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ABSTRACT
Crosstalk interactions between dendritic cells (DCs) and invariant natural killer T (iNKT) cells are important
in regulating antitumor responses elicited by glycolipid antigens. iNKT cells constitutively express the
chemokine receptor CXCR6, while cytokine-activated DCs upregulate the transmembrane chemokine
ligand, CXCL16. This study examined the co-stimulatory role of CXCR6/CXCL16 interactions in glycolipid-
dependent iNKT cell activation and tumor control. Spleen and liver DCs in wild-type mice, but not iNKT
cell deficient (Ja18¡/¡) mice, transiently upregulated surface CXCL16 following in vivo administration of
the glycolipid antigen a-galactosylceramide. Recombinant CXCL16 did not directly induce iNKT cell
activation in vitro but enhanced interferon (IFN)-g production when mouse or human iNKT cells were
stimulated with plate-bound anti-CD3. Compared with glycolipid-loaded CXCL16neg DCs, CXCL16hi DCs
induced higher levels of IFNg production in iNKT cell cultures and following adoptive transfer in vivo. The
number of IFNgC iNKT cells and expansion of T-betC iNKT cells were reduced in vivo when CXCL16¡/¡ DCs
were used to activate iNKT cells. Enhanced IFNg production in vivo was not dependent on CXCR6
expression on natural killer (NK) cells. Adoptive transfer of glycolipid-loaded CXCL16hi DCs provided
superior protection against tumor metastasis compared to CXCL16neg DC transfers. Similarly, wild-type
DCs provided superior protection against metastasis compared with CXCL16¡/¡ DCs. These experiments
implicate an important role for CXCR6/CXCL16 interactions in regulating iNKT cell IFNg production and
tumor control. The selective use of CXCL16hi DCs in adoptive transfer immunotherapies may prove useful
for enhancing T helper (Th) type 1 responses and clinical outcomes in cancer patients.

Abbreviations: 7-AAD, 7-aminoactinomycin D; a-GalCer, a-galactosylceramide; APC, allophycocyanin; BMDC, bone
marrow derived dendritic cell; DC, dendritic cell; ELISA, enzyme-linked immunosorbent assay; FITC, fluorescein iso-
thiocyanate; GM-CSF, granulocyte-macrophage colony-stimulating factor; IFNg , interferong ; iNKT cell, invariant natural
killer T cell; IL, interleukin; i.v., intravenous; LPS, lipopolysaccharide; MHC, major histocompatibility complex; NK cell, natural
killer cell; PE, phycoerythrin; TCR, T cell receptor; Th, T helper; TNF, tumor necrosis factor
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Introduction

Invariant iNKT cells are a rare population of lipid-reactive
T lymphocytes that regulate innate and adaptive immunity.
Mice lacking iNKT cells exhibit increased susceptibility to
infectious agents and tumor development.1 In contrast to
conventional T cells, iNKT cells express an invariant Va14Ja18
T cell receptor (TCR) rearrangement in mice (Va24Ja18 in
humans) that allows recognition of pathogen-associated,
tumor-derived, and stress-induced glycolipids presented via the
major histocompatibility complex (MHC)-like molecule
CD1d.2,3 a-galactosylceramide (a-GalCer) and synthetic deriv-
atives are potent activators of iNKT cells,4-6 and can prevent
tumor development and block experimental metastasis in ani-
mal models.4-10 The ability of iNKT cells to promote a strong
Th 1 response is critical for tumor control as iNKT cell-depen-
dent protection from metastasis is lost in IFNg¡/¡ mice.10,11

Furthermore, elevated IFNg responses have been associated

with prolonged survival in lung cancer patients receiving iNKT
cell-targeted immunotherapy via glycolipid-loaded DCs.12

Optimal iNKT cell responses to glycolipid antigens require co-
ordinated interactions with antigen-presenting cells. DCs present
glycolipid antigens to iNKT cells via CD1d, leading to rapid gen-
eration of interleukin (IL)-4 and IFNg,13,14 and upregulation of
CD40L.15 IFNg increases surface expression of co-stimulatory
CD80 and CD86 on DCs,16 while CD40L/CD40 interactions
induce IL-12 production from DCs.15,17 In turn, IL-12 stimulates
additional IFNg production from iNKT cells17 and NK cells.18

Co-ordinated interactions between iNKT cells and DCs facilitate
tumor clearance by mediating the downstream recruitment and
activation of effector NK cells,11,19 and T cells.16,20,21

The chemokine receptor CXCR6 is highly expressed on
mouse and human iNKT cells22-24 and plays important roles in
iNKT cell development, maturation, homeostatic distribution,
and glycolipid-induced effector responses.4,25,26 Defects in
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iNKT cell homeostasis and activation have been reported in
mice lacking CXCR6 or the cognate ligand CXCL16,25,26,27 a
chemokine that can be generated in both soluble and trans-
membrane forms.28-31 As transmembrane CXCL16 is upregu-
lated on DCs following activation with lipopolysaccharide
(LPS) or cytokines,23,27,28 we examined the possibility that
CXCL16 may be upregulated during antigenic glycolipid pre-
sentation and provide co-stimulatory signals that influence
iNKT cell cytokine production and antitumor responses.

Both CXCR6¡/¡ and CXCL16¡/¡ mice exhibit enhanced
tumor growth and metastasis in experimental models.4,27 How-
ever, previous in vivo studies could not differentiate whether
CXCR6/CXCL16 plays a direct co-stimulatory role in iNKT cell
activation as knockout mice have reduced iNKT cell numbers,
and impairments in iNKT cell development and maturation.25-27

To overcome the influence of iNKT cell defects in CXCR6¡/¡

and CXCL16¡/¡ mice, we used an adoptive DC-based immuno-
therapy approach to examine the role of CXCR6/CXCL16 inter-
actions in regulating the responses of wild-type iNKT cells.
Transfer of glycolipid-loaded CXCL16hi DCs into mice contain-
ing wild-type iNKT cells led to enhanced IFNg responses com-

pared to the delivery of CXCL16neg or CXCL16¡/¡ DCs.
Furthermore, glycolipid-loaded CXCL16hi or CXCL16C/C DCs
provided enhanced protection from tumor metastasis compared
to CXCL16neg or CXCL16¡/¡ DCs. These findings reveal an
important role for CXCR6/CXCL16 interactions in regulating
iNKT cell function in vivo and provide pre-clinical data that sup-
port the examination of glycolipid-loaded CXCL16hi DCs in
iNKT cell-targeted adoptive transfer therapies for cancer patients.

Results

DCs upregulate CXCL16 during crosstalk interactions with
iNKT cells

Human and mouse iNKT cells express high levels of the che-
mokine receptor CXCR6.22,24 CXCL16 is one of only two
known chemokines that can be generated as a transmembrane
protein,28,29 and is upregulated on the surface of activated
antigen-presenting cells.27-29 This suggests a potential role for
CXCR6/CXCL16 in the co-stimulation of iNKT cells. How-
ever, little is known about the regulation of CXCL16 during

Figure 1. CXCL16 expression on DCs, B cells and macrophages following iNKT cell stimulation with a-GalCer. Spleen and liver cells were harvested 0–72 h after mice were
treated intraperitoneally with the glycolipid a-GalCer (4 mg). CXCL16 expression was analyzed on different immune cells by flow cytometry. (A) Representative histograms
show CXCL16 expression on liver DCs (CD11cC MHCIIC), B cells (CD19C B220C) and macrophages (CD11bC F4/80C) under basal conditions and 18 h after a-GalCer treat-
ment. (B) Aggregate data show CXCL16 expression on liver and spleen cell populations under basal conditions and 18 h after a-GalCer treatment (n D 3–8 per group).
(C) Time course of CXCL16 expression on splenic DCs from wild-type and Ja18¡/¡ mice following glycolipid stimulation. (n D 4 per time point). �p < 0.05 compared to
baseline. yp < 0.05 compared to wild-type.
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iNKT cell-antigen-presenting cell interactions. As CXCL16 is
upregulated spontaneously on human and mouse DCs during
in vitro culture (ref. 33 and data not shown), we examined
regulation of CXCL16 expression on antigen-presenting cells
in vivo. In control mice, less than 10% of DCs, macrophages
and B cells expressed surface CXCL16. After glycolipid
administration, the frequency of CXCL16hi DCs increased in
the spleen and liver (Figs. 1A–B). Splenic macrophages exhib-
ited a smaller increase in the frequency of cells expressing
CXCL16, whereas B cells and liver macrophages did not upre-
gulate CXCL16. We therefore focused our studies on DC-
iNKT cell co-stimulatory interactions. CXCL16 expression
was upregulated on DCs as early as 6 h following a-GalCer
treatment, peaked at 18–24 h, and returned to baseline levels
by 48–72 h (Fig. 1C). Upregulation was dependent on the
presence of iNKT cells as CXCL16 expression did not increase
on DCs in iNKT cell-deficient (Ja18¡/¡) mice treated with
a-GalCer (Fig. 1C). This indicates that uptake, processing,

and loading of glycolipids onto CD1d is not sufficient to upre-
gulate CXCL16 expression on DCs.

Recombinant CXCL16 co-stimulates iNKT cells for
enhanced IFNg production

After demonstrating that glycolipid-induced CXCL16 upregula-
tion is dependent on iNKT cells, we investigated the co-stimula-
tory role for CXCL16 in iNKT cell activation. Recombinant
CXCL16 on its own did not induce intracellular cytokine pro-
duction in cultured liver iNKT cells (Figs. 2A–B). However, in
the presence of plate-bound anti-CD3, the frequency of iNKT
cells staining for intracellular IFNg production was increased
when CXCL16 was present (Fig. 2A). In contrast, anti-CD3-
induced intracellular IL-4 production was not altered by
CXCL16 (Fig. 2B). The difference in IFNg staining was not due
to a general increase in iNKT cell activation as similar increases
in the frequency of CD40LC and CD69C iNKT cells were

Figure 2. In vitro iNKT cell activation in the presence and absence of CXCL16. Liver mononuclear cells were cultured for 2 h in wells coated with 0, 1 or 5 mg/mL anti-CD3,
with or without 100 ng/mL of recombinant CXCL16. iNKT cells (CD1d tetramerC TCRbC) were stained to examine intracellular (A) IFNg and (B) IL-4 production, and cell
surface expression of (C) CD40L and (D) CD69 by flow cytometry (n D 3 per group). Sorted human iNKT cells (5 £ 104 TCRbCVa24Ja18C) were cultured in wells coated
with 0, 1 or 5 mg/mL anti-CD3, with or without 100 ng/mL of recombinant CXCL16. After 24 h supernatants were harvested to measure (E) IFNg and (F) IL-4 production
(nD 5 healthy donors). �p < 0.05 compared with anti-CD3 alone.
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observed following anti-CD3 activation with and without
CXCL16 (Figs. 2C–D). Mean fluorescence intensity of CD40L
and CD69 expression increased on CD3-stimulated cells, but
was not different in the presence or absence of CXCL16 (data
not shown). Consistent with CXCL16-mediated enhancement of
IFNg production in mouse iNKT cells, primary human iNKT
cell lines produced higher levels of IFNg when stimulated by
anti-CD3 and CXCL16 versus anti-CD3 alone (Fig. 2E). Produc-
tion of IL-4 by activated human iNKT cells was not altered by
CXCL16 (Fig. 2F). Collectively, these findings suggest that
CXCL16 co-stimulation enhances IFNg production.

CXCL16 expression on DCs enhances iNKT cell IFNg
production in vitro

Since recombinant CXCL16 enhanced IFNg production from
anti-CD3-activated iNKT cells, we examined whether
CXCL16-expressing DCs could also enhance iNKT cell cyto-
kine production. To dissociate the role of CXCR6/CXCL16
interactions during iNKT cell activation from the developmen-
tal and functional defects in CXCR6¡/¡ and CXCL16¡/¡ iNKT
cells,26,27 we examined the ability of wild-type CXCL16hi and
CXCL16neg DCs to activate wild-type iNKT cells. Glycolipid-
loaded DCs were mixed with sorted iNKT cells at a ratio of 1:2,
and supernatant cytokine levels were analyzed 24 h later by
cytokine array. iNKT cells cultured with CXCL16hi DCs pro-
duced more IFNg than those cultured with CXCL16neg DCs
(Fig. 3). The levels of granulocyte-macrophage colony-stimulat-
ing factor (GM-CSF), IL-2, IL-4, IL-6, IL-10, IL-12p70 and
tumor necrosis factor (TNF) were not significantly different
between cultures containing CXCL16hi DCs versus CXCL16neg

DCs. IL-5 and IL-1b were not generated at levels above the
detection threshold of the assay (Fig. 3). Therefore, in vitro acti-
vation by CXCL16hi DCs appears to selectively induce
enhanced IFNg production by iNKT cells.

Wild-type CXCL16hi DCs enhance iNKT cell IFNg production
in vivo

We next examined whether CXCL16hi DCs enhanced IFNg
production following glycolipid activation in vivo. Glycolipid-

loaded splenic CXCL16hi DCs, CXCL16neg DCs, or unloaded
DCs were injected intravenously (i.v.) into wild-type mice.
iNKT cell-deficient Ja18¡/¡ mice received CXCL16hi DCs as a
control to confirm that the cytokines measured in these experi-
ments resulted from iNKT cell activation. At 18 h following
DC transfer, higher serum IFNg levels were observed in mice
that received CXCL16hi DCs compared to mice that received
CXCL16neg DCs (Fig. 4A). IL-4 levels were not significantly dif-
ferent between mice receiving glycolipid-loaded CXCL16hi or
CXCL16neg DCs (Fig. 4A). Levels of IL-12p70 were also equiva-
lent, suggesting that differences in IFNg levels were not due to
altered IL-12 production (Fig. 4A). This is further supported by
the observation that the basal level of IL-12p70 production by
unloaded DCs was not sufficient to induce IFNg production in
vivo. LPS treatment activates DCs and upregulates CXCL16
expression,27 but adoptive transfer of LPS-pulsed DCs did not
increase IFNg levels in the serum (data not shown). This sug-
gests that LPS treatment did not upregulate endogenous glyco-
lipid ligands in DCs, and confirms that CXCL16 on its own
cannot stimulate iNKT cell responses. Systemic delivery of
recombinant mouse CXCL16 also failed to induce iNKT cell
activation in vivo (data not shown).

Phenotypic analysis of splenic DCs revealed that freshly
isolated CXCL16hi and CXCL16neg DCs differed in their
expression of CD1d, MHC class II (I-A), and co-stimulatory
molecules (Fig. 4B). Both DC subsets upregulated co-stimu-
latory molecules during overnight culture, but CXCL16hi

DCs tended to express higher levels of CD80, CD86, and
CD40. These phenotypic differences were normalized when
gating on the CD86hi subpopulations of CXCL16hi and
CXCL16neg DCs (Fig. 4B). Therefore, adoptive transfers
were repeated using CD86hi subsets from both DC popula-
tions to ensure that differences in IFNg production were
not due to other phenotypic differences between the DCs.
Adoptive transfers of CD86hi CXCL16hi DCs induced more
IFNg than CD86hi CXCL16neg DCs (Fig. 4C). Levels of IL-4
were equivalent, confirming that CXCL16/CXCR6 signaling
is important for optimal IFNg production following iNKT
cell stimulation (Fig. 4C). To verify the role of CXCL16 in
iNKT cell co-stimulation, transfers were repeated using
splenic DCs isolated from wild-type and gene-targeted
CXCL16¡/¡ mice (Fig. 4D). Wild-type DCs elicited
increased IFNg responses compared to CXCL16¡/¡ DCs.
There were no differences in the levels of IL-4 or IL-12p70
induced by wild-type and CXCL16¡/¡ DCs (Fig. 4D). A
similar difference in IFNg production was observed when
bone marrow derived dendritic cells (BMDCs) from wild-
type versus CXCL16¡/¡ mice were used instead of splenic
DCs (data not shown).

CXCL16C/C DCs increase the number of IFNgC and T-betC

iNKT cells

It was not clear whether the CXCL16-mediated enhancement
of serum IFNg levels was due to a selective activation and/or
expansion of an iNKT cell subset that produces high levels of
IFNg. iNKT cell expansion was similar in mice receiving
a-GalCer loaded CXCL16C/C or CXCL16¡/¡ DCs (Fig. 5A).
However, mice receiving CXCL16C/C DCs had an increased

Figure 3. In vitro cytokine responses of iNKT cells stimulated with glycolipid-
loaded CXCL16hi or CXCL16neg DCs. CD11cC DCs were enriched from the spleen by
magnetic sorting and loaded overnight with a-GalCer (200 ng/mL). DCs were
sorted into CXCL16hi and CXCL16neg subsets and incubated with sorted iNKT cells
(CD1d-tetramerC TCRbC) for 24 h, at a ratio of 1:2, DCs to iNKT cells. Cytokine lev-
els in culture supernatants were examined using a cytokine array (n D 5–6 per
group). �p < 0.05 compared with CXCL16hi DCs.
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number of IFNg expressing iNKT cells 2 h after stimulation
(Fig. 5B). This increase in IFNg-producing iNKT cells returned
to baseline by 72 h following stimulation (Fig. 5B). Moreover,
T-betC iNKT cells expanded to a greater extent by 72 h after
transfer of CXCL16C/C versus CXCL16¡/¡ DCs (Fig. 5C).
These data suggest that a-GalCer loaded CXCL16C/C DCs
enhance polarization and expansion of IFNg-producing iNKT
cells.

CXCR6C NK cells do not enhance serum IFNg levels

NK cells are stimulated to produce IFNg downstream of a-GalCer-
induced iNKT cell stimulation.8,9,19 Since»12% of splenic NK cells
and »31% of hepatic NK cells express CXCR6 (Fig. 6A), and
CXCR6C NK cells have been implicated in antigen-specific anti-
viral responses,34 it was important to examine the potential contri-
bution of CXCR6/CXCL16 signaling in NK cells to the IFNg
responses induced by transfer of glycolipid-loaded DCs. iNKT cell
deficient Ja18¡/¡ and CXCR6¡/¡ Ja18¡/¡ double knockout mice

were reconstitutedwith wild-type iNKT cells 24 h prior to adminis-
tration of a-GalCer-loaded CXCL16hi DCs. iNKT cell transfer res-
cued IFNg production equally in Ja18¡/¡ and CXCR6¡/¡ Ja18¡/¡

mice (Fig. 6B), demonstrating that CXCR6 on NK cells (and other
endogenous cells) did not elicit enhanced IFNg production in
response to glycolipid-loaded CXCL16hi DCs. There were no
defects in NK cell transactivation as the frequencies of IFNgC NK
cells were equivalent in Ja18¡/¡ and CXCR6¡/¡ Ja18¡/¡ mice
reconstituted with iNKT cells (Fig. 6C).

CXCL16-expressing DCs mediate enhanced tumor control
and reduced liver toxicity

Since potent IFNg production is associated with enhanced anti-
tumor responses,11,12,19 we examined whether CXCL16 co-stim-
ulation of iNKT cells during glycolipid activation modified
tumor clearance in an experimental model of B16-F10 mela-
noma metastasis to the liver.4,8,35 Wild-type BMDCs were
loaded with a-GalCer and sorted into CXCL16hi and CXCL16neg

Figure 4. In vivo cytokine responses following adoptive transfer of a-GalCer-loaded CXCL16hi or CXCL16neg DCs. CD11cC DCs were enriched from splenocytes by magnetic
sorting and loaded overnight with a-GalCer (200 ng/mL). DCs were sorted into CXCL16hi and CXCL16neg subsets and injected i.v. into wild-type or Ja18¡/¡ mice.
Unloaded DCs and Ja18¡/¡ mice were used as controls. Serum cytokine levels were analyzed via a multiplex cytokine array. (A) IFNg, IL-4, and IL-12p-70 levels were mea-
sured at 2, 6 and 18 h after DC transfer (n D 5–10 per group). �p < 0.05 compared with 2 h time point, yp < 0.05 compared to CXCL16hi DC. (B) Representative plots
showing expression of CD86, CD80, CD40, I-A, and CD1d on CXCL16hi DCs and CXCL16neg DCs following isolation and after overnight culture. Receptor expression is also
shown for the CD86hi gated population. (C) Serum levels of IFNg and IL-4 were measured by ELISA 18 h after adoptive transfer of a-GalCer-loaded CD86hi CXCL16hi or
CD86hi CXCL16neg DCs. (n D 4 per group). �p < 0.05 compared with CXCL16hi DC. (D) Serum IFNg, IL-4, and IL-12p70 levels were measured by ELISA 18 h after adoptive
transfer of splenic CXCL16C/C or CXCL16¡/¡ DCs (n D 6 per group). �p < 0.05 compared to CXCL16C/C DCs.

ONCOIMMUNOLOGY e1160979-5



populations prior to adoptive transfer into tumor-bearing mice.
Administration of CXCL16hi DCs mediated enhanced protec-
tion from B16 melanoma metastasis compared to CXCL16neg

DCs, unloaded DCs, or saline vehicle controls (Fig. 7A). Simi-
larly, adoptive transfer of glycolipid-loaded CXCL16C/C

BMDCs mediated enhanced protection from tumor metastasis
compared to CXCL16¡/¡ BMDCs (Fig. 7B). Given the high fre-
quency of iNKT cells in the liver relative to other tissues, we
wanted to determine whether CXCL16C/C DCs could enhance
tumor control at other sites. Administration of glycolipid-loaded
CXCL16C/C BMDCs also provided enhanced protection from
B16 metastasis to the lung (Fig. 7C). These results demonstrate a
critical role for CXCL16 in iNKT cell-mediated antitumor
responses. Interestingly, treatment of tumor-bearing mice with
CXCL16¡/¡ DCs induced higher levels of serum alanine

aminotransferase (ALT) compared to CXCL16C/C DCs
(Fig. 7D). These findings are consistent with a protective role for
IFNg against a-GalCer-induced liver injury.36

Discussion

iNKT cell activation mediated by presentation of glycolipid anti-
gens has been shown to enhance antitumor immune responses in
preclinical cancer models4-7,9,19 and clinical trials.12,37-39 Coordi-
nated interactions between iNKT cells and glycolipid-presenting

Figure 5. In vivo profiling of intracellular IFNg and T-bet expression in iNKT cells
following adoptive transfer of a-GalCer-loaded CXCL16C/C or CXCL16¡/¡ DCs.
Mice were stimulated by adoptive transfer of a-GalCer-loaded CXCL16C/C or
CXCL16¡/¡ BMDCs. The number of (A) total iNKT cells, (B) IFNgC iNKT cells and (C)
T-betC iNKT cells was examined by flow cytometry 2 h or 72 h later (n D 3–6 per
group). �p < 0.05 compared to unloaded DCs, yp < 0.05 compared to CXCL16C/C

DCs.

Figure 6. Expression and role of CXCR6 in NK cell transactivation. (A) Surface
expression of CXCR6 was examined on NK cells (NK1.1C TCRb¡) and iNKT cells
(CD1d-tetramerC TCRbC) isolated from spleen and liver using a chimeric CXCL16-
Fc construct (n D 4 per group). (B and C) Expanded iNKT cells (CD1d tetramerC

TCRbC) from wild-type donor mice were adoptively transferred (i.v. 1 £ 107) into
recipient Ja18¡/¡ or Ja18¡/¡ CXCR6¡/¡ mice. Twenty-four hours later, control
and iNKT cell-reconstituted mice were stimulated with a-GalCer-loaded CXCL16hi

BMDCs or unloaded control DCs (i.v. 2 £ 105). (B) Serum cytokine levels and (C) NK
cell intracellular IFNg staining were examined 18 h following stimulation (n D 3
per group). �p < 0.05 compared to no DC stimulation.
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DCs can influence cytokine production and polarization of subse-
quent immune responses.10,40 In this study, we have demon-
strated that co-stimulatory CXCR6/CXCL16 interactions
specifically increase IFNg production following glycolipid activa-
tion and lead to enhanced tumor control in vivo following adop-
tive DC transfer. These studies suggest that immunotherapies

utilizing a-GalCer-pulsed CXCL16hi DCs have the potential to
induce superior antitumor responses in cancer patients compared
to previous clinical trials in which bulk populations of glycolipid-
loaded antigen-presenting cells were transferred.

CXCR6/CXCL16 interactions have been shown to influence
cytokine production and immune responses in several studies.
Th1 and Th17 polarization were impaired in collagen-immu-
nized CXCR6¡/¡ mice, resulting in decreased development of
collagen-induced arthritis.41 Similarly, CXCL16 blockade
reduced serum IFNg levels and in vitro antigen recall responses
in a mouse model of multiple sclerosis.42 CXCL16 blocking
antibodies also reduced IFNg production and increased bacte-
rial load in a mouse model of Salmonella enterica infection.43

The decrease in intracellular IFNg production by CD3C lym-
phocytes in this infection model could be related to impaired
activation of CXCR6C iNKT cells since Salmonella typhimu-
rium glycolipids are known to stimulate iNKT cell
responses.2,44 Consistent with our findings that CXCR6 on NK
cells did not influence IFNg production in response to glyco-
lipid treatment, the use of CXCL16 blocking antibodies in the
context of S. enterica infection did not alter the frequency of
IFNg-producing NK cells.43

CXCR6 is highly expressed on iNKT cells and has previously
been shown to play important roles in iNKT cell trafficking,
maturation, and cytokine production.4,25,26,45 However, the reg-
ulation of CXCL16 expression following administration of gly-
colipids has not been reported previously. Our results show a
striking upregulation of CXCL16 on DCs following treatment
with a-GalCer. This was dependent on crosstalk between iNKT
cells and DCs as CXCL16 expression was not enhanced in
iNKT cell-deficient Ja18¡/¡ mice. IFNg, TNF, and IL-1a have
been previously implicated in the upregulation of CXCL16 in
other settings,31,32 suggesting that the diverse array of cytokines
produced following iNKT cell activation (including TNF and
IFNg)4,46 may upregulate CXCL16 on DCs during glycolipid
presentation.

Our current study demonstrates that immobilized CXCL16
or transmembrane CXCL16 on DCs can enhance the produc-
tion of IFNg from activated iNKT cells both in vitro and in
vivo. This is consistent with, and extends, previous work dem-
onstrating impaired IFNg production from iNKT cells stimu-
lated in culture with CXCL16¡/¡ DCs.27 Furthermore, we
demonstrate that CXCL16 also enhances IFNg production
from activated human iNKT cells. IFNg plays a role in diverse
biological functions related to host defense and immune regula-
tion in cancer. In particular, IFNg upregulates MHC class I to
increase antigen presentation,47,48 enhances polarization of
Th1-mediated immune responses,49 and augments activation
of NK cells.50,51 In addition, IFNg has also been shown to have
direct anti-proliferative,52-54 anti-angiogenic,55,56 and proapop-
totic57 effects on cancer cells. In clinical studies, the benefits of
iNKT cell activation therapy have been associated with the
induction of IFNg responses.12 Therefore, CXCR6/CXCL16 co-
stimulatory interactions represent a potential target for manip-
ulation in cancer therapies, where a boost in the Th1 IFNg
response is desired.

In addition to iNKT cells, CXCR6 is expressed on a subset of
hepatic NK cells. While CXCR6 is dispensable for trafficking
and retention of NK cells in the liver, it plays an important role

Figure 7. Control of metastatic B16 melanoma lesions in the liver and lung via
transfer of glycolipid-loaded DCs. (A) To induce liver metastasis, wild-type mice
were inoculated in the spleen with 2.5 £ 105 B16 melanoma cells. Five days later,
mice were injected i.v. with 2 £ 105 a-GalCer-loaded CXCL16hi or CXCL16neg

BMDCs, or unloaded control BMDCs generated from wild-type mice (n D 14–20
per group). �p < 0.05 compared to unloaded DCs, yp < 0.05 compared to
CXCL16neg DCs. (B) In independent experiments, 2 £ 105 a-GalCer-loaded BMDCs
generated from wild-type or CXCL16¡/¡ mice were delivered 5 d after B16 inocula-
tion (n D 9–10 per group). (C) To induce lung metastasis, wild-type mice were
inoculated i.v. with 2.5 £ 105 B16 melanoma cells. Three days later, mice were
injected i.v. with 2 £ 105 a-GalCer-loaded BMDCs generated from wild-type or
CXCL16¡/¡ mice (n D 4–6 per group). Liver and lung metastasis were examined
14 d after tumor cell inoculation using image analysis software to calculate tumor
coverage. (D) Serum ALT levels were measured in tumor-bearing mice following
administration of wild-type or CXCL16¡/¡ DCs (n D 4–6 per group). �p < 0.05
compared to unloaded DCs, yp < 0.05 compared to CXCL16¡/¡ DCs.
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in the function of hapten-specific memory NK cells.34 Given
that NK cells are also potent producers of IFNg following
a-GalCer-induced iNKT cell activation,8,11,19 we examined the
potential role of CXCR6/CXCL16 signals in modifying the
response of NK cells to a-GalCer-pulsed CXCL16hi DCs. Our
results using iNKT cell reconstituted mice demonstrate that
CXCR6 on NK cells (and other cell populations) does not play
a direct role in enhancing IFNg production in response to gly-
colipid-pulsed CXCL16hi DCs. This suggests that the role of
CXCR6/CXCL16 in regulating IFNg production is directly
linked to iNKT cell activation. Indeed, CXCL16C/C DCs
induced a larger number of IFNg-producing iNKT cells and
expansion of T-betC iNKT cells. This is consistent with prefer-
ential stimulation of the recently characterized Th1-like iNKT
subset (iNKT1), that upregulates T-bet during thymic develop-
ment and generates high levels of IFNg.58 However, we cannot
exclude the possibility that CXCR6/CXCL16 interactions also
shift polarization of other iNKT cell subsets.

While increased IFNg production by iNKT cells likely
contributes to enhanced tumor control, iNKT cells do not
need to generate IFNg to mediate antitumor responses.
Indeed, we have demonstrated that tumor control is normal
in Ja18¡/¡ mice reconstituted with IFNg¡/¡ iNKT cells.8 In
these mice, intact transactivation of NK cell IFNg responses
was likely sufficient to mediate tumor control. Therefore,
although CXCR6/CXCL16 interactions enhance beneficial
IFNg responses from iNKT cells, there could be additional
mediators or processes regulated by CXCR6/CXCL16 inter-
actions that contribute to tumor control.

In addition to the expression of CXCL16 on DCs, macro-
phages, and B cells,28,29 CXCL16 is expressed by a variety of
mouse and human cancer cells.59-61 However, the role of
CXCL16 in cancer is ambiguous. In a mouse model of colo-
rectal cancer, CXCL16 inhibited liver metastasis via recruit-
ment of CXCR6 expressing T cells and iNKT cells.62

CXCL16 expression is also strongly correlated with increased
tumor infiltration of CD4C and CD8C T cells in colorectal
cancer,60 and improved survival in cancer patients.60,61,63

While these beneficial effects may be related to transmem-
brane CXCL16, soluble CXCL16 has been linked to increased
tumor metastasis.64-66 In colorectal cancer patients, high pre-
operative levels of serum CXCL16 were associated with
recurring liver metastasis and a poor prognosis.67 Metallo-
proteinases ADAM-10 and ADAM-17, which cleave mem-
brane CXCL16 to generate soluble CXCL16, have also been
linked to increased tumor burden.66,68,69 Indeed, inhibition
of ADAM10/17-mediated CXCL16 shedding reduced the
migrating potential of ovarian cancer cells.66 Furthermore,
soluble CXCL16 derived from myeloid-derived suppressor
cells,70 or recombinant CXCL16,71 has been shown to play a
role in angiogenesis. Taken together, these studies suggest
that transmembrane CXCL16 may promote antitumor
responses whereas soluble CXCL16 may contribute to tumor
progression.

Although the distribution of iNKT cells is similar in
humans and mice, the frequency of iNKT cells is »10-fold
lower in humans, with significant variation between individ-
uals.23,72 This has led to concerns that therapeutic studies in
mice may not translate well to patients. However, mice

containing human CD1d are protected from tumor metasta-
sis via a-GalCer treatment, despite having iNKT cell fre-
quencies comparable to humans.73 Similarly, we have
shown that CXCR6¡/¡ mice, which have significantly
reduced numbers of iNKT cells in the liver and lung, are
protected from tumor metastasis by glycolipid treatments.4

These findings suggest that small numbers of iNKT cells
can induce potent responses. To address the low frequency
of iNKT cells in humans, some studies have treated cancer
patients with ex vivo expanded iNKT cells in conjunction
with glycolipid-loaded DCs, with beneficial results.38,39 We
have observed beneficial effects of adoptive iNKT cell trans-
fer in iNKT cell deficient mice8 but not wild-type mice,5

which may be expected if the endogenous iNKT cells in
wild-type mice exceeds the number needed for protective
responses.

In conclusion, our data demonstrate that CXCR6/CXCL16
co-stimulatory interactions between DCs and iNKT cells play
an important role in mediating glycolipid-dependent tumor
control. DCs upregulate CXCL16 during glycolipid stimulation,
leading to enhanced IFNg production from iNKT cells. Adop-
tive transfer of glycolipid-loaded CXCL16hi DCs enhanced
IFNg production and tumor control, while inducing less liver
toxicity, compared to CXCL16neg DCs. Our findings provide
preclinical evidence to support the clinical use of glycolipid-
loaded CXCL16hi DCs to enhance outcomes in cancer patients
undergoing iNKT cell activation immunotherapy.

Materials and methods

Mice

C57BL/6J mice were obtained from the Jackson Laboratories.
Ja18¡/¡mice were generated in the laboratory of Dr M.
Taniguchi (RIKEN Research Center for Allergy and Immunol-
ogy).74 CXCR6¡/¡ mice containing an enhanced green fluores-
cent protein replacement were obtained from Dr D. Littman
(New York University Medical Center).75 CXCL16¡/¡ mice
were generated at the National Institutes of Health (NIH)
Mutant Mouse Regional Resource Center (strain 032260-UCD;
University of California, Davis) using targeted embryonic stem
cells donated by Genentech Inc. All strains were backcrossed
on the C57BL/6 background for at least 12 generations prior to
use in experiments. CXCR6¡/¡Ja18¡/¡ double knockout mice
were generated in house by crossing CXCR6¡/¡and Ja18¡/¡

mice. Mice were housed within the Carleton Animal Care Facil-
ity at Dalhousie University and used between 6 and 12 weeks of
age. Experiments were performed with approval from the Uni-
versity Committee on Laboratory Animals following guidelines
set by the Canadian Council on Animal Care.

Cell lines

B16-F10 melanoma cells (American Type Culture Collection)
were cultured at 37�C, 5% CO2, in Dulbecco’s Modified Eagle
Medium supplemented with 10% fetal bovine serum, 100 mg/mL
streptomycin, and 100 U/mL penicillin (Fisher-Hyclone). Cells
were harvested in the logarithmic growth phase using trypsin-eth-
ylenediaminetetraacetic acid treatment (Sigma-Aldrich). Washed
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cells were re-suspended in saline for use in tumor metastasis
experiments.

Glycolipid stimulation

To examine changes in CXCL16 expression on antigen-present-
ing cells, mice were injected intraperitoneally with 4 mg of
a-GalCer [(2S,3S,4R)-1-O-(a-D-galactopyranosyl)-2-(N-hexa-
cosanoylamino)-1,3,4-octadecanetriol] purchased from Toronto
Research Chemicals.

Flow cytometry/antibodies

The following antibody clones were used for cell staining: Fluo-
rescein isothiocyanate (FITC)-conjugated TCRb (clone H57-
597), CD11c (clone Hl3), NK1.1 (clone PK136), and B220
(clone RA3-6B2); Phycoerythrin (PE)-conjugated IL-4 (clone
11B11), IFNg (clone XMG1.2), CD40 (clone 1C10), CD80
(clone 16-10A1), CD86 (clone GL1), CD1d (clone 1B1), and
NK1.1 (clone PK136); PerCP-Cychrome 5.5-conjugated NK1.1
(clone PK136), CD19 (clone 1D3), CD11b (clone M1/70),
T-bet (clone eBio4B10); allophycocyanin (APC)-conjugated
CD86 (clone GL1), CD11b (clone M1/70), B220 (clone RA3-
6B2), and F4/80 (clone BM8) were purchased from eBioscience.
PE-conjugated CD154 (clone MR1), CD69 clone (H1.2F3), and
I-A (clone M5/114.15.2); PerCP-Cychrome 5.5-conjugated CD3
(clone 145-2C11), CD19 (clone 1D3) and streptavidin; and
APC-conjugated CD11c (clone N418) were purchased from BD
Biosciences. A biotin-conjugated polyclonal CXCL16 antibody
was purchased from PeproTech Inc. PE- and APC-labeled
streptavidin and the nucleic acid dye 7-aminoactinomycin D
(7-AAD) were purchased from eBioscience. CXCR6 expression
was detected using a chimeric CXCL16-Fc fusion protein,20 fol-
lowed by a PE-conjugated goat anti-human Fcg polyclonal
antibody (Jackson ImmunoResearch Laboratories). APC-conju-
gated CD1d tetramers loaded with the a-GalCer analog PBS57
were obtained from the NIH Tetramer Core Facility (Emory
Vaccine Center at Yerkes). For labeling human iNKT cells,
FITC-TCRb (clone IP26) and PE-TCR-Va24Ja18 (clone 6B11)
antibodies were used (eBioscience). Flow cytometry was per-
formed using a two laser FACSCalibur with BD CellQuest Pro
software (BD Biosciences). Isotype-matched control antibodies
were used for all analyses. Intracellular cytokine staining was
performed using a BD Cytofix/Cytoperm kit (BD Biosciences).

Cell isolation

Liver and spleen lymphocytes were isolated by mechanical dis-
persion through a 70 mmwire mesh. Following dissociation into
single-cell suspensions, liver lymphocytes were separated from
hepatocytes by centrifugation through a 33% isotonic Percoll
gradient (GE Healthcare). Red blood cells were lysed with
ammonium chloride buffer (150 mM NH4Cl, 10 mM KHCO3,
and 0.1 mM EDTA) and cells were washed prior to use.

BMDCs were generated as previously described.5 Non-
adherent cells were isolated from bone marrow cultures on day
6 and loaded overnight in complete Roswell Park Memorial
Institute-1640 media (containing 10% fetal bovine serum,
50 mM 2-mercaptoethanol, 2 mM L-glutamine, 100 mg/mL

streptomycin, 100 units/mL penicillin) supplemented with
20 ng/mL recombinant mouse GM-CSF (PeproTech) and
200 ng/mL a-GalCer.

Mouse cell sorting

Liver mononuclear cells were isolated as described above. Prior
to staining, cells were pre-incubated with anti-CD16/32
(clone 97) to block Fc-receptors. iNKT cells were sorted as
TCRbC CD1d tetramerC cells. To isolate DC populations from
bulk splenocytes, FITC-CD11cC cells were purified with anti-
FITC microbeads by MACS Cell Separation (Miltenyi Biotech).
CD11cC cells were loaded with glycolipid by culturing at 37�C
for 24 h in Roswell Park Memorial Institute-1640 media con-
taining 10% fetal bovine serum, 10 ng/mL of GM-CSF, and
200 ng/mL a-GalCer or loading vehicle. Cells were stained with
antibodies against NK1.1, CD11c, CXCL16, and 7-AAD
(and CD86 for the CD86hi transfer experiments) for sorting.
Sorted CXCL16hi DCs were 7AAD¡ NK1.1¡ CD11cC

CXCL16hi (and in some cases CD86hi) and sorted CXCL16neg

DCs were 7-AAD¡ NK1.1¡ CD11cC CXCL16neg (and in some
cases CD86hi). In other experiments, 7AAD¡ NK1.1¡ CD11cC

splenocytes were sorted from wild-type or CXCL16¡/¡ mice.
All cells were sorted using a BD FACSAria sorter with BD
FACSDiva software (BD Biosciences).

DC and iNKT cell co-culture

CD1d-tetramerC iNKT cells were purified by flow sorting and
cultured with a-GalCer-loaded CXCL16hi or CXCL16neg

splenic DCs at a ratio of 1:2, DCs to iNKT cells. A total of
40,000 cells were cultured in 96-well tissue culture plates.
Supernatants were harvested after 24 h for cytokine analysis.

Generation of primary human iNKT cell lines

Isolation of peripheral blood mononuclear cells from healthy
human volunteers was done under institutional ethics approval
to the REACH Team (Dalhousie University). Blood was col-
lected in endotoxin-free sodium heparin tubes and PBMCs
were isolated using Lymphoprep (Stem Cell Technologies).
PBMCs were washed twice prior resuspension in complete
RPMI-1640 (supplemented with 100 mg/mL streptomycin,
100 U/mL penicillin, 10% autologous human plasma),
containing recombinant human IL-2 (10 ng/mL), and recombi-
nant human IL-15 (5 ng/mL) (Peprotech). Blood iNKT cells
were expanded in 6-well plates for one week using 200 ng/mL
a-GalCer and TCRbCVa24Ja18C iNKT cells were sorted.

In vitro anti-CD3 stimulation of iNKT cells

Mouse liver mononuclear cells were cultured in 96-well plates
coated with anti-CD3 (clone 145-2C11), with or without 100 ng/
mL of recombinant extracellular domain mouse CXCL16 (R&D
Systems). After 2 h, intracellular cytokine staining for IFNg and
IL-4, and surface staining for CD40L and CD69 were analyzed
on CD1d-tetramerC TCRbC iNKT cells by flow cytometry. For
stimulation of human iNKT cells, 5 £ 104 sorted cells were cul-
tured in anti-CD3- (clone OKT3) coated wells with or without
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100 ng/mL recombinant extracellular domain human CXCL16
(BioLegend). Supernatants were collected 24 h following stimula-
tion for analysis of IFNg and IL-4 levels by enzyme-linked
immunosorbent assay (ELISA) (eBioscience).

iNKT cell activation by adoptive DC transfer

Splenic DCs isolated from wild-type mice were loaded over-
night with a-GalCer (200 ng/mL) and sorted into CXCL16hi

and CXCL16neg subsets. DCs were injected i.v. (4 £ 104 per
recipient) into C57BL/6 or Ja18¡/¡ mice. As controls, unloaded
DCs or saline vehicle were injected into recipient mice. Serum
samples were collected at 2, 6 and 18 h after transfer. These
experiments were repeated using purified splenic DCs or cul-
tured BMDCs from wild-type versus CXCL16¡/¡ mice. In sep-
arate experiments, iNKT cells were isolated 2 or 72 h following
administration of a-GalCer loaded CXCL16C/C versus
CXCL16¡/¡ DCs to examine intracellular IFNg and T-bet
expression.

Adoptive transfer of LPS pulsed CXCL16C/C

or CXCL16¡/¡DCs

To examine whether LPS pulsed DCs would stimulate IFNg
production in vivo, CXCL16C/C or CXCL16¡/¡ BMDCs were
treated with 250 ng/mL LPS for 4 h. BMDCs were washed
5 times prior to i.v. adoptive transfer into naive mice. Serum
samples were collected at 6, 12, 24, 48 and 72 h to examine
IFNg levels by ELISA.

Cytokine array analysis

A MULTI-SPOT 96-well custom mouse cytokine array with
10 analytes (GM-CSF, IFNg, IL-1b, IL-2, IL-4, IL-5, IL-6, IL-
10, IL-12p70, TNF) was used to measure cytokine levels in
serum and culture supernatants (Meso Scale Discovery). Plates
were read with a Sector Imager 2400 and analyzed with Discov-
ery Workbench software (Meso Scale Discovery). In some
experiments, mouse IL-4, IFNg, and IL-12p70 were measured
using Ready-SET-Go! ELISA kits (eBioscience).

In vivo iNKT cell expansion and reconstitution

To investigate the role of CXCR6/CXCL16 interactions on NK
cell function, sorted iNKT cells were reconstituted into Ja18¡/¡

and CXCR6¡/¡Ja18¡/¡ mice.8 iNKT cells were expanded in
donor mice by i.v. transfer of 6 £ 105 a-GalCer-loaded bone
marrow DCs. After 72 h, liver mononuclear cells were isolated
and 1£ 107 TCRbCCD1d tetramerCiNKT cells were adoptively
transferred into Ja18¡/¡ and CXCR6¡/¡Ja18¡/¡ mice.
Twenty-four hours following reconstitution, recipient
mice received i.v. 2 £ 105 a-GalCer-loaded CXCL16hi BMDCs.
Serum and intracellular IFNg were monitored 18 h following
stimulation.

Liver and lung B16-F10 melanoma metastasis models

To study liver metastasis, B16-F10 melanoma cells (2.5 £ 105)
were aseptically inoculated into the spleen of wild-type

mice.4,8,76 Five days later, mice were treated i.v. with 2 £ 105

a-GalCer-loaded CXCL16hi or CXCL16neg BMDCs, or
unloaded control BMDCs generated from wild-type mice. In
separate experiments, a-GalCer-loaded BMDCs from wild-
type or CXCL16¡/¡ mice were transferred. To examine lung
metastasis, mice were inoculated i.v. with 2.5 £ 105 melanoma
cells.76 Three days later, mice were treated i.v. with a-GalCer
loaded CXCL16C/C or CXCL16¡/¡ DCs. Fourteen days after
tumor cell injection, mice were sacrificed and images of the
anterior and posterior surface of each liver/lung were acquired
using a Micropublisher 3.3 digital camera with QCapture
(v.2.8.1) software (QImaging).8,76 The relative tumor coverage
on the anterior and posterior surfaces was analyzed using
Image J software (NIH).

Liver toxicity

To monitor liver toxicity following iNKT cell activation with
a-GalCer loaded CXCL16C/C or CXCL16¡/¡ DCs, serum sam-
ples were collected from tumor-bearing mice 6, 12 and 24 h
after DC transfer. Levels of alanine aminotransferase in the
serum were quantified by NADH oxidation assay (Cayman
Chemicals).5

Statistical analysis

Data are expressed as mean § SEM unless otherwise stated. A
non-parametric two-tailed Mann–Whitney test was used to
compare between two data groups. Comparisons between more
than two data groups were made using a Kruskal–Wallis non-
parametric ANOVA with Dunn’s post-test. Statistical signifi-
cance was set at p < 0.05.
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