of at least 7 in predicted protein 
sequences. There were 13,389 A, 9,404 Q, 5,350 S, 334 L 
and 6 N repeats.

Analysis of Toxoplasma gondii
Non-chromosomal contigs were removed from the 
assembly. The seq + gene + rep + orth feature set was used 
with parameters n = 20, c = 50, resulting in 5 clusters, 
with no unannotated windows.

Analysis of large genomes
The GDA feature extraction pipeline was run with four 
genomes of increasing size, with and without Repeat-
Modeler (rep feature set) to show how resource require-
ments scale. Each was run with orthologue analysis 
(orth), genome annotation (gene) feature sets as well as 
NUclear Mitochondrial DNA (NUMT) identification. 
All jobs were executed on the Wellcome Sanger Institute 
compute farm with Intel(R) Xeon(R) Gold 6226R CPU @ 
2.90 GHz processors.

and up to 16 threads. Genomic windows size was 5 kbp 
in all runs—which represents 654,762 windows for H. 
sapiens. Gene annotations were read from existing GFF 
files from the same origin as the assembly FASTA files 
(PlasmoDB, NCBI or WormBase ParaSite).

Plasmodium falciparum 3D7 (PlasmoDB release 43) 
was used with the Pf_M76611 (PlasmoDB) mitochon-
drial genome reference and reference proteomes P. 
chabaudi chabaudi AS, P. ovale curtisi GH01, P. gal-
linaceum 8A, P. malariae UG01, P. berghei ANKA, P. 
vivax P01 (from PlasmoDB release 52). Caenorhab-
ditis elegans (RefSeq GCF_000002985.6) was used 
with mitochondrial sequence NC_001328.1 (NCBI) 
and predicted proteomes GCF_000001215.4 Release 6 
(Drosophila melanogaster), GCF_000146045.2 R64 (Sac-
charomyces cerevisiae) and GCF_000001405.39 GRCh38.

p13 (Homo sapiens) from NCBI, GCA_900184235.1 
(Oscheius tipulae) and GCA_000469685.2 (Haemonchus 
contortus) from GenBank and PRJEA36577.WBPS14 
(Schistosoma mansoni) from WormBase ParaSite. 
Schistosoma mansoni (WormBase ParaSite release 14, 
assembly Smansoni_v7) was used with mitochondrial 
sequence NC_002545.1 (NCBI) and predicted proteomes 
PRJDA72781.WBPS14 (Clonorchis sinensis), PRJEB527.
WBPS14 (Schistocephalus solidus), PRJEB122.WBPS14 
(Echinococcus multilocularis), PRJEA34885.WBPS14 
(Schistosoma japonicum), PRJNA179522.WBPS14 (Fas-
ciola hepatica), PRJEB124.WBP from WormBase Para-
Site [50]. Homo sapiens (NC_012920.1; NCBI) was run 
with mitochondrial sequence NC_012920.1 (NCBI) 
and predicted proteomes GCF_000002035.6_GRCz11 
(Danio rerio), GCF_001663975.1 (Xenopus laevis v2), 
GCF_000001635.27_GRCm39 (Mus musculus) from 
NCBI.

For clustering analysis of the human genome, fea-
tures were calculated in 5kbp windows and then merged 
into 50kbp windows. Tracks for individual repeat fami-
lies were excluded but sum of simple repeats and sum of 
complex repeats features were used. Suitable cluster-
ing parameters were chosen using the clustering_par-
ams tool, with n_neigbors = 50 and minimum cluster 
size = 500.

Supplementary Information
The online version contains supplementary material available at https://​doi.​
org/​10.​1186/​s12864-​022-​08616-3.

Additional file 1: Supplementary Figure 1. Effect of varying N neigh-
bours (n) and minimumcluster size (c) parameters on clustering of 5kb 
windows from Plasmodium falciparum with the seq feature set. Values for 
thepercentage of unclassified windows (U) and the silhouette score (S) 
are shownbeneath each UMAP plot. We aimed in this work to identify 
clustering parameterswhich resulted in a small percentage of unclas-
sified windows, a high silhouettescore and a reasonable number of 
clusters. Here we picked n = 5, c = 50, wherethere were no unclassified 
windows and the silhouette score was reasonablyhigh. Other clusterings 
had higher silhouette scores (e.g. n = 20, c = 50), buthad fewer clusters, 
suggesting they might be missing an interesting architecturalfeature 
captured by the n = 5, c = 50 clustering. Supplementary Figure 2. 
Heterochomatin Protein 1 occupancy inclusters 3 and 4 of P. falcipa-
rum seq+gene+rep+orth analysis. (A)HP1 occupancy is generally high 
in cluster 3 windows, but slightly lower insubtelomeric than internal 
locations (Kolmogorv-Smirnov test, D- 0.29348, p =0.007814). (B) HP1 
occupancy is generally lower in cluster 4 windows comparedto cluster 3. 
Subtelomeric cluster 4 windows tend to have higher HP1 occupancythen 
internal ones. Supplementary Figure3. Effect of varying N neighbours(n) 
and minimum cluster size (c)parameters on clustering of 5kb windows 
from E. tenella with the seq+rep+genefeature set. A range of n and c 
parameters were evaluated to determinea good clustering of genomic 
windows. U = unclassified window percentage, S =silhouette score. 
Selecting n = 10 and c = 50 allowed the identification ofgene-poor 
subtelomeric (and sometimes internal) regions with repeat-richregions 
still well-characterised. Supplementary Figure 4. GDA analysis of the 
human genome with 50kbwindows. (A) A UMAP plot of all 50kb windows 
of the human genome showsthat it separates into five distinct clusters. 
(B) Key features such ascentromeres (cluster 0 in red) and pericentromeric 

https://doi.org/10.1186/s12864-022-08616-3
https://doi.org/10.1186/s12864-022-08616-3
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segmental duplications(cluster 3 in blue) are captured. (C) A heatmap of 
features associated witheach cluster shows that the centromeric cluster 
(0) is enriched for complexrepeats and skewed nucleotide content (high 
gc_skew and kmer deviation). Thesegmentally duplicated regions (cluster 
3) are indicated by high numbers ofpseudogenes and inverted repeats 
and high GC content. Supplementary Table 1. Variables extractedby 
the genomic feature extraction pipeline of GDA. Each feature that can 
be generated by the GDAfeature extraction pipeline is described here, 
highlighting whether it isincluded in a particular feature set.
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