
J Appl Clin Med Phys. 2021;22:273–279.	﻿�   |  273wileyonlinelibrary.com/journal/acm2

1  |   INTRODUCTION

In-house clinical software development has been
around for decades but has become more prominent
in recent years. Acknowledging the debate whether or
not good non-commercial medical software develop-
ment management should be considered outside of the
scope of medical physics practice,1 there is nonethe-
less the need for the software being actively developed
now to be safe and robust for clinical use. Unfortunately,
the industry guidelines and staffing models have not

changed significantly to accommodate the increased
need for quality software development practices in
the clinic. At the time of this publication, clinical soft-
ware development and evaluation are not included in
the Commission on Accreditation of Medical Physics
Educational Programs (CAMPEP) Standards for
Residency Programs.2 Physics errors have the po-
tential to impact large numbers of patients because of
the scope of responsibilities (eg. machine calibration,
planning system commissioning) and lack of qualified
personnel to review work and catch errors. In-house

M A N A G E M E N T A N D P R O F E S S I O N

Code Wisely: Risk assessment and mitigation for custom
clinical software

Rex A. Cardan   | Elizabeth L. Covington   | Richard A. Popple

Received: 29 March 2021  |  Revised: 18 May 2021  |  Accepted: 7 June 2021

DOI: 10.1002/acm2.13348

This is an open access article under the terms of the Creat​ive Commo​ns Attri​bution License, which permits use, distribution and reproduction in any medium,
provided the original work is properly cited.
© 2021 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals LLC on behalf of American Association of Physicists in
Medicine

Department of Radiation Oncology,
University of Alabama at Birmingham,
Birmingham, AL, USA

Correspondence
Rex Cardan, Department of Radiation
Oncology, University of Alabama at
Birmingham, 1719 6th Ave S, Birmingham,
AL 35294, USA.
Email: rcardan@uabmc.edu

Abstract
Purpose: The task of software development has become an increasing part of
the medical physicist's role. Many physicists who are untrained in the best prac-
tices of software development have begun creating scripts for clinical use. There
is an increasing need for guidance for both developers and medical physicists to
code wisely in the clinic.
Materials and Methods: We created a novel model for assessing risk for cus-
tom clinical software analogous to failure modes and effects analysis and pro-
pose minimum best practices that should be followed to mitigate the risks. Using
this risk model, we integrated a literature review and institutional experience to
form a practical guide for risk mitigation.
Results: Using this new risk assessment model, we outlined several risk miti-
gation techniques including unit testing, code review, source control, end-user
testing, and commissioning from the literature while sharing our institutional
guidelines for evaluating software for risk and implementing these strategies.
Conclusion: We found very little literature for custom software development
guidelines targeted at medical physicists. We have shared our institutional expe-
rience and guidelines to help facilitate safe software development for the evolv-
ing role of the medical physicist.

K E Y W O R D S
risk analysis, scripting, software

www.wileyonlinelibrary.com/journal/acm2
mailto:﻿￼
https://orcid.org/0000-0001-9483-1398
https://orcid.org/0000-0002-2018-4316
https://orcid.org/0000-0003-1252-738X
http://creativecommons.org/licenses/by/4.0/
mailto:rcardan@uabmc.edu

274  |     CARDAN et al.

clinical software further amplifies this issue allowing
for a complicated task to be automated and scaled
throughout a clinical practice potentially causing unin-
tended harm to patients if an error exists in design or
implementation.

There has been some guidance published concern-
ing software best practices for medical physicists. More
than two decades ago, Rosen3 outlined comprehensive
practices including writing design specifications, testing,
documentation, and other coding practices. Many are
still very relevant today, but the software development
industry has evolved significantly since that work and
we believe there is a need for further practical guide-
lines. Others have more recently summarized principles
they have followed including FMEA and “automated
QA”.4-6 While there have been a few publications on
standards for the development of medical device soft-
ware,7 there has been very little with specific targeted
recommendations for medical physicists. In the follow-
ing sections, we will outline a risk assessment model
that can be used for clinical software development and
highlight some mitigation strategies to give direction that
is practical and applicable to medical physicists.

1.1  |  A note concerning
spreadsheet software

Many computer applications have the capability for
users to modify the behavior of the application or to ma-
nipulate data in a user-specified fashion. When used
in this way in a clinical setting, these applications pre-
sent the same risks as custom software created using
a formal programming language. An important exam-
ple for medical physicists is the spreadsheet program
Microsoft Excel (Microsoft Corporation, Redmond,

WA). Microsoft Excel is ubiquitous and most medical
physicists have experience using it. In a survey of in-
house software practices, Salomons and Kelly8 found
that 93% of surveyed centers use custom spread-
sheets. Clinical physicists who do not consider them-
selves “programmers” are often comfortable building
spreadsheets for clinical use. The familiarity of medi-
cal physicists with spreadsheet software can result in
complacency about the hazards presented by spread-
sheets. Because spreadsheets are so widely used and
present unique challenges for quality assurance, risk
assessment, and mitigation for spreadsheets will be
addressed explicitly along with other in-house devel-
oped software.

2  |   RISK ASSESSMENT

To assess which quality assurance measures are ap-
propriate for the developed software, a risk manage-
ment approach should be used comparable to failure
modes and effect analysis (FMEA).9,10 In FMEA, the
risk is determined by assessing the frequency of oc-
currence (O), severity (S), and the probability of the in-
cident going undetected (D) for each identified failure
mode. These numbers are multiplied together to obtain
a risk priority number (RPN) which is used to quanti-
tatively evaluate the risk of each failure mode in a ra-
diotherapy workflow. Similarly, we recommend that risk
should be assessed for each individual software tool
developed. Quantitative risk assessment for software
can be performed by the following parameters: popula-
tion (P), intent (I), and complexity (C). Table 1 shows the
descriptions of the P, I, and C values.

Population is intended to gauge the scale of the soft-
ware tool and is a direct measure of the percentage of

TA B L E 1   Descriptions of the P, I, and C values used to assess the risk of custom clinical software

Rank

Population (P) Intent (I) Complexity (C)

Qualitative Frequency (%) Qualitative Class Qualitative Quantitative

1–2 Software used for a
specific patient or
rare procedure

<1% No direct clinical
impact

I A Simple Readable, and <20 lines per
unit, and <20 units

3–5 Software used in
special procedures

10% Only impacts clinical
efficiency

I B Somewhat
complex

Moderately difficult to read,
or 20–50 lines per unit, or
20–50 units

6–8 Software used in
routine clinical
workflows for every
patient

100% Software used for
direct clinical
decision making
but does not
write to a clinical
database

II A More
complex

Difficult to read, or 50–100
lines per unit, or 50–100
units

9–10 Software shared across
institutions

Multi-
institutional

Software used for
direct clinical
decision making
and writes to a
clinical database

II B Complex Indecipherable, or >100 lines
per unit, or >100 units

     |  275CARDAN et al.

the clinic's population that the tool will impact. This is
analogous to occurrence in TG-100 since it a measure
of frequency. In effect, it measures the potential am-
plification of errors in the system. The lowest rank in
the category is reserved for software tools that impact
a relatively low number of patients, while the highest
level includes software tools that will be shared across
institutions.

Intent refers to the classification of the software and
how it is used in clinical decision making. This is anal-
ogous to the severity in TG-100 because tools that di-
rectly impact clinical decision making pose a larger risk
than those used for efficiency improvements. We strat-
ified classes by their ability to acutely impact patient
outcomes and whether they could override existing
clinical data. A class system similar to how the FDA de-
termines risk for medical devices11 is shown in Table 2
but has been tailored to software categories expected
to be developed in medical physics.

Risk is also increased as the complexity of the code
increases. According to Leveson, one of the most effec-
tive tools for making software safer is building it to be
intellectually manageable.12 Complexity is a measure of
how difficult it is to find an error by an independent re-
viewer. This is analogous to TG-100 detectability. With
increased complexity, the probability of errors going
undetected significantly increases. We broke down
complexity into three main categories: number of lines
of code per unit/function, the total number of units, and
readability of the code. Readability is a qualitative mea-
sure that includes following some standard practices of
variable naming, method naming, and sufficient com-
ments so that the intent of the methods and variables
can be easily understood. Low complexity improves
the maintainability of the code base and prevents in-
creased risk when the original developer(s) are no lon-
ger a part of the project.

Like RPN, these parameters can be used to
rank each custom software tool by multiplying the

parameters together to get the software risk number
(SRN) where SRN = P*I*C. This number will serve
as a quantitative metric for the posed risk if the code
does not perform as anticipated or if the design is
flawed. After SRN is evaluated, clinics can rank tools
by highest SRN and intent to determine the most
hazardous tools. Tools with the highest SRN and
those used for direct clinical decision making (IIA,
IIB) can be allotted the appropriate resources during
development, commissioning, and routine quality as-
surance. Our intent is not to be prescriptive in what
SRN values require which isk management tools, but
to create a framework for assessing risk. Individual
clinics can evaluate SRN in conjunction with avail-
able resources to prioritize and allot risk manage-
ment endeavors.

2.1  |  Spreadsheet software

For the risk assessment of spreadsheets, the popu-
lation and intent rankings can be assigned as de-
scribed above. For complexity, a separate evaluation
is needed. Table 3 shows the complexity ranking for
spreadsheets. Complexity increases as the number of
cells and the interdependence of calculated cells in-
creases. The highest level of complexity is for spread-
sheets that contain macros regardless of the number
of calculated cells.

TA B L E 2   Classification system for the intent of clinical software

Classification Description Examples

I A (Minimal risk) A codebase that does not have a direct impact on
clinical efficiency or clinical outcome (research)

Plan automation in research database; DVH
Mining; Post-treatment plan analysis

I B (Minimal to moderate risk) A codebase that could influence clinical efficiency
but not directly affect the clinical outcome if
code does not perform as anticipated or if the
design is flawed (efficiency tools)

DICOM automation; Export tools; Post-treatment
Reporting

II A (Moderate Risk) A codebase which could affect the clinical outcome
if code does not perform as anticipated or if the
design is flawed but does not write to a clinical
database (read clinical tools)

Plan quality check tools; Pre-treatment
reporting/instructions

II B (Moderate to High Risk) A codebase which could affect the clinical outcome
if code does not perform as anticipated or if the
design is flawed and also writes to a clinical
database (write clinical tools)

Plan automation components; QA automation
components; Pre-treatment data importing
tools

TA B L E 3   Tiers of complexity for spreadsheets

Rank
Calculated
cells

Sheets with
data input Macros

1–2 <10 1 No

3–5 <25 1 No

6–8 >25 2+ No

9–10 - - Yes

276  |     CARDAN et al.

2.2  |  Reassessment of risk

It should be noted that risk can change as the project
progresses. For example, while a large outcome project
would have no immediate clinical impact (categorized as
a Class IA initially) and a low population score (Rank 1),
its errors could have a long-lasting impact if the data were
eventually used for setting clinical objectives. In this case,
the code could transition to a population Rank 3 or 4 and
intent of II A, as shown in Figure 1, increasing the risk sig-
nificantly. We recommend regularly assessing the risk of
the software throughout the project timeline to ensure that
adequate risk mitigation techniques have been employed.

2.3  |  Risk and the end-user

We note that this model does not explicitly account for
the end-user when classifying detectability and com-
plexity. We acknowledge that the detectability of errors
can vary depending on the user and are dependent on
both their technical expertise and familiarity with the
software content. Complexity levels could also vary as
the readability of the program is subjective. When as-
sessing detectability and complexity, it may be prudent
to consider the characteristics of the end-users and ad-
just these parameters accordingly.

3  |   RISK MITIGATION

According to Leveson, “complacency is the most impor-
tant risk factor in a system, and a safety culture must
be established that minimizes it.”12 Within the context
of an established safety culture, best practices of soft-
ware development include a diverse team to develop

and evaluate the software. Table 4 includes the roles of
responsibilities of team members. Typically, physicists
are serving multiple roles on the teams as both devel-
opers and users. If feasible, physicists not involved in
direct code development should be available for end-
user testing and commissioning. We acknowledge that
this may not be possible due to staffing at small clin-
ics. Regardless, end-user testing and commissioning
should be well documented to distinguish development
from quality assurance steps.

3.1  |  Software configuration

When possible, editing of configuration parameters
should be controlled to eliminate the risk of unintended
changes. This is difficult to achieve at run-time be-
cause it requires the creation and management of user

F I G U R E 1   Decision tree for software
classification

TA B L E 4   Role and responsibilities for the development of in-
house software

Role Responsibilities

Developer Source control

Unit testing

Integration testing

Code documentation

Physicist Risk assessment

End-user testing

Commissioning

Policies and procedures

User End-user testing

Product improvement requests

Bug reporting

     |  277CARDAN et al.

roles. If configuration parameters cannot be secured
at run-time, developers should strongly consider incor-
porating parameters into the application so that when
compiled the parameters are not exposed to end-users.
Alternatively, configuration files can be placed in a lo-
cation that users cannot access, or the configuration
files can be encrypted and decrypted by the applica-
tion. For spreadsheets, the entire document is like a
configuration file and careful consideration should be
taken to ensure critical parameters and functions do
not change unintendedly. Specific recommendations
for spreadsheets are outlined below.

3.2  |  Source control

One of the most difficult tasks about malleable cus-
tom software is knowing its current state. Has it been
modified? Who modified it? Why was it modified? Is
the current version tested? Which version is deployed?
Software configuration management (SCM) aims to
solve these problems by allowing a small database to
keep track of every detail of changes over time. The
authors believe this is one of the most crucial steps
needed to implement a safe and clinical development
practice. Modern source control systems, most popu-
larly Git,14 allow many other advantages including al-
lowing easy editing on multiple computers by multiple
people.

3.3  |  Code review

When possible, higher risk software should be re-
viewed by an independent party. McIntosh et al.
found that “review coverage, participation, and exper-
tise share a significant link with software quality.”15
Code review helps enforce good practices of naming,
encapsulation, and overall readability which reduces
the complexity of code and thereby increasing detect-
ability. The extent and detail of the review are subjec-
tive. At our institution, we review all Class II software
(Intent) and ensure the code is readable, logical, and
maintainable.

3.4  |  Testing

Testing software can be a tedious task. Testing is often
divided into several categories including function (unit)
testing, system testing, volume testing, capacity testing,
security testing, performance testing, and many oth-
ers.16 Because the scope of testing can be overwhelm-
ing for a clinical medical physicist, we have chosen to
describe the minimum testing which should be per-
formed prior to deploying clinical software. We believe
the following are achievable and practical techniques

that are followed at our institution for Rank 3 and above
(Population) and Class IB and above (Intent).

3.4.1  |  Unit testing

As highlighted by Levenson,17 specification of software
and isolation of safety-critical components is para-
mount to safe software practices. One practical way of
both specifying the objective and isolating a part of the
software from other parts is to design the entire applica-
tion as a collection of smaller units. This allows for the
common practice of developers to strengthen a code
base with unit testing, or “testing the smallest separate
module in the system.”18 Unit testing is like component
testing (machine QA) for medical physicists, where
the entire validation of a medical device is broken into
subtests (rotation about isocenter, mechanical motion
along each axis, energy validation, etc.). In modern unit
testing frameworks, the tests are automated and can
be run upon any change to the code. Deciding which
units should be tested in this way is subjective, but we
recommend at a minimum to design unit tests for the
most critical parts of code. Criticality can be assessed
using the risk model outlined previously.

3.4.2  |  System testing

System testing is the overall testing of a complete sys-
tem, a concept familiar to medical physicists as end-to-
end testing. Leveson states that the “safety of software
can only be evaluated in the context of the system
within which it operates.”12 System tests should be de-
fined early in the development process, including the
expected output of each test. System integration test-
ing should not be deferred to the end but should start
as soon as possible during development. All system
tests should be completed successfully prior to each
round of end-user testing.

3.4.3  |  End-user testing

In a recent survey on the development of in-house soft-
ware by medical physics,8 testing was reported as the
area of most concern when developing software for
clinical use. In addition to the testing done by devel-
opers, end-user testing, or user acceptance testing is
necessary before the clinical release of software tools.
End-user testing will be used to test the system for un-
foreseen use cases that can result in errors. One of the
most infamous instances of this in radiotherapy was the
Therac-25 software which could trigger catastrophic
radiation doses in patients if the therapists pressed the
console buttons too quickly.19 Before end-user testing,
a testing plan should be developed. This plan should

278  |     CARDAN et al.

detail to the end-user a list of tests with specifications.
Per Rosen3 tests should be based on risk analysis. End
users should document which tests were performed
with outcomes to either provide feedback to the devel-
opment or to document functionality for commissioning
reports.

Per Padmini et al.,20 end-user testing should be done
early and throughout the development period to prevent
project failure. To optimize end-user testing, develop-
ers should provide the end-users with documentation
and clear instruction on how the software operates.
End users cannot expect to test software without an un-
derstanding of the functionality of the program. Padmini
et al. identified the lack of a proper end-user testing
process and lack of knowledge of the testing proce-
dure as common shortcomings in end-user testing. Per
Salomons et al.,8 a survey indicated that only 7% of in-
house software tools had written guidelines for the use
of in-house software. This shows an area of need for
great improvement to follow best practices in software
development.

3.5  |  Clinical commissioning

Before clinical release, in-house software should un-
dergo a formal commissioning process to assess the
software for clinical release. This is independent of
software development testing but may include an over-
lap of tests performed during end-user testing. Tests
performed should be clearly documented and include
test plans or anonymized patients used for evaluation.
Outcomes of commissioning should include a formal
commissioning report, use policy, and procedures for
users.

3.5.1  |  Spreadsheets

One resource for spreadsheet development is
The European Spreadsheet Risks Interest Group
(EuSpRig) which maintains a list of references for
best practices and a collection of spreadsheet horror
stories.21 While many of the practices EuSpRig focus
on the financial industry, concepts such as documen-
tation and team review are generalizable to any field.
Because spreadsheets are rarely built by professional
developers and spreadsheet software was not de-
signed for life safety applications, industry-standard
tools for testing and deployment, specifically unit test-
ing tools, are not readily available and well known al-
though commercial software for version control and
unit testing of Excel is available. Many of the prac-
tices described here can be readily applied including
code classification, version control, integration test-
ing, and clinical commissioning. In addition to these
practices, several spreadsheet-specific strategies

should be applied. First, cells that do calculations or
that contain fixed data should be protected. In our
experience, clinical users will not hesitate to unlock
cells to fix a perceived problem and so protecting
cells should be augmented with a password require-
ment to unlock cells. Second, spreadsheets should
be developed as templates that prevent editing by
making the files read-only. Completed spreadsheets
should not be copied and pasted to be used with new
data. In addition to the risk of using old data, copy-
ing spreadsheets, rather than using a template, can
result in multiple versions of a spreadsheet being in
use. If spreadsheets are not appropriately protected,
copying files can result in user-introduced errors
being distributed.

4  |   CONCLUSION

Custom clinical software development is increasing
in medical physics and there is little published guid-
ance to help physicists in both the assessment of risk
and techniques to reduce risk. We feel many of the
methods mentioned are beyond the typical exper-
tise of a physicist and needed to be elucidated. We
have outlined a novel strategy for categorizing clini-
cal software to determine the prioritization of effort
to afford to create a safe software development prac-
tice. These guidelines can be applied to a variety of
custom clinical software from stand-alone programs,
spreadsheets, and application programming interface
(API) scripts for treatment planning systems and other
commercial software that allows APIs. Additionally,
we have shared some of our institution's thresholds
and techniques which we believe to be practical and
achievable at most facilities.

CO N FLI CT O F I NT E R EST
The authors have no relevant conflicts of interest to
disclose.

AUTH O R CO NTR I BUT I O N
Rex A. Cardan made substantial contributions to the
conception and design of the work; the acquisition,
analysis, and interpretation of data for the work; draft-
ing the work and revising it critically for important in-
tellectual content; gave final approval of the version
to be published; and agrees to be accountable for all
aspects of the work in ensuring that questions related
to the accuracy or integrity of any part of the work are
appropriately investigated and resolved. Elizabeth L.
Covington made substantial contributions to the con-
ception and design of the work; the acquisition, analy-
sis, and interpretation of data for the work; drafting the
work and revising it critically for important intellectual
content; gave final approval of the version to be pub-
lished; and agrees to be accountable for all aspects of

     |  279CARDAN et al.

the work in ensuring that questions related to the ac-
curacy or integrity of any part of the work are appropri-
ately investigated and resolved. Richard Popple made
substantial contributions to the conception and design
of the work; the acquisition, analysis, and interpreta-
tion of data for the work; drafting the work and revising
it critically for important intellectual content; gave final
approval of the version to be published; and agrees to
be accountable for all aspects of the work in ensuring
that questions related to the accuracy or integrity of
any part of the work are appropriately investigated and
resolved.

O RCI D
Rex A. Cardan https://orcid.
org/0000-0001-9483-1398
Elizabeth L. Covington https://orcid.
org/0000-0002-2018-4316
Richard A. Popple https://orcid.
org/0000-0003-1252-738X

R E FE R E N C E S
	 1.	 Kelly D, Wassyng A. 7.6. The most suitable person to estab-

lish quality assurance guidelines for the generation and use
of non-commercial clinical software is a medical physicist.
Controversies in Medical Physics: a Compendium of Point/
Counterpoint Debates Volume 3. 2017:295.

	 2.	 CAMPEP. Standards for Accreditation of Residency
Educational Programs in Medical Physics. 2019.

	 3.	 Rosen II. Writing software for the clinic. Med Phys.
1998;25(3):301-309.

	 4.	 Kisling K, Johnson JL, Simonds H, et al. A risk assessment of
automated treatment planning and recommendations for clini-
cal deployment. Med Phys. 2019;46(6):2567-2574.

	 5.	 O'Connell D, Thomas DH, Lewis JH, et al. Safety-oriented
design of in-house software for new techniques: a case
study using a model-based 4 DCT protocol. Med Phys.
2019;46(4):1523-1532.

	 6.	 Yang D, Moore KL. Automated radiotherapy treatment plan in-
tegrity verification. Med Phys. 2012;39(3):1542-1551.

	 7.	 Aami A. Guidance on the use of agile practices in the de-
velopment of medical device software. Ass Adv Med Instr.
2012;21:22-78.

	 8.	 Salomons GJ, Kelly D. A survey of Canadian medical physi-
cists: software quality assurance of in-house software. J Appl
Clin Med Phys. 2015;16(1):336-348.

	 9.	 Batbayar K, Takács M, Kozlovszky M. Medical device software
risk assessment using FMEA and fuzzy linguistic approach:
Case study. Paper presented at: 2016 IEEE 11th International
Symposium on Applied Computational Intelligence and
Informatics (SACI); 2016.

	10.	 Huq MS, Fraass BA, Dunscombe PB, et al. The report of Task
Group 100 of the AAPM: application of risk analysis meth-
ods to radiation therapy quality management. Med Phys.
2016;43(7):4209-4262.

	11.	 US Food and Drug Administration. CFR-code of federal regula-
tions title 21. In; 2017.

	12.	 Leveson NG. Safeware: system safety and computers.
Addison-Wesley, Boston; 1995.

	13.	 Zietman A, Palta J, Steinberg M, Blumberg A, Burns R, Cagle
S. Safety is no accident: a framework for quality radiation on-
cology and care. Am Soc Radiat Oncol. 2012.

	14.	 Loeliger J, McCullough M. Version Control with Git: Powerful
tools and techniques for collaborative software development.
O'Reilly Media, Inc., Sebastopol. 2012.

	15.	 McIntosh S, Kamei Y, Adams B, Hassan AE. An empirical study
of the impact of modern code review practices on software
quality. Emp Softw Eng. 2016;21(5):2146-2189.

	16.	 Myers GJ, Badgett T, Thomas TM, Sandler C. The art of soft-
ware testing. Vol 2: Wiley Online Library. 2004.

	17.	 Leveson NG. Software safety: why, what, and how. ACM
Comput Surv (CSUR). 1986;18(2):125-163.

	18.	 Runeson P. A survey of unit testing practices. IEEE Softw.
2006;23(4):22-29.

	19.	 Leveson NG, Turner CS. An investigation of the Therac-25 ac-
cidents. Computer. 1993;26(7):18-41.

	20.	 Padmini KJ, Perera I, Bandara HD. Applying agile practices
to avoid chaos in User Acceptance Testing: A case study.
Paper presented at: 2016 Moratuwa Engineering Research
Conference (MERCon); 2016.

	21.	 Group ESRI. European Spreadsheet Risk Interest Group.
2021. http://www.euspr​ig.org/

SU PPO RT I NG I N FO R M AT I O N
Additional supporting information may be found online
in the Supporting Information section.

How to cite this article: Cardan RA, Covington
EL, Popple RA. Code Wisely: Risk assessment
and mitigation for custom clinical software. J Appl
Clin Med Phys. 2021;22:273–279. https://doi.
org/10.1002/acm2.13348

https://orcid.org/0000-0001-9483-1398
https://orcid.org/0000-0001-9483-1398
https://orcid.org/0000-0001-9483-1398
https://orcid.org/0000-0002-2018-4316
https://orcid.org/0000-0002-2018-4316
https://orcid.org/0000-0002-2018-4316
https://orcid.org/0000-0003-1252-738X
https://orcid.org/0000-0003-1252-738X
https://orcid.org/0000-0003-1252-738X
http://www.eusprig.org/
https://doi.org/10.1002/acm2.13348
https://doi.org/10.1002/acm2.13348

