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Background: Osteoporosis is a highly heritable skeletal muscle disease. However,

the genetic mechanisms mediating the pathogenesis of osteoporosis remain unclear.

Accordingly, in this study, we aimed to clarify the transcriptional regulation and heritability

underlying the onset of osteoporosis.

Methods: Transcriptome gene expression data were obtained from the Gene

Expression Omnibus database. Microarray data from peripheral blood monocytes of

73 Caucasian women with high and low bone mineral density (BMD) were analyzed.

Differentially expressedmessenger RNAs (mRNAs) and long non-coding RNAs (lncRNAs)

were identified. Differences in BMD were then attributed to several gene modules using

weighted gene co-expression network analysis (WGCNA). LncRNA/mRNA regulatory

networks were constructed based on the WGCNA and subjected to functional

enrichment analysis.

Results: In total, 3,355 mRNAs and 999 lncRNAs were identified as differentially

expressed genes between patients with high and low BMD. The WGCNA yielded three

gene modules, including 26 lncRNAs and 55 mRNAs as hub genes in the blue module,

36 lncRNAs and 31 mRNAs as hub genes in the turquoise module, and 56 mRNAs and

30 lncRNAs as hub genes in the brown module. JUN and ACSL5 were subsequently

identified in the modular gene network. After functional pathway enrichment, 40 lncRNAs

and 16 mRNAs were found to be related to differences in BMD. All three modules

were enriched in metabolic pathways. Finally, mRNA/lncRNA/pathway networks were

constructed using the identified regulatory networks of lncRNAs/mRNAs and pathway

enrichment relationships.

Conclusion: The mRNAs and lncRNAs identified in this WGCNA could be novel

clinical targets in the diagnosis and management of osteoporosis. Our findings may

help elucidate the complex interactions between transcripts and non-coding RNAs and

provide novel perspectives on the regulatory mechanisms of osteoporosis.

Keywords: osteoporosis, WGCNA (Weighted Gene Co-expression Network Analyses), pathway, biomarker,

systems biology, LncRNA-long noncoding RNA
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INTRODUCTION

Osteoporosis is a systemic disease of the musculoskeletal system.
Its main pathophysiological characteristics are decreased bone
mass, destruction of bone tissue microstructure, increased bone

fragility, and increased fracture risk (Ensrud and Crandall, 2017).

According to the National Health and Nutrition Examination
Survey III, there are more than 9.9 million patients with
osteoporosis in the United States of America, and 1.5 million

patients suffer from osteoporotic fractures each year (Sahni et al.,
2009). The social costs associated with osteoporosis are expected

to rise as the population ages (Ruza et al., 2013). Affected
by many factors, such as menopause, women are especially
susceptible to osteoporosis (Baccaro et al., 2015). A large-scale
epidemiological survey in 2006 showed that among people over
50 years old, the prevalence of osteoporosis in men was 14.4%,
whereas that in women was as high as 20.7%(Chen et al.,
2016). The lifetime risk of osteoporotic fractures in women is
as high as 40%, which is significantly higher than the combined
risks of breast cancer, endometrial cancer, and ovarian cancer
(Ganji et al., 2019).

Osteoporosis is a disabling disease with insidious onset. In
most patients, no symptoms are detected during the early to
middle stages of illness. However, sudden osteoporotic fracture
can lead to lifelong disability. Early detection and treatment
can significantly improve survival rates and quality of life in
patients with osteoporosis. However, our understanding of the
pathogenesis of osteoporosis is not sufficient. Although many
factors, such as oxidative stress (Zhou et al., 2016; Geng et al.,
2019) and altered estrogen signaling (Sapir-Koren and Livshits,
2017), have been shown to contribute to osteoporosis, specific
biomarkers for the early diagnosis and treatment of this disease
have not yet been identified.

Despite the success of proteomics analyses for screening
of molecular targets in osteoporosis (Xu et al., 2018; Saad,
2020), transcriptomic studies are now attracting much attention.
Previous studies have shown that long non-coding RNAs
(lncRNAs) are involved in the regulation of a series of
biological processes, such as the occurrence and development
of osteoporosis (Zhao et al., 2017; Zhou et al., 2019; Zhang
et al., 2020). lncRNAs can directly interfere with messenger
RNA (mRNA) transcription or form an endogenous competitive
network with microRNAs (miRNAs) to regulate transcription
(Zhang et al., 2020). The regulation mechanisms of lncRNA have
been less studied compared with the more mature studies on
miRNAs (Hupkes et al., 2014; You et al., 2016; Shao, 2017; Wang
et al., 2018; Cui et al., 2019). Therefore, further research on the
lncRNA/mRNA regulatory network in osteoporosis is needed for
better dissemination.

Like most chronic diseases, osteoporosis is determined
by a combination of genetic and environmental factors
(Ongphiphadhanakul, 2007). The heritability of bone density
is thought to be 50–85% (Ralston, 2010). However, all single
genetic pathogenic factors discovered to date can explain
<6% of heritability, including loci discovered by genome-wide
association studies (GWASs) (Liu et al., 2014). In addition, the
two-dimensional role of genes is limited. Therefore, building

networks may improve our ability to discover the remaining
heritability factors in patients with osteoporosis.

Most studies of osteoporosis have focused on screening for
differentially expressed genes (DEGs) to identify biomarkers
(Liu et al., 2014; Xia et al., 2017; Zhou et al., 2018a, 2019;
Zhang et al., 2020). However, few studies have explored the
relevance of genes that share a high degree of functional
interconnection and are regulated in a similar fashion. Weighted
gene co-expression network analysis (WGCNA), a systems
biology method, is particularly useful in this context and may
help establish free-scale gene co-expression networks to identify
the associations between different gene sets or between gene
sets and clinical features (Qian et al., 2019). Notably, WGCNA
has been broadly used to identify hub genes linked with
clinical features in different diseases, such as breast cancer (Li
et al., 2019), heart failure (Niu et al., 2019), and osteoporosis
(Farber, 2010; Chen et al., 2016; Zhang et al., 2016; Qian et al.,
2019).

In the current study, WGCNA and other approaches were
used to analyze microarray data from blood monocytes collected
from pre-and postmenopausal women with low or high bone
mineral density (BMD) to characterize the key genes associated
with osteoporosis. We then constructed a regulatory network
containing key mRNAs and lncRNAs based on the co-expression
relationships. Our findings improve our understanding of the
biological relationships between osteoporosis and genetics and
identify novel potential gene targets for the diagnosis and
treatment of osteoporosis.

METHODS

Datasets and Samples
Data of this experiment are obtained and processed in the
following ways (Figure 1). The microarray dataset GSE56814
was downloaded using the GEOquery package with R version
(The R Foundation for Statistical Computing, Vienna, Austria)
from the Gene Expression Omnibus (GEO) database (http://
www.ncbi.nlm.nih.gov/geo/). The gene expression microarray
was based on the GPL5175 platform (Affymetrix Human
Exon 1.0 ST Array). Subjects for the study were enrolled
in a previous microarray-based transcriptome-wide profiling
study of peripheral blood monocytes in 73 Caucasian females
(47–56 years old) (Liu et al., 2015). Briefly, the patients
included 42 women with high BMD (aged 52.9 ± 2.3
years, Z-score = 1.38 ± 0.49) and 31 women with low
BMD (aged 51.4 ± 2.6 years, Z-score = −1.05 ± 0.51;
Table 1). The raw files of gene profiles were downloaded
and processed with the Robust Multi-array Average (RMA)
algorithm. The nsFilter algorithm was used to filter the data for
the subsequent WGCNA.

Annotation of lncRNAs From the Gene
Expression Microarray Profile
LncRNAs were annotated from the gene expression microarray
profile in two steps. First, we used the BLAST software to
align the probes in GPL5175 to the mRNA database, which was
selected from the overlap of coding RNAs in NCBI and Ensembl.
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FIGURE 1 | Data management flowchart of the study.

TABLE 1 | Demographic characteristics of the patient samples.

N Age BMD*

High BMD 42 52.9 ± 2.3 1.38 ± 0.49

Low BMD 31 51.4 ± 2.6 −1.05 ± 0.51

Total 73 52.3 ± 2.4 0.34 ± 0.50

*Hip BMD Z-score.

Second, probes that could not be aligned to the mRNA database
in the first step were further aligned to the lncRNA database,
which included non-coding RNAs longer than 200 nucleotides
collected from the NCBI, Ensembl, Refseq, and NONCODEv5
databases. Sequences were considered matching if they showed

at least 90% identity. In both steps, the cutoff value was set to
e-value <10e−5.

Identification and Visualization of
Differentially Expressed mRNAs and
lncRNAs
A random variance model t-test, which could effectively increase
the degrees of freedom for small samples, was used to filter
differentially expressed mRNAs and lncRNAs between patients
with high and low BMD (Wright and Simon, 2003). After
significance and false discovery rate (FDR) analyses, we selected
DEGs according to the p value threshold and absolute value of
fold change (FC). Results with a p value of <0.05 with |FC|
>1.2 were considered significantly different (Yang et al., 2005).
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For visualization, the differentially expressed mRNAs and
lncRNAs were clustered using a hierarchical cluster algorithm
with average linkage and Spearman’s rank correlation distance,
as provided by the EPCLUST software (http://ep.ebi.ac.uk/
EP/EPCLUST/). Clustering was performed using the methods
outlined in a previous publication (Misha et al., 2004). The results
were visualized using heatmaps and dendrograms.

Functional Enrichment Analysis
Gene ontology (GO) analysis, which organizes genes into
hierarchical categories and uncovers gene regulatory networks
based on biological processes and molecular functions, was
used to analyze the main functions of DEGs (Gene Ontology,
2006). Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathway analysis was then used to identify the significant
pathways for these genes (Kanehisa et al., 2004). The Database
for Annotation, Visualization and Integrated Discovery (DAVID;
https://david.ncifcrf.gov/) provides a comprehensive set of
functional annotation tools to analyze high-throughput gene
functions. GO and KEGG pathway enrichment analyses were
performed using DAVID. We were only interested in biological
processes and KEGG pathways showing significance according to
the following parameters: p < 0.05, FDR < 0.05, and enrichment
score >1.5.

WGCNA
WGCNA is an analysis method for complex samples and is
used to mine module information from chip data (Wan et al.,
2018). In the current study, WGCNA was performed using a
freely accessible R package. To minimize the loss of statistical
information, the top 25% of mRNAs from the absolute median
deviation and the top 10% lncRNAs were selected for WGCNA.
The Pearson coefficient between any two genes was calculated.
Subsequently, the correlation coefficients took multiple powers
of N so that the connections between genes in the network
align with the scale-free network distribution. A one-step
function was performed to construct the network and detect
consensus modules. Additionally, we constructed a hierarchical
clustering tree using the correlation coefficient between genes.
Gene modules are indicated as different branches on the
clustering tree, and different colors were used to distinguish
the modules.

Interaction Analysis of the Co-expression
Modules
Interaction analysis of co-expression modules was performed as
previously described Qian et al. (2019). Briefly, we calculated the
eigengene adjacency based on similar co-expression in modules,
and specific interactions among modules were evaluated
using the flashClust function (Langfelder et al., 2012). A
heatmap was established to elucidate the correlations among
different modules.

Construction of the lncRNA–mRNA
Weighted Network
Using the modules obtained with WGCNA, hub genes were
extracted as the top 100 genes in the module. Hub genes with

high connectivity are usually regulatory factors located upstream
of regulatory networks, whereas genes with low connectivity
are usually located downstream of regulatory networks (e.g.,
transporters and catalytic enzymes). Thus, the co-expression
relationships among hub genes were calculated, and the co-
expression of lncRNAs/mRNAs among the top 50 hub genes, as
well as the co-expression of mRNAs/mRNAs among the top 150
hub genes, was selected to construct a co-expression network.
Interactions between lncRNAs and mRNAs were identified by
calculating the Pearson correlation coefficient of differentially
expressed mRNAs and lncRNAs with a cutoff |cor| >0.5. All
interactions were identified using a p.adjust value <0.01. Next,
lncRNA/mRNA regulatory networks were constructed using the
Cytoscape software.

Construction of the lncRNA/mRNA
Pathway Weighted Co-expression Network
The lncRNA/mRNA pathway network was constructed based
on the regulatory relationship of lncRNAs/mRNAs and the
significant pathways involved in the regulation of mRNAs. The
primary objective of this analysis was to identify the signaling
pathways regulated by lncRNAs to predict possible mechanisms
of lncRNAs in disease.

Statistical Analysis
Data were analyzed using the SPSS 23.0 software (SPSS,
Chicago, IL, USA). The random variance model t-test was
performed using BRB-ArrayTools (v4.6, http://linus.nci.
nih.gov/BRB-ArrayTools.html) (Wright and Simon, 2003).
Because the sample size was limited, the adjusted p values
were too large after multiple testing controls. We used
a raw p <0.05 as the threshold for nominally significant
differential expression. Notably, multiple testing adjustment
with an FDR <0.05 was used to filter enriched GO and
KEGG pathways.

RESULTS

Differentially Expressed mRNAs and
lncRNAs
With an FC cutoff value >1.2 and p < 0.05, 3,355 mRNAs
(Figures 2A,C) and 999 lncRNAs (Figures 2B,D) were identified
as differentially expressed between patients with high and
low hip BMD; these were selected as candidate genes for
subsequent WGCNA. The pathway analysis reveals that the up-
/down-regulated DEGs were primarily enriched in metabolic
pathways (Figures 3A,B). The GO analysis found that up-
regulated DEGs were enriched in terms of apoptotic process, G-
protein coupled receptor signaling pathway, negative regulation
of transcription from RNA polymerase II promoter, etc.
Furthermore, the down-regulated ones were enriched in
transcription, DNA-templated, G-protein coupled receptor
signaling pathway, DNA-templated regulation of transcription,
etc. (Figures 3C,D).
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FIGURE 2 | Differentially expressed mRNAs and lncRNAs between high and low hip BMD subjects. (A,B) The heatmaps represent hierarchical clustering for

differentially expressed lncRNAs and mRNAs. (C,D) Volcano plots of significantly differently expressed genes (DEGs).

FIGURE 3 | Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis of the top 25 up (A)/down (B)-regulated pathways enriched in

differentially expressed genes between high/low BMD subjects. Top 25 up (C)/down (D)-regulated biological processes enriched in differentially expressed genes

between high/low BMD subjects.
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FIGURE 4 | (A) Size and composition of the modules in the WGCNA network. (B) Dendrogram obtained by clustering the dissimilarity based on consensus

topological overlap with the corresponding module colors indicated by the color row. (C) Eigengene adjacencies of heatmap. Red shows high adjacency.

Establishing Weighted lncRNA/mRNA
Co-expression Networks and Identification
of Soft Threshold Power
A lncRNA/mRNA co-expression network was established from
the newly generated set of mRNAs and lncRNAs. First, we

performed cluster analysis on the selected mRNAs and lncRNAs.
The results showed that no outlier existed in the sample;
thus, there was no need to remove any outliers. Second,

we used the R package to check the integrity of the data
and constructed a network topology to determine the soft
thresholding power. A soft threshold power of 6.5 was used
to define the adjacency matrix, which was processed using
the criteria of approximate scale-free topology. Third, the
adjacent and topological matrices were obtained through the soft
thresholding power. According to the topological matrix, genes
were clustered through dissimilarity. Next, a dynamic shearing
method was used to separate the cluster dendrogram into four
modules, each indicated by a different color (turquoise, blue,
brown, or yellow; gray was used for genes that did not fit into
a distinct group). The largest module was the turquoise module,
followed by the blue module. The size and composition of the
modules are shown in Figure 4A. Of all selected genes, 351
mRNAs and 101 lncRNAs failed to fit within a distinct group and
were assigned to the gray module (Figure 4B). After generating
an eigengene adjacency heatmap (Figure 4C) to explore the
correlations between modules, we found that the regulation
directions of these modules were consistent. The modules
showed a significantly positive correlation in patients with high
BMD and a negative correlation in premenopausal women
with low BMD. However, the correlation was not significant
in postmenopausal women except that the gray module in

patients with high BMD showed a correlation coefficient of
0.25 (p= 0.03).

Functional Analyses and Pathway
Enrichment of Different Modules
To determine whether the modules were composed of
functionally similar genes and to understand the functional
significance of the network modules, GO term and KEGG
pathway enrichment analyses were performed. The enrichment
results from the yellow module were not significant because
there were few genes in this module. The GO results of
all three modules were enriched in the positive regulation
of transcription from RNA polymerase II promoter, DNA-
templated transcription, and their regulatory mechanisms.
Specifically, genes in the blue module were highly enriched
in cell surface receptor signaling pathway, chemical synaptic
transmission, ion transmembrane transport, multicellular
organism development, neutrophil degranulation, and
regulation of receptor activity. The turquoise module was
associated with calcium ion transmembrane transport, cell
adhesion, cell proliferation, cellular protein metabolic process,
membrane depolarization, and microtubule-based movement.
The brown module was associated with bicarbonate transport,
cell cycle arrest, cell differentiation, cell division, cell migration,
oxidation–reduction process, and rRNA processing. The top
20 GO terms for the three modules are shown in Figure 5.
mRNA pathway enrichment was also analyzed. Notably, all three
modules were significantly enriched in metabolic pathways and
neuroactive ligand–receptor interactions. The turquoise module
was specifically associated with purine metabolism, necroptosis,
inflammatory mediator regulation of TRP channels, alcoholism,
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FIGURE 5 | Result of GO analysis about mRNA based on WGCNA. (A) Top 20 enriched gene ontologies in blue module (B). Top 20 enriched gene ontologies in

brown module. (C) Top 20 enriched gene ontologies in turquoise module. (D) Module specificity gene ontologies. The vertical axis shows the results of GO analysis,

and the horizontal axis shows the different modules. The color of the round shape shows transitional values (log10 of q value), and the size shows the number of

genes that were enriched. mRNA, messenger RNA; WGCNA, weighted gene co-expression network analysis.

and the hypoxia-inducible factor-1 signaling pathway. The
blue module was associated with the Rap1 signaling pathway,
calcium signaling pathway, NOD-like receptor signaling
pathway, phosphatidylinositol 3-kinase/Akt signaling pathway,
and sphingolipid signaling pathway. The brown module was
associated with protein processing in the endoplasmic reticulum,
tyrosine metabolism, glycerophospholipid metabolism, cell cycle,
and metabolism of xenobiotics by cytochrome P450. The top 20
pathways for each module are shown in Figure 6.

WGCNA Hub Gene Identification
Hub genes are usually key regulators, such as transcription
factors, and are worthy of in-depth analysis and mining. In

the blue module, we found 26 lncRNAs and 55 mRNAs as
hub genes (Figure 7A). We analyzed the functions of these
hub genes and found that these genes were mainly involved
in response to muscle stretch (e.g., JUN and MAPK14), biotic
stimulus (e.g., IFITM3), and ventricular system development
(e.g., HYDIN and ARMC4). The cell components were enriched
in the cytoplasm (e.g., BCAS3, CD248, DNAJC17, GCN1, and
GLE1), endoplasmic reticulum (e.g., ALG12, NECAB3, UVRAG,
CERS2, and KCNMA1), and endoplasmic reticulum membrane
(e.g., ALG12, NECAB3, CERS2, and PCYT1A). The molecular
functions were mainly enriched in ubiquitin protein ligase
binding (e.g., FAF2, ABTB1, and UBE2N). We also observed 36
lncRNAs and 31 mRNAs as hub nodes in the turquoise module
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FIGURE 6 | Result of pathway analysis about mRNA based on WGCNA. (A) Top 20 enriched pathways in blue module (B). Top 20 enriched pathways in brown

module. (C) Top 20 enriched pathways in turquoise module. (D) Module specificity pathways. The vertical axis shows the results of pathway analysis, and the

horizontal axis shows the different modules. The color of the round shape shows transitional values (log10 of q value), and the size shows the number of genes that

were enriched. mRNA, messenger RNA; WGCNA, weighted gene co-expression network analysis.

(Figure 7B) and 56 mRNAs and 30 lncRNAs as hub nodes in the
brown module (Figure 7C).

Construction of lncRNA/mRNA Pathway
Co-expression Networks
To uncover the possible mechanisms of lncRNA-mediated
regulation of signaling pathways, we selected a number of

pathways with significant differences in the turquoise, blue, and
brown modules and associated them with the lncRNA/mRNA
co-expression network. In the pathway co-expression network,
the blue module had 3 mRNAs and 24 lncRNAs (Figure 7D), the
brown module had 4 mRNAs and 11 lncRNAs (Figure 7E), and
the turquoise module had 9 mRNAs and 5 lncRNAs (Figure 7F).
In the blue module, XR_001739541.1 was linked to MRPS10,
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FIGURE 7 | Established lncRNA–mRNA network and lncRNA–mRNA pathway. (A–C) lncRNA–mRNA network of genes in blue (A), brown (B), and turquoise (C)

modules. (D–F) lncRNA–mRNA pathway of genes in blue (D), brown (E), and turquoise (F) modules.

ACSL5, and JUN and was therefore enriched in the ribosome
pathway and metabolic pathway. Sixteen lncRNAs, including
NONHSAT249872.1 and ENST00000510264.6, were linked to
two mRNAs (JUN and ACSL5) and were enriched in pathways,
such as the NOD-like receptor signaling pathway, mitogen-
activated protein kinase signaling pathway, Wnt signaling
pathway, ErbB signaling pathway, osteoclast differentiation, and
metabolic pathways. Seven other lncRNAs were linked to ACSL5
and were enriched in metabolic pathways. In the brown module,
XR_002958445.1, XR_002957932.1, NONHSAT257980.1,
XR_926664.3, NONHSAT144580.2, and NONHSAT144681.2
were connected to HSD3B7, ENH1, UGT2B11, and MGLL
mRNAs and were therefore enriched in metabolic pathways
and chemical carcinogenesis. In the turquoise module,
ENST00000618234.4 and ENST00000621933.1 were linked
to nine mRNAs (USP39, H2BFWT, CYP4F2, B4GAT1,
MAT2A, CBS, GABRG1, P2RY1, and NPY1R) and enriched
in pathways, such as GABAergic synapse, retrograde
endocannabinoid signaling, Rap1 signaling pathways, and
cAMP signaling pathway. The lncRNAs ENST00000609314.5,
ENST00000480227.5, and ENST00000424133.2 were also
involved in the turquoise modular lncRNA/mRNA pathway
co-expression network.

DISCUSSION

Osteoporosis is a common and complex systemic bone disease,
and women are especially susceptible to this disease. The

onset of osteoporosis is insidious, and the disease often
remains undetected in the early stages. However, once a
secondary osteoporotic fracture occurs, many complications
can occur, and the prognosis is poor. Therefore, many
researchers have investigated the molecular diagnosis, treatment
targets, and genetic regulation of osteoporosis. In a previous
study, Liu showed that DAXX and PLK3, which are related
to induction of apoptosis, were down-regulated in patients
with a low BMD among a cohort of 73 Caucasian females
(Liu et al., 2015). Based on the same microarray dataset
available online, Zhou performed GWAS and found 29 potential
transcription factors for up-regulated genes and 9 transcription
factors for down-regulated genes (Zhou et al., 2018a). They
further investigated the relationships between mRNAs and
lncRNAs using two approaches and claimed that 26 candidate
lncRNAs may regulate mRNA expression (Zhou et al., 2019).
After correcting for crosstalk effects, they identified several
significant enriched pathways involved in BMD regulation
(Zhou et al., 2018b). Moreover, Xia established a meta-
analysis using the microarray datasets GSE56815 and GSE56814
and found 10 potential pathogenic genes of osteoporosis
(Xia et al., 2017).

In this study, we found 4,354 DEGs in the peripheral blood
chips of patients with high or low BMD in the hip; these included
3,355 mRNAs and 999 differentially expressed lncRNAs. In
contrast to previous studies based on protein–protein interaction
(PPI) networks, we employed WGCNA to aggregate genes with
common expression characteristics into modules. This systemic
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biology method helped free-scale gene co-expression networks
to identify associations without previous PPI knowledge (Zheng
et al., 2020). TheWGCNA co-expression networks revealed three
gene modules consisting of 40 lncRNAs and 16 mRNAs, which
were significantly related to the level of BMD. In a previous
study, Qian (Qian et al., 2019) found 12 genes as hub genes
in 80 Caucasian females. Another WGCNA study identified
six genes from 26 healthy young Chinese females (Farber,
2010). Zhang et al. found seven genes that were significantly
down- or up-regulated using traditional comparative analysis,
WGCNA, and gene set enrichment analysis (Zhang et al.,
2016). Chen constructed a WGCNA co-expression network
composed of BMD GWAS genes and found two functional
gene modules and nine interesting genes. Of note, the genes
identified in the current study did not overlap in these previous
studies. We attribute the observed discrepancy to differences
in patients and ethnicity; these potential differences should
be investigated further. The differentially expressed mRNAs
and lncRNAs were primarily involved in metabolic pathways,
including glycerophospholipid metabolism, lysine degradation,
and glycerolipid metabolism.

Our study and previous studies have established possible
targets for the treatment of osteoporosis, such as JUN (Ralston,
2010; Zhou et al., 2019). JUN belongs to the AP-1 family of
transcription factors, which includes c-Fos, Fra1, Fra2, JunB, and
JunD. JUN expression was significantly up-regulated in dental
pulp stem cells induced to undergo osteogenic differentiation
(Guo et al., 2018). Higher concentrations of glucocorticoids
impair osteogenesis by inhibiting JUN expression and human
bone marrow mesenchymal stem cell (BMSC) proliferation,
which can be driven by glucocorticoid receptor and AP-1
crosstalk (Carcamo-Orive et al., 2010). Moreover, our recent
study showed that JUN can drive bone formation by expanding
osteoprogenitor populations and forcing them into the bone
fate, providing a rationale for future clinical applications
(Lerbs et al., 2020).

Long-chain fatty acyl-CoA synthetases 5 (ACSL5) is an
isozyme of the long-chain fatty-acid-coenzyme A ligase family.
It is a regulatory enzyme that converts free long-chain fatty
acids into fatty acyl-CoA esters and thereby plays key roles in
lipid biosynthesis and fatty acid degradation. Currently, there is
no evidence that ACSL5 expression is involved in osteoporosis;
however, the presence of ACSL5 is obviously related to disorders
of glucose metabolism. High glucocorticoid concentrations
impair osteogenesis (Carcamo-Orive et al., 2010) and induce
the activation of osteoclast proliferation and differentiation
(Wongdee and Charoenphandhu, 2011). In addition, ACSL5may
also be an important mediator in apoptosis (Xia et al., 2016).
Further studies are needed to assess the potential roles of this
protein in the pathophysiological process of osteoporosis.

The lncRNA/mRNA regulatory networks were further
constructed using high connectivity hub genes in the WGCNA
co-expression network. Compared with nodes with low
connectivity, nodes with high connectivity play more important
roles in the entire transcription network and are more
likely to be upstream regulators. According to the above-
mentioned regulatory relationships of lncRNAs/mRNAs and

the significantly involved pathways, we further constructed a
network of pathways in which lncRNAs could regulate mRNAs
through co-expression and thereby play roles in these pathways.
Notably, metabolic pathways were significantly enriched in all
three functional gene modules. Bone formation is known to be
dependent on the supply of metabolites to monocytes in the bone
marrow (Bidwell et al., 2013). Additionally, the balance of bone
metabolism depends on the coordination of bone formation
and resorption, and this process requires information exchange
between different types of cells. For example, the lncRNA Bmncr
is a key regulator of age-related osteogenic niche alteration and
cell fate switch of BMSCs (Li et al., 2018). Moreover, the lncRNA
ODSM functions as a competing endogenous RNA in the
lncRNA ODSM/miR-139-3p/ELK1 pathway and has important
functions in osteoblast differentiation and apoptosis (Wang
et al., 2018). Further studies are needed to explore the molecular
mechanisms through which lncRNAs act as transcription
factors to regulate osteoporosis (Zhang et al., 2020). It is worth
noting that the above-mentioned molecular targets may be
indirectly related to the BMD phenotype. In the process of
establishing the aforementioned weighted lncRNA/mRNA co-
expression networks, there was no observed direct quantitative
relationship with the level of BMD. These genes aggregate
to form modules through co-expression relationships. They
have significant correlations and may participate in certain
biological processes together. Not all genes in these modules
are directly related to the level of BMD, which makes it
difficult for us to interpret the experimental results within the
context of BMD levels. Therefore, it is necessary to construct a
network relationship, find the hub genes, and conduct further
in vitro validations.

There were some limitations to this study. First, this study
was based purely on microarray datasets, and we did not obtain
any data directly from in vivo experiments. Thus, further studies
are needed to confirm the observed molecular mechanisms.
Second, when selecting the phenotype of osteoporosis, we used
BMD as the only indicator. Because phenotype identification
can directly influence patient grouping and is crucial to the
construction of gene networks, additional indicators (e.g., bone
geometric parameters, bone size, and compressive strength
index of the femoral neck) should be evaluated in further
studies in order to obtain a complete picture of osteoporosis.
Third, this study did not compare the obtained results in
female osteoporosis with male cases, because there are few
samples of male osteoporosis in the public database, and
the platforms are not the same. It is worth noting that the
above-mentioned biomarkers were all found in female database
samples; therefore, we may not be able to extrapolate these
conclusions to samples of male patients. Previous studies
have shown that miRNAs are gender-dependent as molecular
targets of BMD (Kelch et al., 2017). Finally, this study is
based on gene expression from blood monocytes. This is
far removed from therapeutic application in musculoskeletal
diseases. Further validation on bone samples should be done in
future research.

In conclusion, in this study, we identified differentially
expressed mRNAs and lncRNAs in existing microarray profile
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data. A WGCNA was constructed and yielded three significant
modules associated with differences in BMD. Enrichment
analysis indicated that the modules were primarily enriched in
metabolic pathways, such as glycerophospholipid metabolism,
lysine degradation, and glycerolipid metabolism. Several hub
genes, including JUN and ACSL5, were found and may represent
potential biomarkers or clinical targets for osteoporosis. In
addition, a comprehensive lncRNA/mRNA-pathway regulatory
network was built to elucidate the complex interactions
between the transcripts and non-coding RNAs. Our findings
provided a novel perspective on the regulatory mechanisms
of osteoporosis.
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