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A B S T R A C T

In recent years, many automatic brain structure segmentation methods have been proposed. However, these
methods are commonly tested with non-lesioned brains and the effect of lesions on their performance has not
been evaluated. Here, we analyze the effect of multiple sclerosis (MS) lesions on three well-known automatic
brain structure segmentation methods, namely, FreeSurfer, FIRST and multi-atlas fused by majority voting,
which use learning-based, deformable and atlas-based strategies, respectively. To perform a quantitative
analysis, 100 synthetic images of MS patients with a total of 2174 lesions are simulated on two public databases
with available brain structure ground truth information (IBSR18 and MICCAI’12). The Dice similarity coefficient
(DSC) differences and the volume differences between the healthy and the simulated images are calculated for
the subcortical structures and the brainstem. We observe that the three strategies are affected when lesions are
present. However, the effects of the lesions do not follow the same pattern; the lesions either make the
segmentation method underperform or surprisingly augment the segmentation accuracy. The obtained results
show that FreeSurfer is the method most affected by the presence of lesions, with DSC differences (generated −
healthy) ranging from−0.11 ± 0.54 to 9.65 ± 9.87, whereas FIRST tends to be the most robust method when
lesions are present (−2.40 ± 5.54 to 0.44 ± 0.94). Lesion location is not important for global strategies such
as FreeSurfer or majority voting, where structure segmentation is affected wherever the lesions exist. On the
other hand, FIRST is more affected when the lesions are overlaid or close to the structure of analysis. The most
affected structure by the presence of lesions is the nucleus accumbens (from −1.12 ± 2.53 to 1.32 ± 4.00 for
the left hemisphere and from −2.40 ± 5.54 to 9.65 ± 9.87 for the right hemisphere), whereas the structures
that show less variation include the thalamus (from 0.03 ± 0.35 to 0.74 ± 0.89 and from −0.48 ± 1.08 to
−0.04 ± 0.22) and the brainstem (from −0.20 ± 0.38 to 1.03 ± 1.31). The three segmentation approaches
are affected by the presence of MS lesions, which demonstrates that there exists a problem in the automatic
segmentation methods of the deep gray matter (DGM) structures that has to be taken into account when using
them as a tool to measure the disease progression.

1. Introduction

Neurodegenerative disorders are frequently associated with struc-
tural changes in the brain, such as variations in the volume or shape of
the deep gray matter (DGM) structures (Debernard et al., 2015; Mak
et al., 2014; Lee et al., 2015). In multiple sclerosis (MS), it has been
demonstrated that gray matter (GM) atrophy is relevant to disease
progression (Jacobsen et al., 2014); however global GM volume
measurement approaches are insufficiently sensitive during the early

stages of disease (Bergsland et al., 2012). Thus, an increasing number of
studies have investigated patients with clinically isolated syndrome and
early relapsing-remitting MS to study the atrophy effect on GM
substructures in order to identify the specific structures that are more
susceptible to this disease (Audoin et al., 2010; Calabrese et al., 2011;
Schoonheim et al., 2012; Štecková et al., 2014).

Some studies have analyzed the effect of MS on the subcortical
structures and have concluded that volume loss is predominant in this
region compared with that of the periphery (Bishop et al., 2017) and
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that its atrophy is closely related to the magnitude of inflammation
(Minagar et al., 2013). Furthermore, the effect of isolated structures has
also been studied, such as the thalamus, in which atrophy is a clinically
relevant biomarker of the neurodegenerative disease process
(Houtchens et al., 2007), or the corpus callosum, which undergoes
atrophy and becomes thinned out as the disease progresses (Kazi et al.,
2013).

The most common procedure to measure the volume of a structure
is to segment or delineate it in a T1-weighted magnetic resonance
image (MRI), which is a non-intrusive and painless technique that
achieves accurate results due to the significant contrast between tissues.
Although manual segmentation is still used, its results are poorly
reproducible (subject to inter- and intra- expert variability), and it is
a very time-consuming task. For this reason, automatic brain structure
segmentation methods have been widely studied in recent years
(González-Villà et al., 2016; Fischl et al., 2002; Heckemann et al.,
2006; Patenaude et al., 2011; Weisenfeld and Warfield, 2011; Iglesias
et al., 2012; Wang and Yushkevich, 2013). However, these automatic
methods are designed to segment non-lesioned brains, either from
healthy subjects or from patients with schizophrenia, Alzheimer's,
epilepsy and other diseases, and these patients typically do not have
white matter (WM) lesions such as those found in MS patients. These
lesions are hypointense in T1-weigthed MRI, and their intensity is very
similar to that of the GM, which can make the performance of these
automatic methods variable.

Interestingly, in order to reduce the effect of these hypo-intense T1-
weighted MS lesions, lesion filling techniques (Battaglini et al., 2012;
Valverde et al., 2014) have already been applied to assess the
progression of GM atrophy (Bergsland et al., 2012; Bishop et al.,
2017) and have improved the accuracy of tissue volume estimates
(Nakamura et al., 2014; Popescu et al., 2014). However, the effects of
these lesions on brain structure segmentation methods have not yet
been evaluated. One of the largest problems when quantitatively
evaluating these methods is that training and testing are difficult due
to the limitation of having datasets with both structure ground truth
and lesion annotations. Here, we overcome this issue with an approach
to synthetically generate MS lesions (from cases with lesion manual
annotation) in healthy subjects from whom brain structure ground truth
information is available.

In this work, we evaluate the effects of simulated MS lesions on the
performance of three well-known automatic brain structure segmenta-
tion approaches, each of which follows a different segmentation
strategy (González-Villà et al., 2016). FreeSurfer (Fischl et al., 2002)
follows a learning-based strategy, FIRST (Patenaude et al., 2011)
method uses a deformable approach, and the multiatlas-based segmen-
tation strategy is fused by means of majority voting (Artaechevarría
et al., 2009). To the best of our knowledge, this is the first work to study
the effect of MS lesions on brain structures segmentation. To evaluate
this effect, we generate a set of 100 synthetic MS patients' images with a
total of 2174 lesions, using as a base two different databases with
structures ground truth (the MICCAI 2012 Grand Challenge and Work-
shop on Multi-Atlas Labeling database (Landman and Warfield, 2012)
(MICCAI’12) and the Internet Brain Segmentation Repository1

(IBSR18)). The DSC differences in the automatic segmentations be-
tween the healthy and the simulated patient images for the three
approaches are analyzed separately by brain structure and lesion
location.

2. Materials and methods

2.1. Segmentation methods

Three publicly available structure segmentation methods are used in

this study. The first of these is the segmentation algorithm (Fischl et al.,
2002) included in the well-known software FreeSurfer2 (Fischl, 2012),
which follows a learning-based strategy. The second method is the
Bayesian appearance model proposed by Patenaude et al. (2011), which
is a deformable strategy and is implemented as part of the FSL3 package
under the name FIRST. The last algorithm follows an atlas-based
strategy, more specifically, multi-atlas registration fused by means of
the simple and well-known fusion strategy, majority voting. For this last
strategy, we follow the procedure described by Artaechevarría et al.
(2009). We first perform an affine transformation to align the volumes,
followed by a non-rigid B-spline registration using an isotropic grid
spacing of 8.0 pixels and mutual information as a similarity metric. As
in Artaechevarría et al., Elastix4 (Klein et al., 2010) is used to perform
the registrations. Both FreeSurfer and FIRST are executed with default
parameters.

2.2. Synthetic MS patient generation

Currently, there is a lack of public database information regarding
MS patients with both brain structures and lesion ground truth.
Therefore, to evaluate how WM lesions affect the performance of
automatic brain structure segmentation algorithms, we present here
our method to generate synthetic lesions from MS patient images to
healthy subjects with brain structure ground truth information. In the
following sections, we present the steps of this pipeline including lesion
dictionary construction, preprocessing and lesion generation.

2.2.1. Lesion dictionary
To build the lesion dictionary, it is necessary to have an MRI dataset

from MS patients with a manual lesion annotation (ground truth). This
dataset must consist of a set of T1-w volumes and their corresponding
lesion delineations.

As MS lesions are usually annotated using either the FLAIR or PD-w
sequence and lesions tend to look smaller in T1-w images, we first
reduce the lesion masks based on their appearance in the T1-w
sequence. To accomplish such a reduction, we perform a tissue
segmentation using FSL FAST (Zhang et al., 2001) and discard from
the ground truth the voxels classified in the WM class. Once the masks
are reduced, we assign an independent label to each lesion in the image
with the final objective of evaluating each lesion independently. This is
achieved by obtaining the connected components of the lesion mask
and considering each mask as a single 3D lesion.

As demonstrated later in this section, we approach strictly WM
lesions and WM lesions attached to the lateral ventricles (referred as LV
lesions) differently. Therefore, it is important to classify each lesion
from the dataset into one of these two groups. To do this, we calculate
the 3D Euclidean distance from each lesion contour to the cerebrospinal
fluid (CSF). At this point, we have all of the necessary information to
build the lesion dictionary, which includes the following information
for each lesion in the dataset: the lesion label, the image of procedence,
the lesion type (WM or LV) and, for practical issues, the lesion size.

2.2.2. Preprocessing
After construction of the lesion dictionary, and before applying the

lesion generation method in situ, some preprocessing steps are
required. First, we perform tissue segmentation of the target image,
as it is necessary in our lesion generation method to restrict the
generated lesion position and avoid overlap with the CSF. Afterwards,
we perform both rigid and non-rigid registrations of each MS patient in
the dataset to the target image. Both registrations are performed using
the original images without any preprocessing (either the MS patient

1 https://www.nitrc.org/projects/ibsr

2 http://freesurfer.net/
3 http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/
4 http://elastix.isi.uu.nl/
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image or the target image). Therefore, we acquire two new volumes in
the target image space −one rigidly registered to the target image and
another non-rigidly registered − in addition to the corresponding
lesion masks. As lesions can affect the non-rigid registration process,
their voxels are masked out in order to achieve a more accurate result.
The NiftyReg software5 is used to perform the registrations.

With all of the selected patients in the target image space, we
normalize the source image (registered MS patients) intensities to the
target image to create realistic lesions. For this purpose, the skull-
stripped images of both the MS registered patients and the target image
are used to avoid the influence of non-brain intensities on the histogram
matching normalization process. To normalize the images, ITK6 im-
plementation described by Nyul et al. (2000) is used.

2.2.3. Lesion generation
We finally generate the new MS lesions in the target image as

follows:

patch patch mask patch mask= × + × (1 − )target lesion target

where patchtarget corresponds to the 3D patch in the target image where
the lesion is going to be generated, patchlesion is the 3D patch of the
registered and normalized patient containing the lesion, and mask is the
corresponding lesion mask to which we apply a Gaussian filter to make
the transition between the healthy tissue and the lesion smoother.

As already mentioned we deal with the lesions separately, generat-
ing one lesion at a time and selecting its mask (mask) from the
corresponding registered image: rigid for WM lesions, since the idea
for this type of lesions is to keep the original shape, and non-rigid for LV
lesions. These last lesions have a special shape that depends on the
morphology of the LV and non-rigid deforming the original lesions
allows getting adapted to that structure. Therefore, the final lesion
mask is composed by the sum of the independent lesion masks
proceeding from the registered images. However, as the original
location of the lesion is better captured in the non-rigid registered
images, the lesion location in the target image (patchtarget center), and
therefore in the final lesion mask, is always selected based on the non-
rigid position of the lesion center.

Fig. 1 shows an example of a generated image applying the
proposed methodology. Fig. 1a shows the original MS patient whose
lesions have been reproduced, whereas Fig. 1b to d shows the original
healthy subject and the lesion generation results.

2.3. Data

To study the performance of the different structure segmentation
algorithms, the following two publicly available databases are used: 1)
the MICCAI 2012 Grand Challenge and Workshop on Multi-Atlas
Labeling database (Landman and Warfield, 2012) (MICCAI’12) and 2)
the Internet Brain Segmentation Repository7 (IBSR18). The first data-
base consists of 15 T1-w MR images for training and 20 for testing as
obtained from the OASIS8 project and labeled by Neuromorphometrics,
Inc.9, which includes labels for the whole brain. The second database
consists of 18 T1-w MR images with expert manual segmentations of 43
individual structures provided by the Center for Morphometric Analysis
at Massachusetts General Hospital.

The lesion generation method explained in Section 2.2 is used to
generate synthetic lesions over the testing subjects. The procedure to
select the healthy subjects on which to generate the lesions is as follows.
The 38 testing images (20 from MICCAI’12 + 18 from IBSR18) are

segmented using the three algorithms presented in Section 2.1. The
training cohort from the MICCAI’12 database is used as the atlas for the
multi-atlas method. Two subjects from each database are selected based
on their Dice similarity coefficients (DSCs) achieved for the evaluated
structures. According to this metric, we discard the subjects who
represent outliers in any of the analyzed structures in relation to the
other subjects' segmentation in the same database. From the remaining
subjects, the two that best represent each database are chosen with a
DSC for almost all of the structures in the median of all the subjects for
each of the analyzed segmentation algorithms. Regarding these criteria,
subjects 1004 and 1116 from the MICCAI’12 database and subjects IBSR
08 and IBSR 17 from the IBSR18 database are selected. Some details
about the selected images can be found in Table 1.

Five MS databases including MICCAI’0810, MICCAI’1611, ISBI’1512

and two in-house databases are included in our lesion dictionary, with a
total of 140 patients and 4291 lesions. The lesions from each patient are
simulated in the selected healthy subjects, and once completed, a
second selection is performed to obtain the final images included in our
study. Twenty-five MS patient images are selected in such a way that
lesions are represented in all of the analyzed structures, and different
patient volumes and lesion numbers are achieved. The simulations of
these 25 patients in the four selected subjects are chosen as the cohort
on which to perform our experiments, which includes a total of 100
simulated images. Details of the original 25 MS patients are shown in
Table 2. The original cohort has a total of 1429 WM lesions, but for
practical issues only lesions larger than 27 mm3 are simulated.

The lesions of the same MS patients are replicated on the four
selected healthy subjects, leading to simulated MS patients with lesion
loads ranging from 0.44 to 59.93 ml and a number of lesions per patient
ranging from 1 to 62. The total number of generated lesions over the
100 synthetic images is 2174.

As stated previously, the 25 MS patients are selected in such a way
that there are lesions represented in all of the analyzed structures. As a
result, the generated cohort contains 27 images with lesions in the left
thalamus, 35 with lesions in the right thalamus, 83 in the left caudate,
81 in the right caudate, 25 in the left putamen, 30 in the right putamen,
4 in the left pallidum, 5 in the right pallidum, 41 in the left
hippocampus, 64 in the right hippocampus, 27 in the left amygdala,
36 in the right amygdala, 28 in the left accumbens, 23 in the right
accumbens and 57 in the brainstem.

Notice that registration inaccuracies affect the lesion generation
procedure in different ways. First of all, when we perform registration
to move the MS patient image to the healthy image space, if we are
moving to a lower resolution space and the lesions are small and only
visible in a low number of slices it may happen that these lesions
disappear from the registered image. Moreover, registration can make
the lesion position displace to an upper/lower slice or even change the
lesion position, which for some small lesions could result in being or not
overlaid on the same structure. Furthermore, even though lesions are
masked out to perform the non-rigid registration, their morphology
(shape and size) may be affected differently from one healthy to
another. Moreover, as we set the restriction that only lesions above
27 mm3 are simulated, it could happen that the same lesion is simulated
in one healthy but not in the others.

2.4. Evaluation

Images from both healthy subjects and their corresponding simu-
lated MS patients are segmented using the three segmentation strategies
presented in Section 2.1. Since FIRST only provides segmentation
results for the subcortical structures and the brainstem, the perfor-

5 http://cmictig.cs.ucl.ac.uk/wiki/index.php/NiftyReg
6 https://itk.org/
7 https://www.nitrc.org/projects/ibsr
8 http://www.oasis-brains.org/
9 http://neuromorphometrics.com/

10 http://www.ia.unc.edu/MSseg/
11 https://portal.fli-iam.irisa.fr/msseg-challenge/overview
12 http://iacl.ece.jhu.edu/index.php/MSChallenge
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mance of the three algorithms and the effects of the lesions are only
evaluated on this subset of brain structures. All of the structures are
evaluated separately for the left and right hemispheres, except the
brainstem, which is a unique structure.

The Dice similarity coefficient (DSC) (Dice, 1945) and the volume
differences between healthy controls and simulated patients are used as
the main metrics for evaluation, and other measures such as false
positive Dice (over-segmentation) or false negative Dice (under-seg-
mentation) are also analyzed (Babalola et al., 2009) but finally omitted
in this paper for the sake of simplicity.

Statistical analysis is performed using the Matlab software pack-
age13. After performing Lilliefors test on our data we see that we cannot
assume normality, which restricts us to the set of statistical tests for
non-normal variables. Differences in the performance of the three
analyzed methods when segmenting the healthy subjects of both
databases are analyzed using pairwise Wilcoxon rank sum tests. More-
over, the Pearson's linear correlation coefficient is used to compute the
correlation between the total lesion volume and the changes in DSC and

in structure volume. We also compare the methods robustness with
respect to each other when simulated lesions are introduced. In order to
rank the methods on both IBSR and MICCAI’12 databases, significant
pairwise method permutation tests of the absolute DSC differences and
the absolute structure volume differences are performed. Furthermore,
we test for significant differences in the robustness of the three
strategies when the lesions are overlaid in the structure of analysis
and when they are not. To perform such analysis, series of permutation
tests on the absolute structure volume differences with respect to the
healthy controls are performed. For our experiments, we have adapted
the implementation provided by Klein et al. (2009). For all the
permutation tests performed in our experiments, we set the number
of comparisons between each pair of methods to N = 1000. In all the
analysis, we consider data significant at p-values < 0.05.

3. Results

In this section, we analyze the behavior of the automatic brain
structure segmentation methods presented in Section 2.1. First, we
analyze how these methods behave when the healthy subjects from the

Fig. 1. Example of MS lesions generation. (a) Original MS patient image and corresponding lesion mask (patient 01016SACH form the MICCAI’16 Challenge database) (b) Healthy image
(subject IBSR 17 from the IBSR18 database) (c) Generated image (d) Lesion mask.

Table 1
Properties of the four selected healthy subjects.

Name Database Age Scanner Volume (mm) Voxel (mm)

1004 MICCAI’ 12 (Landman and Warfield, 2012) 23 Siemens (1.5 T) 256 × 256 × 256 1 × 1× 1
1116 MICCAI’ 12 (Landman and Warfield, 2012) 61 Siemens (1.5 T) 256 × 256 × 256 1 × 1× 1
IBSR_08 IBSRa 60 Siemens (1.5 T) 256 × 256 × 128 1 × 1× 1.5
IBSR_17 IBSRa 8 GE (1.5 T) 256 × 256 × 128 0.84 × 0.84 × 1.5

a https://www.nitrc.org/projects/ibsr

Table 2
Properties of the twenty five selected MS patients. Lesion volumes and number of lesions are calculated from the reduced masks based on lesion appearance in the T1-w sequence.

Database No. Scanner Volume (mm) Voxel (mm) Lesion vol (ml) No. lesions Lesion size (mm3)

MICCAI’08a 4 Siemens Allegra (3 T) 512 × 512 × 512 0.5 × 0.5 × 0.5 6.28–14.39 51–125 0.13–0.41 × 104

MICCAI’16b 5 Siemens Verio (3 T) 176 × 256 × 256 1 × 1× 1 0.89–59.79 7–69 1.00–3.28 × 104

MICCAI’16b 3 Siemens Aera (1.5 T) 256 × 256 × 176 1.08 × 1.08 × 0.9 1.43–35.26 19–65 1.05–1.65 × 104

MICCAI’16b 3 Philips Ingenia (3 T) 2: 200 × 336 × 336
1: 210 × 336 × 336

0.85 × 0.74 × 0.74 4.78–26.60 51–133 0.47–1.54 × 104

ISBI’15c 2 Philips (3 T) 256 × 256 × 120 0.82 × 0.82 × 1.17 12.68–25.67 42–45 0.80–1.39 × 104

IN-HOUSE 1 7 Siemens Trio Tim (3 T) 6: 128 × 240 × 256
1: 128 × 232 × 256

1.2 × 1× 1 1.30–14.25 20–99 1.20–0.21 × 104

IN-HOUSE 2 1 Siemens Simphony
Quantum (1.5 T)

192 × 256 × 46 0.98 × 0.98 × 3 31.60 9 48.64–2.30 × 104

a http://www.ia.unc.edu/MSseg/
b https://portal.fli-iam.irisa.fr/msseg-challenge/overview
c http://iacl.ece.jhu.edu/index.php/MSChallenge

13 http://es.mathworks.com/products/matlab
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two databases with ground truth available (IBSR18 and MICCAI’12) are

segmented. Then, we compare the automatic segmentations obtained
with the three different approaches for both the generated patients and
the healthy subject images and perform an analysis of how the
simulated WM lesions affect the performance of each software method
based on structure and lesion location.

3.1. Database performance

Table 3 shows the DSC results of the three analyzed segmentation
strategies on the healthy subjects from both databases (20 from
MICCAI’12 + 18 from IBSR18). As shown in this table, FreeSurfer
provides similar results for both databases; however, we can highlight
some structures such as the amygdalas (p≤ 0.001), the right accum-
bens (p < 0.001), the right thalamus (p < 0.05) and the right puta-
men (p < 0.01) that achieve better segmentation results, on average,
for the healthy subjects from the IBSR18 database. On the other hand,
better results are obtained for the left pallidum (p < 0.05), the right
pallidum (p < 0.01), the left hippocampus (p = 0.01) and the brain-
stem (p < 0.05) when the healthy subjects from the MICCAI’12 are
segmented.

Smaller differences between the segmentation results in both
databases are obtained for the deformable strategy. In this method we
can highlight three structures on which this difference is statistically
significant: the left caudate (p < 0.05), the right caudate (p < 0.01)
and the right amygdala (p < 0.01).

Regarding the majority voting strategy, we observe from the table
that it provides higher DSC values for MICCAI’12 than for IBSR18 in all
of the analyzed structures (p ≤ 0.001). This difference arise because
the atlases used proceed from the training cohort of the MICCAI’12
database, and thus, their similarity in the scanner acquisition config-
uration and the rank of intensities allow better registration results when
segmenting the MICCAI’12 subjects. These results indicate that this
strategy strongly depends on the training dataset.

In a database-specific analysis, we observe from Table 3 that for the
MICCAI’12 the differences between the segmentation performance
provided by FIRST and majority voting are mostly not significant.
However, we can highlight three structures on which these two
strategies differentiate, which are the right caudate (p < 0.01), the
right pallidum (p < 0.001) and the brainstem (p < 0.001). On the

Fig. 2. Ranking of the segmentation methods separated per database and brain structure
obtained from the permutation tests. Color scale that reflects the relative robustness of the
segmentation methods when simulated lesions are introduced (with red indicating higher
consistency with relation to the healthy segmentation). Each colored square represents
the average score for a given method and structure, averaged over 100 segmentations.
The scores are values indicating the pairwise robustness of the method relative to each of
the other methods, according to DSC differences (generated patient − healthy). (For
interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)

Table 3
Healthies DSC. Structure acronyms are: left thalamus (L.Tha), right thalamus (R.Tha), left
caudate (L.Cau), right caudate (R.Cau), left putamen (L.Put), right putamen (R.Put), left
pallidum (L.Pal), right pallidum (R.Pal), left hippocampus (L.Hip), right hippocampus
(R.Hip), left amygdala (L.Amy), right amygdala (R.Amy), left accumbens (L.Acc), right
accumbens (R.Acc) and brainstem (BS). The table shows the DSC values (mean ± std) for
the MICCAI’12 (M) and IBSR18 (I) databases, separated by segmentation strategy
(FreeSurfer, FIRST and majority voting (M.V.)). Highlighted areas show the best
segmentation strategy results for a given structure and database. Statistically significant
(p ≤ 0.05) better method performance is shown in bold. Notice that MV strategy is highly
dependent on the training set.

Structure DB FreeSurfer FIRST M. V.

L.Tha
I 81.53 ± 5.59 89.34 ± 1.69 81.68 ± 2.94

M 83.01 ± 1.77 88.92 ± 1.72 87.73 ± 3.46

R.Tha
I 86.36 ± 2.23 88.46 ± 1.20 74.70 ± 4.99

M 84.88 ± 2.07 89.02 ± 1.83 86.53 ± 4.51

L.Cau
I 79.61 ± 4.96 78.27 ± 4.39 67.39 ± 6.15

M 80.83 ± 7.89 79.72 ± 11.66 76.64 ± 8.92

R.Cau
I 80.92 ± 4.84 87.04 ± 2.75 60.32 ± 6.22

M 80.11 ± 4.16 83.66 ± 4.57 75.82 ± 8.77

L.Put
I 78.88 ± 3.81 86.88 ± 2.01 60.25 ± 7.51

M 77.13 ± 3.86 85.98 ± 7.95 86.24 ± 4.13

R.Put
I 82.92 ± 3.10 88.05 ± 1.05 74.29 ± 5.59

M 79.87 ± 2.62 87.59 ± 6.00 87.75 ± 4.37

L.Pal
I 63.17 ± 17.05 81.05 ± 3.33 51.73 ± 10.45

M 69.25 ± 18.93 81.49 ± 6.04 84.23 ± 2.79

R.Pal
I 77.44 ± 3.23 80.89 3.70 68.43 ± 6.34

M 79.15 ± 8.53 79.93 ± 8.80 85.23 ± 5.31

L.Hip
I 76.00 ± 3.58 80.64 ± 2.31 62.42 ± 4.82

M 78.35 ± 5.37 80.85 ± 1.40 78.49 ± 4.48

R.Hip
I 76.66 ± 6.03 81.68 ± 2.26 61.13 ± 4.84

M 79.44 ± 2.54 80.97 ± 2.16 79.32 ± 3.54

L.Amy
I 66.06 ± 6.94 74.18 ± 6.35 55.77 ± 7.91

M 58.47 ± 6.41 72.13 ± 5.44 71.24 ± 7.57

R.Amy
I 69.05 ± 6.73 75.72 ± 6.18 46.62 ± 6.19

M 57.58 ± 7.59 70.67 ± 5.25 73.44 ± 7.14

L.Acc
I 60.42 ± 7.08 68.40 ± 9.77 52.44 ± 11.13

M 62.98 ± 5.51 69.94 ± 8.12 71.03 ± 7.96

R.Acc
I 57.36 ± 7.41 70.27 ± 7.62 50.35 ± 9.33

M 44.26 ± 6.46 67.77 ± 8.87 68.79 ± 10.50

BS
I 84.12 ± 1.96 82.50 ± 2.69 80.79 ± 2.05

M 85.67 ± 1.96 83.34 ± 1.66 91.64 ± 1.57
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other hand, the results obtained for the IBSR18 database show that for
most of the structures, the strategy that provides the best accuracy is
FIRST (p < 0.05).

3.2. Lesion effects per segmentation strategy

The effect of the generated lesions on the three segmentation
strategies is analyzed here separately by method performance (DSC)
and structure volume.

3.2.1. Dice difference
Fig. 2 presents the robustness of each method relative to the other

two (relative robustness) when lesions are introduced as a color-coded
table, separated for structure and database. We compare here the three
segmentation strategies based on how consistent their segmentations
are when lesions are introduced, compared to those obtained for the
corresponding healthy subject. This figure shows that for the IBSR18
database, FIRST provides the most robust results for almost all the
structures, however majority voting is more consistent when segment-
ing the left thalamus and the right caudate. On the other hand,
FreeSurfer achieves more unstable results than the other two methods
for seven of the analyzed structures, but it is more consistent than
majority voting when segmenting the left putamen, the right hippo-
campus and the brainstem. Regarding the MICCAI’12 database, Free-
Surfer shows to be the least robust strategy for all the analyzed
structures whereas the other two methods have a similar behavior.
Combining both databases FIRST achieves the most consistent results
for ten of the analyzed structures whereas the segmentations obtained
with FreeSurfer are the ones that seem more affected by the lesions
presence. Analyzing the overall DSC differences averaged across all the
structures, we see that for the IBSR18 database, FIRST achieves the
most consistent results (0.56 ± 0.95), followed by majority voting
(1.10 ± 0.94) and FreeSurfer (1.57 ± 1.83). On the other hand, for
the subjects of the MICCAI’12 database, the most robust results are
obtained when segmenting with majority voting (0.49 ± 0.44), fol-
lowed by FIRST (0.53 ± 0.67). However, for this database FreeSurfer
seems to be highly affected by the presence of lesions (4.05 ± 1.24).
As stated in Section 3.1 we observe again here that majority voting is
highly dependent on the training set, achieving more robust segmenta-
tion results for the MICCAI’12 database. Table 4 presents the ranking of
methods separated by database, according to the percentage of
permutation tests whose p-values are less or equal to 0.05. Members
within ranks 1, 2 and 3 have means lying within one, two and three
standard deviations of the highest mean, respectively.

Fig. 3 shows the boxplots of the differences in terms of DSC between
healthy subjects and the corresponding generated MS patients (patient
− healthy) as separated by segmentation strategy. Green boxplots show
the differences for the patients who do not have lesions overlaid on the
analyzed structure but do in other parts of the brain. On the other hand,
the red boxplots show the differences when these patients have at least
one lesion overlaid on that structure, independently of the patient

having lesions in other parts of the brain. This figure shows that lesions
have an unpredictable effect on the segmentation performance, since in
some cases, it might help to improve the segmentation performance,
whereas in other cases, it might produce worse overall segmentation
results.

By analyzing each strategy individually, we can see that FreeSurfer
does not show a clear difference in its performance when lesions are
overlaid in a particular structure or not (red vs green). As shown in
Fig. 3a, the trends for several structures look similar when lesions are
present (in red) or absent (in green), such as in the right thalamus, both
putamens, the right hippocampus, the left accumbens and the brain-
stem. Furthermore, we observe a trend in some of the analyzed
structures towards improvement in their segmentation performance
when lesions are introduced (anywhere in the brain), as seen in the
right caudate, both putamens, the right hippocampus both amygdalas
and the brainstem.

As shown in Fig. 3b, FIRST seems to be quite robust when lesions are
present, showing DSC differences for the non-lesioned structures (in green)
that range from −0.36 ± 0.39 (right pallidum) to 0.44 ± 0.94 (right
amygdala), whereas the differences for the structures with lesions (in red)
achieve values from −2.40 ± 5.54 (right accumbens) to 0.19 ± 0.62
(brainstem). In this strategy, the standard deviations are below 1.50 for all
of the structures except the right caudate (3.71) and both accumbens (2.53
left; 5.54 right), but the three of them when lesions are overlaid in these
structures (in red), showing that the segmentations provided by this
method are consistent, particularly when the lesions in the structure are
not present.

In the multi-atlas strategy, the differences between the healthy subjects
and the simulated patients are small as shown in Fig. 3c. These differences
ranged from −1.24 ± 1.53 (left amygdala) to 0.59 ± 1.45 (right
accumbens) for the structures without lesions (in green) and from
−0.90 ± 1.16 (left putamen) to 0.59 ± 1.64 (right amygdala) for the
structures affected by lesions (in red). As can be deduced from these
numbers there is not a clear difference in the method performance when
the lesions are overlaid or not, as better segmentation results are achieved
for non-lesioned structures in only half of the analyzed cases (8 over 15).
In general, majority voting seems to underperform, on average, when
segmenting the simulated patients compared with the healthy subjects for
almost all of the structures, independent of whether the lesions are
overlaid or not.

On the other hand, in analysis of each structure, we observe that
independently of the segmentation strategy, the structure that shows more
variability when the lesions are introduced is the nucleus accumbens
(1.32 ± 4.00 with FreeSurfer, −1.12 ± 2.53 with FIRST and
−0.24 ± 0.81 with majority voting for the left hemisphere, and
9.65 ± 9.87, −2.40 ± 5.54 and −0.48 ± 2.67 for the right hemi-
sphere), whereas those for which the segmentation is more robust are the
brainstem (1.03 ± 1.31, 0.19 ± 0.62, and −0.20 ± 0.38) and the
thalamus (0.74 ± 0.89, 0.18 ± 0.53 and 0.03 ± 0.35 for the left
hemisphere, and −0.48 ± 1.08, −0.04 ± 0.22 and −0.25 ± 0.56
for the right one). On the other hand, the structure for which we have

Table 4
Permutation tests average ranking based on the method robustness when lesions are introduced. Ranks after conducting permutation tests between absolute DSC differences (1 − |DSC
generated − DSC healthy|) of the generated MS patient images and their corresponding healthy controls (averaged across structures) for each pair of methods, then calculating the
percentage of p-values less or equal to 0.05 (of 1000 tests). Members within ranks 1, 2 and 3 have means lying within one, two and three standard deviations of the highest mean,
respectively. μ =mean; σ = standard deviation.

Dice differences

IBSR μ ± σ MICCAI μ ± σ ALL μ ± σ

Rank 1 FIRST 0.42 ± 0.29 MV 0.33 ± 0.25 FIRST 0.53 ± 0.21
FIRST 0.31 ± 0.23

Rank 2 MV −0.09 ± 0.29
Rank 3 FS −0.33 ± 0.28 FS −0.64 ± 0.09 MV 0.07 ± 0.29

FS −0.60 ± 0.14
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encountered the largest number of outliers is the caudate nucleus, which is
also the structure on which we find the largest number of lesions, affected
in 83 images (left caudate) and 81 images (right caudate), respectively.

We also analyze the extent to which total lesion volume affects each
of the segmented structures by computing the Pearson linear correlation
coefficient between differences in DSC and lesion volume. Lesion volume

do not correlate with the DSC differences found for FreeSurfer in any of
the analyzed structures, except for the left caudate (r = 0.52,
p < 0.001). A similar behavior is found for FIRST, where a significant
correlation is seen for both caudates (r = 0.58, p < 0.001 and r = 0.51,
p < 0.001) and the left hippocampus (r = 0.47, p < 0.001), while
obtaining a moderate correlation for the right accumbens (r = 0.38,

Fig. 3. DSC differences (generated patients - healthy) for the 100 generated images using various publicly available software. The green boxplots show the differences when there were
MS lesions generated on the brain but not on top of that particular structure. On the other hand, red boxplots stand for lesioned structures. The red asterisks on top of the x axis mean that
there are more outliers below the−20%. Acronyms from left to right are: left thalamus (L.Thal), right thalamus (R.Thal), left caudate (L.Cau), right caudate (R.Cau), left putamen (L.Put),
right putamen (R.Put), left pallidum (L.Pal), right pallidum (R.Pal), left hippocampus (L.Hip), right hippocampus (R.Hip), left amygdala (L.Amy), right amygdale (R.Amy), left accumbens
(L.Acc), right accumbens (R.Acc) and brainstem (BS). Notice that the red boxplots for both pallidums and the green boxplots for both caudates contain< 20 cases. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of this article.)
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p < 0.001). Stronger correlations are found for the majority voting
strategy for the left thalamus (r = 0.51, p < 0.001), both caudate
(r = 0.73, p < 0.001 and r = 0.45, p < 0.001), the right putamen
(r = 0.43, p < 0.001) and the left pallidum (r = 0.42, p < 0.001)
whereas a moderate correlation is found for the left putamen (r = 0.38,
p < 0.001), the right pallidum (r = 0.35, p < 0.001) and both hippo-
campus (r = 0.35, p < 0.001 and r = 0.34, p = 0.001).

3.2.2. Volume difference
Fig. 4 shows the robustness of each method relative to the other two

(relative robustness) in terms of volume change, when lesions are
introduced to the healthy control. The procedure is the same as in
Section 3.2.1. From this figure we observe that in the IBSR database,
FIRST provides the most robust results for eight of the analyzed
structures whereas its consistency is comparable to majority voting in
four other structures. Regarding the MICCAI’12 database, the majority
voting strategy seems to provide more robust results that the other two
methods in nine of the fifteen structures whereas it achieves more
unstable results than FIRST only for the right pallidum. For this
database, majority voting is more robust than FreeSurfer for all the

analyzed structures. Combining both databases we observe that FIRST
and majority voting are comparable in terms of structure volume
change consistency, however FreeSurfer seems to be the least robust
against lesions achieving only similar results to majority voting for the
left hippocampus. Analyzing the overall volume difference, we observe
the same behavior as in Section 3.2.1. Again, for the IBSR18 database
FIRST provides the most robust results (53.88 ± 76.37 mm3),
followed by majority voting (74.82 ± 64.16) and FreeSurfer
(120.83 ± 134.98). Moreover, for the MICCAI’12 database, majority
voting is the most consistent method (38.97 ± 38.64), followed by
FIRST (68.26 ± 88.41) and FreeSurfer (352.07 ± 116.65). Table 5
presents the general ranking of the methods based on the permutation
tests performed.

Fig. 5 presents the robustness in terms of structure volume changes
for each method comparing the cases on which lesions are overlaid in
the structure and they are not (the same case as in Fig. 3 for red and
green boxplots, in addition, the corresponding volume boxplots are
provided as Supplementary material). We observe that FIRST tends to
be significantly more robust when lesions are not overlaid in the
analyzed structure, whereas FreeSurfer is equally affected wherever the
lesions are, except for the right accumbens, on which the segmentation
result appears more consistent when lesions are not overlaid. Regarding

Fig. 4. Ranking of the segmentation methods separated per database and brain structure
obtained from the permutation tests. Color scale that reflects the relative robustness of the
segmentation methods when simulated lesions are introduced (with red indicating higher
consistency with relation to the healthy segmentation). Each colored square represents
the average score for a given method and structure, averaged over 100 segmentations.
The scores are values indicating the pairwise robustness of the method relative to each of
the other methods, according to volume differences (generated patient − healthy). (For
interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)

Table 5
Permutation tests average ranking based on the method robustness when lesions are introduced. Ranks after conducting permutation tests between absolute volume differences of the
generated MS patient images and their corresponding healthy controls (averaged across structures) for each pair of methods, then calculating the percentage of p-values less or equal to
0.05 (of 1000 tests). Members within ranks 1, 2 and 3 have means lying within one, two and three standard deviations of the highest mean, respectively. μ =mean; σ = standard
deviation.

Volume differences

IBSR μ ± σ MICCAI μ ± σ ALL μ ± σ

Rank 1 FIRST 0.44 ± 0.27 MV 0.51 ± 0.21 FIRST 0.36 ± 0.20
MV 0.29 ± 0.25

Rank 2 MV 0.02 ± 0.23 FIRST 0.13 ± 0.25
Rank 3 FS −0.47 ± 0.3 FS −0.64 ± 0.09 FS −0.64 ± 0.09

Fig. 5. Result of the permutation tests. Relative volume consistency of the segmented
structures with the three segmentation strategies when lesions are overlaid or not on the
structure compared to the healthy controls. Color scale displays the relative robustness for
each method (with red indicating higher consistency with relation to the healthy
segmentation). (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

S. González-Villà et al. NeuroImage: Clinical 15 (2017) 228–238

235



the majority voting strategy, it seems there is a trend to be slightly more
unstable when lesions are overlaid on the analyzed structure, however
this difference is not conclusive.

The relation between the observed change in structure volume and
the total lesion volume introduced in the simulated images is also
analyzed for the three evaluated strategies. Significant correlations are
not found for FreeSurfer in any of the analyzed structures whereas the
volume differences found in FIRST seem to significantly correlate with
the total lesion volume in both caudates (r = 0.63, p < 0.001 and
r = 0.61, p < 0.001), the right putamen (r = 0.46, p < 0.001), the
left hippocampus (r = 0.43, p < 0.001) and the right accumbens
(r = 0.45, p < 0.001). A similar behavior than the one seen in the
DSC change is seen here for the majority voting strategy. For this
method, correlation between structure volume changes and total lesion
volume is seen in a higher number of structures than in the other two
strategies: both thalamus (r = 0.45, p < 0.001 and r = 0.48,
p < 0.001), both caudates (r = 0.60, p < 0.001 and r = 0.56,
p < 0.001), both putamens (r = 0.45, p < 0.001 and r = 0.45,
p < 0.001) and both pallidums (r = 0.43, p < 0.001 and r = 0.45,
p < 0.001). A trend towards moderate correlation is also observed in
the left hippocampus (r = 0.37, p < 0.001) and the brainstem
(r = 0.32, p = 0.001).

3.3. Qualitative results

Fig. 6 shows a qualitative example of the segmentation results
obtained with the three methods. Fig. 6a to c shows a central slice of the
healthy subject and its corresponding simulated MS patient and lesion
mask. The automatic segmentation obtained with the analyzed strate-
gies for both a healthy (top row) and simulated MS patient (bottom
row) is shown in Fig. 6e to g, whereas the structure ground truth is
shown in Fig. 6d. As seen in Fig. 6e, FreeSurfer improves its segmenta-
tion performance for the right caudate (in yellow) and both putamens
(in pink and cyan) when the lesions are added, thus reducing the
number of false positives obtained for the healthy images. In this case,
the lesions may have modified the global intensity distribution, making
the Gaussian chosen to represent the structure intensity more precise
and improving the segmentation performance. However, as we can
observe, the performance for both pallidums (in blue and white)
decreases when lesions are present, increasing the number of false
positives. On the other hand, as shown in the FIRST segmentations in
Fig. 6f, we can see that opposite to FreeSurfer, local lesions interfere
with the segmentation performance. This can be seen for the right
caudate (in yellow) where the green lesion shown in Fig. 6c is
constraining the deformation performed by the method to obtain the

Fig. 6. Automatic brain structures segmentation. Figures (a)–(c) show the original healthy subject (1004 from MICCAI’12 database), the generated MS patient and the corresponding
lesion mask. Figures (d)-(g) show the structures ground truth and automatic segmentation of both images (without lesions in the top row and with lesions bottom row) for the three
segmentation strategies. (For interpretation of the references to color in this figure, the reader is referred to the web version of this article.)
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final segmentation. The results obtained for the rest of the structures are
similar for both images, since the generated lesions are far from the
structures of interest. Finally, for the majority voting strategy, no
changes are visually appreciated for this particular slice in Fig. 6g. As
shown, the differences in the segmentation performance of the healthy
subject and the generated MS patients tend to be small for this method.
Furthermore, the lesions shown in this slice do not necessarily affect the
performance of the structures shown here but may interfere in other
parts of the brain, since, as stated before, in this strategy the
segmentation performance oscillates independently of the lesion loca-
tion.

4. Discussion

FreeSurfer is the most affected method when MS lesions are present.
Despite being a method that deals with WM hypo-intensities (such as
MS lesions), its segmentation performance significantly varies when MS
lesions are introduced. This may be because this method is based on a
Bayesian strategy that tries to infer the most likely segmentation given
the image intensities and prior information in the form of an atlas, and
thus, adding MS lesions may affect this method in two different ways.
First, the registration of the atlas priors can be affected by the lesions, as
seen in the multi-atlas strategy. Moreover, the incorporation of the
lesions modifies the image intensities and consequently the intensity
distribution of each structure, which is modeled as a Gaussian, may be
affected and produce a different segmentation result.

The segmentation performance of the majority voting strategy is
also affected when MS lesions are present. Similar to that of FreeSurfer,
this method performance oscillates independently of the lesion loca-
tion. As the atlas registration is performed globally, not only local
lesions but also lesions in other parts of the brain have an effect on the
registration result. On the other hand, although FIRST also performs
registration to align the image and the model, it provides the most
robust results. In this case, the method performs a local registration for
which it uses a subcortical mask that determines whether a voxel is
included or not in the calculation of the similarity function, which
allows the registration to concentrate only on the subcortical align-
ment, and therefore, if the lesions are located outside the mask, they do
not interfere with the registration result.

Regarding the effect of the lesion location, we have observed that
FreeSurfer and majority voting are, in general, equally affected when
the lesions are overlaid on the structure of analysis or placed in other
parts of the brain. As these methods provide segmentation for the whole
brain, the most logical approach is to perform a unique and global
registration instead of trying to maximize the similarity for each
structure independently by means of local registrations, as FIRST does
with the group of subcortical structures. However, this global registra-
tion, despite being quicker, allows registration errors produced by brain
irregularities such as WM lesions or tumors to be propagated to other
parts of the brain and consequently affect the segmentation perfor-
mance independent of the lesion location. On the other hand, the
analyzed results show that in the case of FIRST, the lesion location has a
direct effect on the method performance. In this case, the lesions that
are overlaid on the structures worsen the segmentation result compared
with that of the non-damaged structures, whereas the effects of lesions
in other parts of the brain are inappreciable. It should come as no
surprise that since FIRST is a local deformable strategy and segments
each structure independently, the shape and intensities of lesions far
from the structure of interest do not interfere with the deformation
process.

As for the method robustness, FIRST provides the most consistent
segmentations. Since this method is based on a deformable strategy
constrained by shape and intensity, deformations that exceed the
average geometric variation of the structure are avoided, and therefore,
only specific lesions attached to the structure may cause the method
performance oscillation. Furthermore, and contrary to the other two

analyzed strategies, FIRST only segments the subcortical structures and
works only with a small region of the brain instead of the whole
volume.

Regarding the analyzed brain structures, in terms of DSC, the
accumbens is the most affected by the presence of lesions, whereas
the thalamus and the brainstem provide the most robust results when
lesions are present. However, this behavior may be closely related to
the fact that the accumbens is the smallest structure, whereas the
brainstem and the thalamus are the largest ones. Thus, small changes in
the segmentation result can imply large differences in the DSC when the
structure volume is small and can have an insignificant effect when the
structure volume is large. On the other hand, the structure in which we
find the largest number of lesions is the caudate nucleus, which makes
sense since the vast majority of MS patients have at least one ovoid
periventricular lesion that augments the probability of this structure of
being affected. The large number of outliers found for this structure
when lesions are overlaid can be explained by the number of cases.
Although we see that around the 50% of the analyzed cases do not show
an excessive DSC difference with respect to the healthy image, the
segmentation result may have more chances of being affected due to the
variability in lesions location and intensity (sometimes similar to that of
the caudate) found in the different images. Furthermore, as the caudate
nucleus is a small structure, a larger effect is seen in the DSC when a
small change in the segmentation result is produced.

In recent years, several brain structure segmentation methods
following different segmentation strategies (González-Villà et al.,
2016) have been described. Despite the large number of studies
available in the literature, these approaches have been tested with
images of non-lesioned brains, and therefore, how WM lesions affect
their performance has not been evaluated. Performing such analysis
with real images is not trivial, since there is no publicly available
database with both structure ground truth and MS lesion annotation.
Because of that, in an attempt to evaluate this effect, we generated a set
of synthetic images as done in (Battaglini et al., 2012; Chard et al.,
2010; Gelineau-Morel et al., 2012; Nakamura and Fisher, 2009) to
evaluate the effect of the lesions on tissue segmentation. The effect of
such lesions on automatic tissue segmentation strategies has been
widely evaluated, and also strategies to reduce this effect, such as
masking out the lesions or fill them before segmentation, have been
proposed (Battaglini et al., 2012; Chard et al., 2010; Valverde et al.,
2015).

In spite of the effect of MS lesions has been evaluated on several
tissue segmentation methods, as far as we know only Gelineau-Morel
et al. (2012) have evaluated how these lesions affect the segmentation
of the subcortical brain structures. In their work, they use FIRST as the
baseline method for segmentation, concluding that WM lesions led to
an artificial decrease in all the DGM structures volume except the
hippocampus. Corroborating that statement, a negative correlation
between the lesion volume and the total DGM volume was found in
our experiments when segmenting with FIRST. Despite the experiments
performed here are not the same and they dealt with right and left
hemispheres combined, our results are consistent with their findings,
except for the left thalamus (for which we saw an average volume
increase compared to the healthy controls) and the left hippocampus
(which experimented an average volume loss). Furthermore, when
analyzing the DGM structures individually we found that their volume
differences (patient - healthy) did not have the same direction of
correlation with the lesion volume, which is also consistent with the
trend seen in their work (Gelineau-Morel et al., 2012).

There are a number of limitations in this work that have to be
considered. Due to the lack of databases with both annotated MS lesions
and structures ground truth, this study has been conducted using
simulated images instead of real ones. Furthermore, our claims about
the evaluated methods performance have to be prudent, given the fact
that only four healthy images with structures ground truth have been
used as the basis of our generation method. Moreover, as the simulated
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lesions follow the spatial distribution found in real cases, the number of
cases per structure with lesions overlaid is not the same for all the
analyzed structures.

In summary, in this study we have presented an analysis about the
effect of simulated MS lesions on three well-known automatic brain
structure segmentation methods (FreeSurfer, FIRST and multi-atlas
fused by majority voting), based on different segmentation strategies.
We have demonstrated that there exists a direct effect of MS lesions on
the performance of automatic brain structure segmentation methods.
FreeSurfer seems to be the most affected algorithm whereas FIRST has
shown to be the most robust against lesions. The lesions location does
not seem to have a direct effect on the global strategies (FreeSurfer and
majority voting) whereas in FIRST, which is a local strategy, the
segmentation performance of a brain structure is more affected when
there are lesions either overlaid or close to it. To the best of our
knowledge, how different segmentation strategies to automatically
segment the brain structures are affected by MS lesions had not been
evaluated until now. This study addresses an important problem of the
automatic segmentation methods of the DGM structures, which is
related to MS lesion interference for the optimal segmentation.
Investigating the influence of lesions on the segmentation on other
diseases is indeed an important aspect of future research for the
community.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.nicl.2017.05.003.
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