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Abstract

A goal of genomics is to understand the relationships between biological processes. Path-

ways contribute to functional interplay within biological processes through complex but

poorly understood interactions. However, limited functional references for global pathway

relationships exist. Pathways from databases such as KEGG and Reactome provide dis-

crete annotations of biological processes. Their relationships are currently either inferred

from gene set enrichment within specific experiments, or by simple overlap, linking pathway

annotations that have genes in common. Here, we provide a unifying interpretation of func-

tional interaction between pathways by systematically quantifying coexpression between

1,330 canonical pathways from the Molecular Signatures Database (MSigDB) to establish

the Pathway Coexpression Network (PCxN). We estimated the correlation between canoni-

cal pathways valid in a broad context using a curated collection of 3,207 microarrays from

72 normal human tissues. PCxN accounts for shared genes between annotations to esti-

mate significant correlations between pathways with related functions rather than with simi-

lar annotations. We demonstrate that PCxN provides novel insight into mechanisms of

complex diseases using an Alzheimer’s Disease (AD) case study. PCxN retrieved pathways

significantly correlated with an expert curated AD gene list. These pathways have known

associations with AD and were significantly enriched for genes independently associated

with AD. As a further step, we show how PCxN complements the results of gene set enrich-

ment methods by revealing relationships between enriched pathways, and by identifying

additional highly correlated pathways. PCxN revealed that correlated pathways from an AD

expression profiling study include functional clusters involved in cell adhesion and oxidative

stress. PCxN provides expanded connections to pathways from the extracellular matrix.

PCxN provides a powerful new framework for interrogation of global pathway relationships.

Comprehensive exploration of PCxN can be performed at http://pcxn.org/.
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Author summary

Genes do not function alone, but interact within pathways to carry out specific biological

processes. Pathways, in turn, interact at a higher level to affect major cellular activities

such as motility, growth and development. We present a pathway coexpression network

(PCxN) that systematically maps and quantifies these high-level interactions and estab-

lishes a unifying reference for pathway relationships. The method uses 3,207 human

microarrays from 72 normal human tissues and 1,330 of the most well established path-

way annotations to describe global relationships between pathways. PCxN accounts for

shared genes to estimate correlations between pathways with related functions rather than

with redundant pathway definitions. PCxN can be used to discover and explore pathways

correlated with a pathway of interest. We applied PCxN to identify key processes related

to Alzheimer’s disease (AD), interpreting a mixed genetic association and experimental

derived set of disease genes in the context of gene co-expression. We expand the known

relationships between pathways identified by gene set enrichment analysis in brain tissues

affected with AD. PCxN provides a high-level overview of pathway relationships. PCxN is

available as a webtool at http://pcxn.org/, and as a Bioconductor package at http://

bioconductor.org/packages/pcxn/.

Introduction

The advancement of high throughput, high dimensional ‘omic’ technology has enabled quanti-

fication of a vast array of cellular components. Inducing phenotypic changes, through muta-

tions or perturbations, and observing their impact on genomic, proteomic and metabolomic

assays has allowed us to assign roles to sets of genes and gene products [1–3]. We now appreci-

ate that cell states are controlled by cascades of interactions coordinated into protein com-

plexes and pathways [4–6]. Thus pathways have become the functional building blocks on

which we base interpretation of cell state. However, systems approaches to interpret the rela-

tionships between omic components have focused upon development of gene based interro-

gation through gene-gene networks. Pathways drive biological processes through complex and

poorly understood interactions, and only limited functional references for global pathway rela-

tionships exist. Mapping out pathway relationships is a fundamental challenge as we strive to

influence cell development and disease [7, 8].

Pathway analysis

The development of databases such as KEGG [9], Reactome [9, 10] and Biocarta [11] have pro-

vided curated lists of pathway membership. These gene lists enable systematic mapping of

genomic scale data to biological processes. Gene expression profiling provides the most com-

mon basis for describing experimental changes in pathway terms. Usually, differentially

expressed genes between a pair of conditions are used to highlight enriched pathways. Well

established methods such as GSEA [12], SAFE [13], PAGE [14] and GSA [14, 15] produce lists

of pathways that are significantly enriched in an individual experiment [16, 17]. A characteris-

tic of these approaches is that pathways are analyzed independently, the co-enrichment of

other pathways considered only insofar as necessitating multiple hypothesis testing. Significant

gene membership overlap exists between pathways; and similar but not identical names exist

for equivalent, but differently constituted, pathways in separate databases. Describing the rela-

tionships between pathways with redundant annotations from different sources might capture
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high-content similarity rather than truly related biological mechanisms [18, 19]. In hierarchi-

cal database structures such as GO [20], gene sets corresponding to one process may be fully

contained within subset of a parent process. The development of multi-set approaches such as

GenGO [21], Markov chain ontology analysis (MCOA) [22], model-based gene set analysis

(MGSA) [23], and Selection via LASSO Penalized Regression (SLPR) [24] allows joint testing

of pathways for enrichment. Multi-set methods alleviate problems relating to overlap and

redundancy, and multifunctional, or pleiotropic, genes that play roles in different biological

processes [25]. However, pathways are still treated as independent units without accounting

for, or determining, expression correlation arising from biological interaction. Co-enrichment

of pathways can either be a reflection of closely related functions or a consequence of overlap-

ping annotation. Pathways also operate in networks, and so pathway-pathway relationships

affect their constituent gene expression signatures.

Pathway networks

A natural extension to gene-centric analysis is to consider the interactions between biological

pathways, taking into account relationships between higher level systemic functions of the cell

and the organism [26, 27]. The key to existing approaches for mapping pathway relationships

has been recognition that genes and their products interact with each other, resulting in com-

binations of gene network relationships, annotation, functional or semantic classification over-

laps [28, 29], protein interactions, and gene and network enrichment [30–35].

Networks based on annotation

Several methods for connecting pathways rely solely on annotation, using gene overlap to

describe the relationships between gene sets. Methods such as Onto-Express [36] and BiNGO

[37] use Gene Ontology (GO) [20] as their only source of curated gene sets and identify par-

ent-child relationships of GO gene sets of interest via gene overlap. Since these methods were

developed specifically for GO annotations, their applicability is limited to functional annota-

tion within this hierarchical structure. More recent annotation-based methods such as the

Molecular Concepts Maps (MCM) [38], the Enrichment Map [39, 40] and the Constellation

Map [41] are not restricted to GO. These methods build networks in which the nodes are gene

sets and the edge weights are based on shared genes or an intra-experiment similarity score.

Networks based on curated interactions

Pathway interaction networks can also be defined using distance measures based on aggregat-

ing curated gene level connections, such as protein-protein interactions (PPIs) [30, 31, 42, 43]

or empirically, based on gene coexpression data [32]. Methods based on PPI such as the path-

way crosstalk network (PCN) [43] and the characteristic sub pathway network (CSPN) [42]

determine relationships between pathways based on the assumption that two pathways are

likely to interact if they share a significant number of PPIs. PCN identifies pathway relation-

ships based on the number of shared interactions from a background PPI network to build a

global network of pathway interactions [43]. CSPN identifies pathway interactions for a spe-

cific phenotype by counting the number of active PPIs defined from differentially expressed

genes and a curated PPI background network [42]. Methods based on PPIs have important

limitations; when two pathways share only a few PPIs between them but are still significantly

related by other interactions, their functional relationship may be missed by the PPI approach.

Moreover, these methods rely heavily on the background network structure, whose compre-

hensiveness, accuracy and importantly, context, bias the results. Issues with PPIs can be allevi-

ated by integrating additional sources of curated relationships. Network Enrichment Analysis
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(NEA) [30] and CrossTalkZ [31] use a background gene network that complements PPIs with

GO annotations and a network of functional coupling [34] to relate pathways based on the

extent of their connectivity.

Networks based on gene expression

Systems approaches to interpret the relationships between differentially expressed genes have

focused upon development of gene coexpression networks, where these genes are related to

each other by known coexpression in extensive large scale assays [44, 45]. These methods have

been adapted to quantify pathway correlations. For instance, the gene-set coexpression level

(GSCoL) method establishes pathway interactions based on sparse canonical correlation analy-

sis of fold change levels derived from gene expression data [32, 34]. The Constellation Map

provides an enhanced visualization of GSEA results, by defining a distance between pathway

pairs. This distance is based on the per-sample similarity of their enrichments across the exper-

imental data. The similarity is based on normalized mutual information rather than the corre-

lation coefficient to capture nonlinear associations. A limiting issue in these methods is that

results are unique to the combination of samples compared, restricting conclusions to a spe-

cific context, usually a single experiment. Also, experimental and platform biases can drown

out changes in biological signal [46, 47] and complicate cross experiment comparison. Thus

far, only limited pathway networks have been constructed and existing approaches are not

designed for creating a global reference network that can be used for discovery and mining of

pathway relationships. Public omics data archives such as the Gene Expression Omnibus

(GEO) [48] and ArrayExpress [49] contain genome-wide gene expression data from a growing

number of experiments [50]. These large collections of microarray data allow meta analyses on

gene expression that extend the use of thousands of data sets beyond their initial experimental

design [51–53]. Harnessing the scope of these repositories is increasingly being realised as a

powerful tool for identifying universal genomic features [54–56].

The Pathway Coexpression Network

In this work, we address the need for a consistent functional map of pathway interactions. A

reference network of global relationships between pathways serves two purposes: it allows

deeper exploration of basic cell biology, and serves as a tool to discover novel mechanisms and

targets in disease while building testable models of pathway interaction. Our aim has been to

create a network that delineates the global relationships between canonical pathways in as

broad a context as possible. To achieve this goal, we have developed the Pathway Coexpression

Network (PCxN). For each experiment from a curated collection of normal human tissue

microarrays [54] from publicly available experiments in GEO, we estimated the correlation

between pathway summaries based on the mean expression ranks of their gene members

along with the corresponding p-value. In the presence of shared genes between the pathway

annotations, we adjusted the correlation using the mean expression ranks of the shared genes.

Finally, we combined the experiment-level correlation estimates and their corresponding p-

values to determine which correlations were significant across all experiments. PCxN signifi-

cantly expands the scope of pathway methods by estimating global relationships between a

wide range of curated pathway annotations, based on coexpression across an expansive gene

expression collection. The growing number of available pathway annotations from different

sources extends their coverage of biological processes. However, as pathway collections get

larger and more complex, the redundancy between the contents of the pathway annotations

increases. Pathway coexpression based relationships are often dominated by shared genes.

The Pathway Coexpression Network
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Thus, we have taken into account the shared genes between pathways so the pathway relation-

ships reflect actual related functions rather than similarities in annotations.

Here we report how PCxN effectively captures intra-pathway relationships within known

pathways such as the ribosome pathway. Then, we show how PCxN finds pathways associated

with a complex disease: Alzheimer’s disease (AD). PCxN determines well known pathways

related to AD, including those that influence amyloid pathology and innate immune response.

Finally, we show how use of PCxN can complement and expand the results of gene set enrich-

ment analysis within an AD gene expression profiling study. PCxN helps to interpret the

results by describing the relationships between the enriched pathways, and provides the oppor-

tunity to discover novel relationships by revealing pathways which are highly correlated with

the enrichment results. PCxN addresses the need to describe relationships between pathways

present across diverse tissues and conditions. These relationships provide a pathway interac-

tion model for a biologically driven phenotype, provide a reference to prioritize targets of

biological processes, and provide a powerful enhancement for interpretation of results

from gene set enrichment methods. We have built a comprehensive web tool for PCxN to

explore novel relationships and to aid with the interpretation of results from gene set enrich-

ment methods (http://pcxn.org/). In addition, PCxN is available as a Bioconductor package

(http://bioconductor.org/packages/pcxn/).

Results

PCxN overview

PCxN is a weighted undirected network in which the nodes represent pathways and the edges

are based on the correlation between the expression of the pathways. We built PCxN using

1,330 pathways from the Molecular Signatures Database (MSigDB v.5.1) [57] and 3,207

human microarrays from 72 normal human tissues from GEO curated in Barcode 3.0 [48, 54,

57]. The network was created by first ranking normalized gene expression levels to provide a

uniform scale for all samples, an approach similar to the Pathprint method [56]. Ranks provide

robust summary statistics to calculate expression scores that do not depend on the dynamic

range of an array [58, 59]. Pathways were assigned an expression summary in each array based

on the mean rank of its constituent genes. Since our gene expression background is composed

of several experiments representing different tissues, for each pair of canonical pathways we

estimated the correlation between their expression summaries and tested for significance in

every experiment. Then we combined the experiment-level estimates into global estimates.

Two pathways are connected in the coexpression network if the correlation coefficient

between them is significant after adjusting for multiple comparison. Our goal is to describe the

relationships between canonical pathways when their functions are related, rather than when

their annotations have similar content. The pathway correlations in the network were adjusted

to account for the shared genes between pathway pairs. If a pathway pair shares genes, we esti-

mate the correlation between the pathway summaries conditioned on the summary for the

shared genes (Fig 1).

Significant correlations within the ribosome pathway. To determine how effectively

PCxN captures tightly related biological functions we analysed the ribosome pathway (KEGG

accession hsa03010). The KEGG Ribosome pathway is a gene set that represents a well charac-

terized, meaningful and ubiquitous biological function [60–63]. We compared the pathway

correlation coefficients and the corresponding p-values estimates from permuted gene sets

generated from within the ribosome pathway with estimates from random gene sets. Since our

method accounts for the contribution of shared genes to estimate the pathway correlation, we

considered cases where the gene sets shared no genes, and cases with different degrees of gene
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Fig 1. Pathway Coexpression Network (PCxN) overview. (1) Human gene expression arrays for normal human tissues curated from GEO in Barcode

3.0 (2) The gene expression levels were replaced by their ranks so all arrays share a common scale. (3) For each microarray experiment, we first

estimated the pathway expression based on the mean of the expression ranks, then the pathway correlation adjusted for shared genes, and tested the

significance of the correlation. (4) We aggregated the experiment-level estimates to get the global pathway correlation and its corresponding

significance. (5) We built a pathway coexpression network based on the significant pathway correlations.

https://doi.org/10.1371/journal.pcbi.1006042.g001
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overlap. In the no overlap case, we created ribosome gene sets by permuting the genes in the

ribosome pathway (126 genes) and splitting them into two separate gene sets. The correspond-

ing random gene sets were created by sampling 126 genes at random and splitting them into

two. For the overlap cases, the gene sets were split into two gene sets sharing genes. We used

the overlap coefficient to describe the overlap between gene sets represented as pathways. The

overlap coefficient between two sets is the size of the intersection divided by the size of the

smaller of the two sets. Unlike other measures of set overlap, the overlap coefficient between

two sets is always 1 whenever one of the sets is a subset of the other, and always 0 whenever the

two sets are disjoint. A key feature of PCxN is to estimate the correlation between gene sets

taking into account their shared genes, so we decided to use the overlap coefficient to describe

the degree of overlap between the pathway annotations. We considered 9 different overlap

cases, ranging from low overlap (overlap coefficient oAB = 0.0469) to high overlap (overlap

coefficient oAB = 0.8532).

The correlation estimates from the ribosome gene sets are positive while the estimates for

the random gene sets are smaller in magnitude and closer to zero (Fig 2A). Under the assump-

tion that a significant p-value for ribosome gene sets is a true positive while a significant p-

value for random gene sets is a false positive, we assessed the ability of our method to identify

truly significant correlation coefficients. All the p-values from the ribosome gene sets were sig-

nificant, while most of the p-values for the random gene sets were not significant. This trend is

evident in the receiver operating characteristic (ROC) curves for the no overlap and overlap

cases (Fig 2A).

Accounting for gene overlap

Pathway annotations from different sources present challenges when relating pathways: equiv-

alent pathways with different annotations have similar but not identical names, annotations

exist for equivalent but differently constituted pathways in separate databases, and pathways

with completely different names share genes [18, 19]. The MSigDB canonical pathways collec-

tion is a curated selection of pathway annotations from other databases: Reactome [64], KEGG

[65], the Pathway Interaction Database (PID) [66], Biocarta [11], and the Matrisome Project

[67].

PCxN and redundant pathways. An example of pathway annotation redundancy within

MSigDB includes annotations from Reactome and KEGG for both the Cell Cycle and the DNA
Replication pathways (Fig 2B). These pathways share genes between each other because they

represent the same processes, and DNA replication is a function related to the cell cycle. In the

Reactome annotations, the DNA Replication pathway is a subset of the Cell Cycle pathway. The

pathway correlation is significant and positive for these pathways. In other cases, there is more

than one annotation for the same pathway. MSigDB has annotations from KEGG, Biocarta,

Reactome and the Pathway Interaction Database (PID) for theWnt signaling pathway. These

annotations share genes among each other. Unlike the previous example, the correlation esti-

mates between the Wnt signaling pathways have a small magnitude and most of them are not

significant (Fig 2C). Our motivation to account for shared genes between pathways is to assign

significant correlation coefficients between pathways representing related functions and non-

significant correlation coefficients for pathways with redundant annotations representing the

same function.

Impact of gene overlap. In order to understand the trade-offs resulting from discarding

shared genes in estimating the correlation in PCxN, we compared significantly correlated

pathways with pathways where the amount of shared genes is significant according to Fisher’s

exact test. We decided to use Fisher’s exact test because this test has been widely used to
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describe relationships between gene sets based on shared genes in methods such as POSOC

[68], Ontologizer [69], GOstats [70]. Furthermore, the Molecular Concepts Map (MCM) [71]

uses Fisher’s exact test as similarity score between gene sets to build networks for gene sets. Of

all canonical pathway pairs, 19% have only significant correlation coefficients, 52% have only

significant overlaps and 29% have both (Fig 2D).

PCxN has an advantage over overlap based approaches when we consider pathways with

related functions but without shared genes. For example considering the Reactome pathways,

theMitotic Prometaphase pathway describes a function related to the cell cycle, is significantly

Fig 2. Significant correlations between the ribosome pathway and impact of gene overlap. (A) Boxplots of the correlation estimates between the

Ribosome gene sets and random gene sets, and receiver operating characteristic (ROC) curves with the corresponding area under the curve (AUC)

values in parenthesis under different degrees of overlap: no overlap, low overlap (overlap coefficient 0.0469, AUC = 1), medium overlap (overlap

coefficient 0.5517, AUC = 0.9915) and high overlap (overlap coefficient 0.8532, AUC = 0.9528). The shape of the node in the following networks

corresponds to the pathway database. For coexpression networks, the edge color indicates the value of the correlation and edge width is proportional to

the correlation magnitude. For the overlap networks, the edge width is proportional to the overlap coefficient. (B) Pathway coexpression and overlap

network for the KEGG and Reactome annotations of the Cell Cycle andDNA Replication pathways. These pathways have related functions and share

genes between them. (C) Pathway coexpression network and overlap network for different versions of theWnt Signaling pathway. In the coexpression

network, missing edges correspond to correlations that are not significant. These pathway annotations are redundant and represent the same function

(D) The stacked bar plot shows the number of pathways pairs with only significant correlations in red, with only significant overlaps in yellow, and with

both in orange. The boxplots show the distribution of the correlation coefficients with pathway pairs with only significant correlations (red) and with

both significant overlaps and significant correlations (orange). (E) Pathway coexpression network for the Reactome pathways related to the mitotic

metaphase of the cell cycle with significant correlations but no shared genes. (F) Overlap network for Reactome pathways related to the mitotic cell

cycle with significant overlaps but no significant correlations. (G) Pathway coexpression network and overlap network for cell cycle phases and related

processes from Reactome with both significant correlations and significant overlaps.

https://doi.org/10.1371/journal.pcbi.1006042.g002
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correlated with other Reactome pathways involved in cell cycle, but does not have genes in

common with them (Fig 2E). On the other hand, the correlation from PCxN is not significant

between pathways with a very high gene overlap even though these pathways might represent

closely related functions. For instance, pathway annotations from Reactome representing dif-

ferent aspects of the mitotic cell cycle as well as other closely related cell cycle processes have a

significant gene overlap with the general Cell Cycle Mitotic pathway but are not significantly

correlated (Fig 2F). However, some pathways with related functions have both significant cor-

relations and significant overlaps. For instance, we identified Reactome pathways for mitotic

cell cycle phases and related processes that are significantly correlated and have significant

overlap among them (Fig 2G). The APC/CCDC20Mediated Degradation of Mitotic Proteins
pathway is both significantly correlated and has significant overlaps with the Synthesis of DNA,

S Phase,M/G1 Transition and G1/S Transition pathways. The ubiquitin ligase anaphase-

promoting complex or cyclosome (APC/C) initiates chromatid separation and entrance into

anaphase [72], and the cell-division cycle protein 20 (CDC20) is an essential regulator of cell

division that activates APC/C [73, 74]. The E2FMediated Regulation of DNA Replication path-

way is significantly correlated and has a significant overlap with theMitotic Prometaphase
pathway which in turn is significantly correlated and has a significant overlap with the G1/S
Transition pathway. The E2F family of transcription factors play a major role during the G1/S

transition in mammalian and plant cell cycle [75].

Case study: Alzheimer’s disease (AD)

With the goal of determining the value of our approach in understanding pathway relation-

ships in complex disease, we chose an important disease for which there is abundant transcrip-

tomic data, established genetic associations, and the need for better understanding of the roles

of pathways and their relationships is fundamental to the prioritisation of drugs and drug tar-

gets. AD is a progressive multifarious neurodegenerative disorder [76, 77] and the most com-

mon type of dementia. AD is one of the great health-care challenges of the 21st century [78].

Pathologically it is characterized by intracellular neurofibrillary tangles and extracellular amy-

loidal protein deposits contributing to senile plaques [76]. While the neuropathological fea-

tures of AD are recognized, little is known about the causes of the disease and no curative

treatments are available [76, 78]. We chose this disease to illustrate how the PCxN can reveal

important or even novel functional relationships underlying a complex pathological pheno-

type. We performed a series of additional analyses that bring together genes that have been

identified by totally independent assays: genetic and transcriptomic surveys associated with

AD.

We used genes within an AD curated list (ADCL) as the disease gene signature. The ADCL

is a set of association-derived and experimental-derived genes related to AD. Consisting of 68

genes of which 61 genes were present in the PCxN gene expression background (S4 Table).

The ADCL is the result of expert assessment of the current understanding of AD from a com-

bination of key genes from genome-wide association studies and from functional analyses. We

integrated the ADCL to PCxN first by estimating all the pairwise correlations between the

summary for its constituent genes and the summaries for the canonical pathways adjusted for

overlap across each experiment in the gene expression background along with the correspond-

ing p-values. Then, we aggregated the experiment level correlation estimates and combined

the p-values. Finally, we adjusted the combined p-values from the correlations with the ADCL

with the rest of the combined p-values from the correlations between the canonical pathways

for multiple comparison using FDR. PCxN allowed us to identify canonical pathways signifi-

cantly correlated with the curated AD gene list. The top 10 correlated pathways (Fig 3A) are all
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known to be related to Alzheimer’s disease or amyloid pathology [79–87] and the majority of

the top 25 correlated pathways (S5 Table) are related to immune responses. The top correlated

pathway to ADCL, GPVIMediated Activation Cascade, is associated with regulation of Amy-

loid beta (Aβ). GPVI and FCER1 initiate platelet activation that leads to activation of Syk. Syk

enhances the formation of stress granules that are prevalent in AD affected brains. The stress

granules produce reactive oxygen and nitrogen species that are toxic to neuronal cells. Down-

regulation of Syk expression reduces Aβ production and increases the clearance of Aβ across

the blood-brain barrier [79]. Since PCxN does not rely on shared genes, PCxN uncovers rela-

tionships that would have been missed by methods that rely only on gene overlap to describe

the relationships between pathways. All of the top ten correlated pathways (Fig 3B) have no

genes in common with the ADCL (S5 Table).

To explore novel insights resulting from the use of PCxN, and as a complement to enrich-

ment methods based on gene overlap, we compared the top ADCL correlated pathways with

pathways significantly enriched for genes in the ADCL. First, we ordered all pathways

Fig 3. Canonical pathways correlated with the Alzheimer’s disease curated list. The ADCL is colored in blue. Neighbors without genes in common

with the ADCL are highlighted in green. The shape of the node corresponds to the pathway database. For the coexpression network, the edge color

indicates the value of the correlation and the edge width is proportional to the correlation magnitude. For the overlap network, the edge width is

proportional to the overlap coefficient. (A) Pathway coexpression network for the top pathways correlated with the ADCL (by correlation magnitude).

All correlated pathways have established associations with AD: GPVIMediated Activation Cascade [79], IL-3, 5 and GM-CSF signalling [80], Antigen
Processing Cross Presentation [81], PDGFRBPathway [83], Toll Pathway [84], Regulation of Signaling by CBL [82], Toll-like Receptor Signaling [85],

Activation of IRF3/IRF7Mediated by TBK1/IKK Epsilon [85], Cell Surface Interactions at the Vascular Wall [86], FCER1 Pathway [87]. (B) Shared genes

(overlap coefficient) between the top pathways correlated with the ADCL. (C) Correlation magnitude of all canonical pathways correlated with the

ADCL sorted by the magnitude of their correlation and split in bins of increasing size. (D) Proportion of canonical pathways enriched for the genes

within the ADCL (p< 0.001, adjusted with FDR) present in the canonical pathways correlated with the ADCL (E) Proportion of canonical pathways

enriched for genes associated with AD from the Genetic Association Database present in the pathways correlated with the ADCL (p< 0.001, adjusted

with FDR). The red line indicates the proportion of all 1,330 canonical pathways enriched for genes within the ADCL.

https://doi.org/10.1371/journal.pcbi.1006042.g003

The Pathway Coexpression Network

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006042 March 19, 2018 10 / 28

https://doi.org/10.1371/journal.pcbi.1006042.g003
https://doi.org/10.1371/journal.pcbi.1006042


correlated with the ADCL (S5 Table) by the magnitude of their correlation and split the path-

ways into bins of increasing size (Fig 3C). We began with a bin including the 10 most corre-

lated pathways. Every following bin includes 10 additional correlated pathways, so the last bin

contains all pathways correlated with the ADCL. For each bin, we calculated the proportion of

pathways significantly enriched for the ADCL. As we move across bins, the proportion of

ADCL enriched pathways increases (Fig 3D). Furthermore, none of the top 30 correlated path-

ways was enriched for genes in the ADCL.

Enrichment for AD associated genes in ADCL correlated pathways. To assess the valid-

ity of the ADCL correlation results, we tested the enrichment of genes associated with AD in

pathways correlated with the ADCL using independent methods [88, 89]. We assessed rela-

tionships using genetic association by retrieving genes inferred to be associated with AD from

the Genetic Association Database (updated August 18, 2014). The Genetic Association Data-

base (GAD) is a comprehensive archive of published genetic association studies that provides a

repository of genetic association by data aggregation from genome-wide association and other

genetic association studies [88]. We retrieved 668 genes associated with Alzheimer’s disease of

which 534 are present in the gene expression data from GEO (S6 Table). We used Fisher’s

exact test to determine which of the canonical pathways in PCxN correlated with the ADCL

are significantly enriched for genes associated with Alzheimer’s. The ADCL has 14 genes in

common with genes associated with Alzheimer’s in GAD, and the overlap is highly significant

(p = 7.34 × 10−9).

Of the top 10 pathways correlated with the ADCL, 6 out of 10 were significantly enriched

with genes related to Alzheimer’s found by genetic association. We sorted the ADCL neighbors

by the magnitude of their correlation with the ADCL and split them into bins of increasing

size (Fig 3C). As we move across the bins, the proportion of pathways significantly enriched

for genes related to Alzheimer’s in the neighbors of the Alzheimer’s curated list was higher

compared to all of canonical pathways; out of 1330 canonical pathways, 403 (30%) were

significantly enriched after adjusting for multiple comparison using FDR and p-value cut-off

of 0.001 (S7 Table, Fig 3E). The enrichment results demonstrate a significant link between the

correlation of pathways with curated AD genes and genes found independently by genetic

association with Alzheimer’s.

Complement to GSEA: Revealing relationships between enriched pathways

PCxN can be used effectively to determine relationships between pathways as a complement to

interpret gene set enrichment (GSE) methods. A typical GSE result is a list of gene sets that are

significantly enriched by a list of query genes. PCxN can describe the relationships between

the enriched gene sets using the global pathway correlation estimates. To explore correlation

between gene sets enriched with a set of query genes, we used Gene Set Enrichment Analysis

(GSEA) [12] to find pathways from the MSigDB canonical pathways collection enriched for

genes differentially expressed in an AD expression dataset (GSE5281) consisting of genes

expressed in post mortem samples of AD in the superior frontal gyrus (S8 Table). The expres-

sion data set consisted of 34 superior frontal gyrus samples: 11 controls (clinically and histo-

pathologically normal aged human brains) and 23 affected with AD [90] (S9 Table).

We chose to examine the functional relationships among the top ten enriched pathways

identified by GSEA. Functionally, they all appear to be consistently associated with the AD lit-

erature (e.g. the PS1 Pathway role in AD [91]). We retrieved significant correlations between

the enriched pathways to explore their functional relationships as revealed by PCxN (Fig 4A).

To explore the most closely functionally related pathways, we clustered the enriched pathways

based on their correlations (Fig 4B). The cluster containing the highest correlations consists of

The Pathway Coexpression Network

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006042 March 19, 2018 11 / 28

https://doi.org/10.1371/journal.pcbi.1006042


pathways involved in cell adhesion and oxidative stress response (Focal Adhesion, A Tetrasac-
charide Linker Sequence is Required for GAG Synthesis, Angiopoietin Receptor and SMAD2/3
Nuclear Pathway (S10 Table)). These pathways shared reported functions. Focal adhesions

have been implicated in regulating Aβ signalling and cell death in AD [92]. As part of cell

adherence to the extracellular matrix (ECM), integrins are activated and the focal adhesion

pathway is activated. The ECM/integrin/focal adhesion pathway is involved in the regulation

of anchorage-dependent cell survival. Cell adhesion to ECM and overexpressing FAK (focal

adhesion kinase), member of Focal Adhesion Pathway, is protective against oxidative stress,

which has been observed in AD brains [93]. FAK also has the ability to regulate several other

Fig 4. Pathway coexpression for GSEA enriched canonical pathways. GSEA enriched pathways are colored in blue, correlated pathways are yellow.

The shape of the node corresponds to the pathway database, the edge color indicates the value of the correlation and the edge width is proportional to

the correlation magnitude. (A) Pathway coexpression network for the top 10 GSEA enriched canonical pathways. (B) Hierarchical clustering using

average linkage and 1 − |PathCor| as the distance between the top 10 GSEA enriched canonical pathways. (C) Pathway coexpression network for the

GSEA enriched pathways and their top 10 correlated pathways (by |PathCor|). (D) Hierarchical clustering using average linkage and 1 − |PathCor| as

the distance between the top 10 GSEA enriched canonical pathways and their top 10 correlated pathways.

https://doi.org/10.1371/journal.pcbi.1006042.g004
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cell-death or survival pathways [92]. Members of A Tetrasaccharide Linker Sequence is
Required for GAG Synthesis are also involved in cell adhesion, which plays an important role in

cell death/survival. Members of this pathway include neurocan and brevican, whose expression

is mostly restricted to neuronal tissues [94]. Loss of brevican is associated with loss of synapses

[95], while Aβ has been shown to increase neurocan expression in astrocytes [96]. In addition

to adhesion molecules, angiopoietins (members of the clustered Angiopoietin Receptor Path-
way) share function as they are activated in response to oxidative stress. Elevated Angiopoie-

tin-1 serum levels can be observed in patients with AD [97]. The closely clustered SMAD2/3
Nuclear Pathway contains SMAD3 which regulates expression of angiogenic molecules in

tumor cells and vascularization in tumor lesions [98]. SMADs transduce extracellular signals

from Transforming Growth Factor β (TGFβ) to the nucleus [99]. SMAD3, one of the key

members of the SMAD2/3 nuclear pathway, is down regulated in AD [100], while TGFβ is

upregulated. The imbalance between SMAD3 and TGFAβ signalling, shifts the regulatory sig-

nalling towards a dysregulated inflammatory activation potentially leading to neurodegenera-

tive changes, such as decreased Aβ clearing [100].

The other top ten pathways identified in this GSEA have also been associated with AD and

some show documented functional relationships. PS1 is well known as a common cause of

familial AD [101]. Dorso-ventral Axis Formation has been suggested as one of the pathways

regulated by miRNAs identified in a bioinformatics study of Drosophila AD models [102].

Notch is coexpressed with PS1 and altered in AD affected brains [103], YAP1 and WWTR1/

TAZ mediate gene transcription induced by the Aβ protein precursor and its paralogues [104].

Finally, increased levels of hyperphosphorylated RB protein have been observed in AD [105]

indicating that neurons in AD attempt to re-enter the cell cycle [106].

Complement to GSEA: Expanded enriched gene sets

In addition to providing relationships between the GSEA results, PCxN can provide poten-

tially novel relationships by retrieving canonical pathways significantly correlated with the

pathways identified as enriched. We retrieved the top 10 canonical pathways which were the

most correlated with the AD GSEA enriched gene sets, and clustered the correlated pathways

along with the results from GSEA (Fig 4C–4D). Most of the top correlated neighbors are com-

ponents of extracellular matrix (ECM) and form a highly-correlated cluster (Fig 4D) with the

top correlated GSEA pathways. The ECM components revealed by PCxN have been highly

studied in relation to Alzheimer’s [95, 107–110]. The ECM changes significantly during the

early stages of AD [111], but only a limited number of individual ECM components have been

studied so far [112].

Exploring PCxN

We created a user-friendly webtool (http://pcxn.org) that can be used to interactively explore

and visualise pathway relationships found in PCxN. The tool allows a user to query the various

pathway databases using one or more pathways and retrieve correlation estimates, p-values

and overlap coefficients. Since the correlations adjusted for shared genes are a complementary

perspective to relationships based on gene overlap, the webtool also provides the option to

view coexpression networks based on correlation coefficients not adjusted for shared genes in

addition to the PCxN coexpression network that is based on the adjusted correlation. The

results are presented through heatmaps (which also offer clustering of pathways), interactive

networks (with multiple pre-made structures) and data tables. Pathway members are also

retrievable along with their descriptions. In addition, PCxN is available as Bioconductor soft-

ware (http://bioconductor.org/packages/pcxn/) and data (http://bioconductor.org/packages/
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pcxnData/) packages which contain the same exploratory/visualization functionality and data

as the webtool.

Discussion

We have developed and described PCxN, a coexpression method to describe global relation-

ships between pathways. PCxN estimates the correlation between 1,330 canonical pathways

using a curated collection of 3,207 microarrays in 134 experiments from 72 normal human tis-

sues. We integrated a wide range of experiments by estimating the correlation between sum-

maries of the pathway expression, testing their significance in every experiment, and then

aggregating the experiment-level estimates into global estimates. We used gene sets derived

from permutations of the Ribosome pathway (KEGG) and random gene sets to show that

PCxN effectively captures relationships between gene sets with related functions while discard-

ing relationships from random gene sets. The correlation estimates between the ribosome

gene set were positive and significant, while the correlation estimates for random gene sets

were not significant and with a magnitude close to zero. These results suggest that the correla-

tion between two pathways with related functions is significant.

The influence of redundant annotations across pathways databases is often overlooked.

Pathway databases often include pathways that share genes with one another to varying

degrees. Shared genes between pathways can either be a consequence of closely related func-

tions or redundant annotation from different sources. Ignoring such redundancies during

pathway analysis can lead to identifying pathways relationships due to high content-similarity,

rather than truly related biological mechanisms. PCxN adjusts the correlation between path-

ways by conditioning on the shared genes. The correlations between redundant annotations

for theWnt signaling pathway had a small magnitude and were mostly not significant. When

pathways share genes due to related functions, the correlations between them might be signifi-

cant depending on the degree of the overlap. For instance, we found pathways for mitotic cell

cycle and related processes that were significantly correlated and had significant overlaps

between them. The significant correlations and significant overlaps between these pathways

revealed known relationships between ADC/C, CDC20 and the E2F family of transcription

factors with the mitotic cell cycle. However, the correlations between a different set of path-

ways representing other aspects of the mitotic cell cycle, such as theMitotic Cell Cycle and the

G1 Phase pathways and related processes, such as the Recruitment of Mitotic Centromere Pro-
teins and Complexes, were not significant while the overlap was highly significant. PCxN was

successful in uncovering relationships between theMitotic Prometaphase pathway and other

cell cycle related pathways such as the G2/M Checkpoints and the S Phase that do not have

genes in common.

PCxN provides powerful means to generate models for complex diseases by providing path-

ways significantly correlated with an assay-independent disease gene signature. We used

PCxN to identify key processes related to Alzheimer’s disease (AD) using an AD curated list

(ADCL). The top pathways correlated with the ADCL have known relationships with AD or

amyloid pathology. Furthermore, the correlated pathways were significantly enriched for

genes associated with AD independently derived from genome wide association studies. These

results show the value of PCxN in finding biological processes associated with complex dis-

eases using gene signatures. PCxN provides a powerful contribution to the interpretation of

the gene set enrichment methods by describing the relationships between enriched pathways

independent of gene overlap. We used PCxN to describe the relationships between pathways

identified as enriched by GSEA in a published microarray gene expression experiment profil-

ing the effect of AD in the superior frontal gyrus. We expanded the scope of gene set
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enrichment results by retrieving pathways correlated with the enriched pathways. The top

pathways correlated with the enriched pathways are components of extracellular matrix

(ECM) and form a highly correlated cluster. We note that the ECM undergoes significant

changes during the early stages of AD, but only a few ECM components have been studied.

The relationships between the ECM pathways from PCxN could provide leads to future studies

of the individual ECM components.

PCxN relies on the completeness and correctness of pathway annotations to relate biologi-

cal processes. Also, PCxN only considers a pathway as a gene list, omitting any knowledge of

the interaction between its members. PCxN is also limited by the gene expression data used to

estimate the correlations. The current implementation only uses one microarray platform and

a curated expression background. It is widely accepted that pathway activation is phenotype

dependent. Using the PCxN approach it will be possible to explore whether pathway-pathway

relationships change in relationship to a phenotype, or if consistent functional links prevail

irrespective of cell state. Further work is required to investigate how network topology changes

with expression background, and in particular into whether pathway networks are significantly

disrupted in disease. This implementation of PCxN does not take advantage of the growing

number of publicly available RNA-seq data. In future, the method will be expanded to include

a wider range of pathway annotations and to use gene expression data from other platforms

such as RNA-seq.

PCxN establishes the utility of describing relationships between pathways in a broad con-

text. By using a diverse set of gene expression experiments, PCxN leverages correlation esti-

mates across various human tissues effectively capturing relationships regardless of shared

genes. We expect that PCxN can serve as a basis for a high-level map of the relationships

between biological process. We built an interactive web-tool that provides a user-friendly por-

tal to explore the PCxN at http://pcxn.org/, as well as a Bioconductor software (http://

bioconductor.org/packages/pcxn/) and data (http://bioconductor.org/packages/pcxnData/)

package.

Materials and methods

Data collection

Gene expression data retrieval. We used 134 experiments with 3,207 Affymetrix Human

Genome U133 Plus 2.0 microarrays from 72 normal human tissues manually curated in Bar-

code 3.0 [54] (S1 Table). The curated microarrays in Barcode 3.0 were filtered to exclude poor

quality samples [54, 113]. We used the R package GEOquery [114] to retrieve raw CEL files

from the Gene Expression Omnibus (GEO) [55]. We processed the raw data with fRMA [115].

We obtained the annotation for the array platform from [116]. To resolve redundancies, multi-

ple probes were mapped to unique Entrez Gene IDs by their mean expression level.

Pathway annotations. We retrieved the C2: Canonical Pathways collection from MSigDB

[12] (v5.1 updated January 2016). The collection is a curated selection of pathway annotations

from other databases: Reactome [64], KEGG [65], the Pathway Interaction Database (PID)

[66], Biocarta [11], and the Matrisome Project [67] (S2 Table).

Experiment-level estimates

Since the microarrays from the gene expression background belong to different experiments

representing different tissues, pooling the microarrays to estimate the correlation between

pathways would ignore the underlying structure of the data. Even if the correlations are homo-

geneous, pooling the data is not a valid procedure in general. The pooled estimates may be

severely biased due to the heterogeneity of the experiments [117, 118]. Instead of pooled
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estimates, we first estimated the pathway correlation coefficients and their corresponding p-

values for each experiment, and then we combined the experiment-level estimates into global

estimates.

Pathway expression

We represent an experiment with L samples as the K × Lmatrix X where K is the total number

of genes in the array. Thus, the element xkl of the matrix X corresponds to the expression for

gene k in array l. For each array, the genes were ranked by their expression level. Rank normal-

izations do not depend on the dynamic range of an array and provide a common range. We

represent the expression ranks as the K × Lmatrix S, where L is the total number of arrays and

K is the total number of genes in the array. Since within each array the genes are ranked by

expression level, from 1 (low expression) to K (high expression), the entries of the matrix S are

Skl ¼ rank
1�l�L
ðxklÞ

where xkl is the expression level for gene k in array l.
In this approach pathways are represented as gene sets: groups of functionally related genes.

Thus, a pathway is represented by its gene set annotation G = {g1, . . ., gn}. The pathway expres-

sion E is a gene set summary statistic based on the expression ranks of the pathway genes; the

pathway expression E is the mean of the expression ranks of the pathway genes. Consider an

experiment with L samples, the experiment-level summary for pathway G is given by the L × 1

vector E with entries

El ¼
1

n

X

g2G

Sgl

To calculate E, first we take the rows from S corresponding to the genes {g1, . . ., gn} to get the

matrix of ranks of the pathway constituent genes, and then we take the mean across the col-

umns of this matrix, producing the L × 1 vector E.

Compared to other summary statistics, the mean is fast to compute and easy to interpret.

We considered several approaches for the pathway summary statistic, but we found that in

most cases the mean performed well. For instance, we considered a summary based on princi-

pal components analysis (PCA) but the variance explained by the first principal component

was less than 50% for all canonical pathways in the majority of the gene expression experi-

ments from the curated collection of normal human tissues (S1 Text).

Pathway correlation

Shrinkage estimator. We used a shrinkage estimator to compute the experiment-level

pathway correlation coefficients. In our setting, a shrinkage estimator will give more reliable

experiment-level correlation estimates for experiments with few samples and will set correla-

tion coefficients with a small magnitude to 0 [119]. The shrinkage estimator R� is a linear com-

bination of the standard correlation estimator R and a restricted submodel of the correlation

matrix

R� ¼ lT þ ð1 � lÞR

where 0� λ� 1, R is the empirical correlation matrix and T is identity matrix.

The restricted submodel T assumes that all of the variables are uncorrelated. The optimal λ
is found by minimizing the mean squared error L(λ) between the shrinkage estimator R� and
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the true correlation matrix P.

LðlÞ ¼ kR� � Pk2

F ¼ klT � ð1 � lÞR � Pk2

F ¼
Xp

i¼1

Xp

j¼1

ðltij þ ð1 � lÞrij � rijÞ
2

The analytical solution λ� for the optimal λ [120]

l
�
¼ argmin

l

LðlÞ

is guaranteed to exist and minimize the mean squared error L(λ). The solution [119] is given

by

l
�
¼

P
k6¼l VarðrklÞ
P

k6¼l r2
kl

Gene overlap. Since genes can be involved in more than one biological process and often

pathways share genes, we accounted for the gene overlap between pathways to determine the

coexpression between two pathways. Our goal is to describe relationships between patwhays

representing related functions rather than pathways with similar annotations. For pathway i
with gene set Gi and pathway j with gene set Gj there are two possible cases for shared genes:

the gene sets overlap or do not overlap.

Non-overlapping gene sets. First we calculated the expression summary Ei and Ej for

pathways i and j respectively. Then, we estimated the pathway correlation as the Spearman cor-

relation between the two pathway expression summaries

PathCorði; jÞ ¼ corðEi; EjÞ

Overlapping gene sets. Our approach to deal with overlapping pathway gene sets was to

condition the correlation between the summaries for the pathways Gi and Gj on the summary

for the genes common to both pathways (Gi\j = Gi \ Gj).
First, we calculated the summaries Ei, Ej, and Ei\j corresponding to pathway Gi, pathway Gj

and the shared genes Gi\j. Then we estimated the partial correlation between the pathway

summaries conditional on the summary for the shared genes

PathCorði; jÞ ¼ cor ðEi;EjjEi\jÞ

Hypothesis testing. We used a t-test to determine which experiment-level correlation

coefficients were significantly different from 0.

H0 : PathCorði; jÞ ¼ 0 H1 : PathCorði; jÞ 6¼ 0

For the correlation coefficients between pathways without shared genes, the t-test is given

by

t ¼ r
ffiffiffiffiffiffiffiffiffiffiffiffi
n � 2

1 � r2

r

� tn� 2

where r is the experiment-level correlation estimate.
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For the correlation coefficients between pathways with shared genes, the t-test is given by

t ¼ r
ffiffiffiffiffiffiffiffiffiffiffiffi
n � 3

1 � r2

r

� tn� 3

where r is the experiment-level conditional correlation estimate.

Meta-analysis estimates

Hunter-Schmidt estimator. We used the experiment-level correlation estimates to com-

pute the overall correlation between two gene sets with a weighted average

�r ¼

XN

i¼1
niri

PN
i¼1
ni

where ni is the number of samples for experiment i, ri is the correlation estimate for experi-

ment i and N is the total number of experiments [117].

Liptak p-value aggregation. Since we estimated the correlation coefficients at the experi-

ment level, we first obtained a p-value from each of the experiments by testing if the experi-

ment-level correlation was significant. In order to determine the significance of the overall

correlation coefficient we combined the p-values from each experiment using Liptak’s method

[121, 122]. The combined p-values across all experiments are given by

pc ¼ 1 � �ðYÞ

where

Y ¼

XN

i¼1
niF

� 1ð1 � piÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PN

i¼1
n2
i

q

ϕ is the standard normal probability density function, F−1 is the standard normal inverse

cumulative distribution function, ni is the number of samples for experiment i, pi is the p-value

for experiment i and N is the total number of experiments.

After aggregating the experiment-level p-values for all pathway pairs, we adjust the com-

bined p-values for multiple comparison using the Benjamini–Hochberg FDR method [123].

Overlap coefficient

The overlap coefficient is a similarity measure for the overlap between two sets. For two sets G
andH, the overlap coefficient is given by

oGH ¼
jG \ Hj

minfjGj; jHjg

where 0� oGH� 1. The overlap coefficient is simply the size of the intersection divided by the

size of the smaller of the two sets. We chose the overlap coefficient instead of other measures

of overlap like the Jaccard index because it highlights whenever a pathway is a fully contained

within another pathway. If a set G is a subset ofH, the overlap coefficient is always 1. On the

other hand, if the sets G andH are disjoint, the overlap coefficient is always 0.
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Ribosome gene sets

The annotation for the Ribosome pathway was retrieved from the KEGG REST server using

the KEGGREST package (v. 1.10.1) [124]. We ran 1000 iterations for the no overlap and each

overlap case using gene sets derived from the ribosome pathway annotation and random gene

sets.

No overlap case. For the no overlap case, the KEGG Ribosome pathway was split in half.

The ribosome pathway annotation, composed of 126 genes, was split into two non overlapping

gene sets with 63 genes each with the following steps

1. Permute indexes of the genes belonging to the ribosome pathway

2. Split the gene set into two non overlapping gene sets A and B

3. Calculate the pathway summaries EA and EB for gene sets A and B respectively

4. Calculate the pathway correlation using the pathway summaries EA and EB

For the random gene set, we sampled 126 genes present in the gene expression background,

and split them with the following steps

1. Sample 126 genes from the background

2. Split the genes into two non overlapping gene sets Ar Br with 63 genes each

3. Calculate the pathway summaries ErA and ErB for gene sets Ar and Br respectively

4. Calculate the pathway correlation using the pathway summaries ErA and ErB

Overlap cases. We created representative cases of gene overlap between two gene sets. In

particular, we created two overlapping sets s1 and s2 from n distinct elements. In the first step,

the two sets s1 and s2 share all but one element. In each consecutive step, we shift the indexes

of one of the sets to decrease the number of shared elements between s1 and s2 until the last

step when the two sets s1 and s2 do not have any elements in common.

Step 1 s1 ¼ f1; . . . ; ðn � 1Þ
zfflfflfflffl}|fflfflfflffl{
 �

g

s2 ¼ f1; . . . ; ðn � 1Þ; ng

Step 2 s1 ¼ f1; 2; . . . ; ðn � 1Þg

s2 ¼ f2!; . . . ; ðn � 1Þ; ng

Step 3 s1 ¼ f1; 2; . . . ; ðn � 2Þ
zfflfflfflffl}|fflfflfflffl{
 �

g

s2 ¼ f2; . . . ; ðn � 2Þ; ðn � 1Þ; ng

Step 4 s1 ¼ f1; 2; 3; . . . ; ðn � 2Þg

s2 ¼ f3!; . . . ; ðn � 2Þ; ðn � 1Þ; ng

..

.

Step n s1 ¼ f1; . . . ; ðn � dn=2eÞg

s2 ¼ fðn � dn=2e þ 1Þ; . . . ; ng
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In order to consider different scenarios for the amount of shared genes between pathways,

we built 9 different configurations of overlapping gene sets. These 9 overlap cases ranged from

low overlap (oAB = 0.0469) to high overlap (oAB = 0.8532).

For the overlap cases, we split the KEGG Ribosome pathway was split into overlapping

gene sets.

1. Permute indexes of the genes belonging to the ribosome pathway.

2. Split the gene set into two overlapping gene sets A and B.

3. Get the shared genes A \ B between sets A and B.

4. Calculate the pathway summaries EA, EB, and EA\B.

5. Calculate the partial correlation between the summaries for the genes sets A and B, condi-

tional on the shared genes EA\B.

For the random gene sets, we sampled 126 genes present in the gene expression background

and then split them into overlapping gene sets.

1. Sample 126 genes from the background.

2. Split the gene set into two overlapping gene sets Ar and Br.

3. Get the shared genes Ar \ Br between the gene sets Ar and Br.

4. Calculate the pathway summaries EAr, EBr and EAr \ Br.

5. Calculate the partial correlation between the summaries for the genes sets Ar and Br, condi-

tional on the shared genes EAr \ Br.

ROC curves based on p-values. We generated a set of p-values based on the random gene

sets and another set of p-values based on the ribosome gene sets. Assuming that a significant

p-value for ribosome gene sets is a true positive while a significant p-value for random gene

sets is a false positive, we assessed the ability of our method to identify truly significant correla-

tion coefficients (Table 1). We used different p-value cut-offs for significance to build a

receiver operating characteristic (ROC) curve.

Significant pathway overlap

We used Fisher’s exact test to identify significant overlaps between all pathway pairs. For path-

way i with gene set Gi and pathway j with gene set Gj, we used a contingency table based on

their shared genes to perform an one-sided Fisher’s exact test (Table 2).

Then we adjusted the corresponding p-values for multiple comparison using FDR, and con-

sidered an overlap significant if p< 0.05.

Table 1. Confusion matrix for the ribosome and the random gene sets.

Ribosome Gene Set Random Gene Set

Significant True Positive (TP) False Positive (FP)

Not significant False Negative (FN) True Negative (TN)

Assignment of true positive (TP) and false positives (FP) based on the different p-value cut-offs fro significance from

the ribosome and the random gene sets.

https://doi.org/10.1371/journal.pcbi.1006042.t001
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PCxN webtool and bioconductor packages

The PCxN webtool is available at http://pcxn.org/. The webtool was built using open source

software and libraries. The back-end of the website was developed using JSP(JavaServer Pages)

powered by a Tomcat (http://tomcat.apache.org/, version 7.0.52) HTTP-server. MySQL

(https://www.mysql.com/, version 5.5.46) was used to manage a relational database containing

pathway correlation coefficients. The front-end user interface was developed using HTML and

specialized libraries. The Jquery.js library (http://jquery.com/, version 2.1.1) was used to han-

dle events. The canvasXpress.js library (https://canvasxpress.org/, version 13.5) was used to

build heatmaps. The cytoscape.js library (http://js.cytoscape.org/, version 2.7.11) was used to

build networks. PCxN is also available through Bioconductor as two distinct but interacting R

packages. The pcxn package (http://bioconductor.org/packages/pcxn/) contains exploration

and visualization wrapper functions that use data matrices stored in the pcxnData package

(http://bioconductor.org/packages/pcxnData/).
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S2 Fig. Correlations estimates and ROC curves for the ribosome and the random gene sets.
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i
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pathways, Gi \ Gj, the genes unique to pathway i, Gi \ Gcj , the genes unique to pathway j, Gci \ Gj, and the genes that

do not belong to either pathway i or j, Gci \ Gcj .

https://doi.org/10.1371/journal.pcbi.1006042.t002
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Methodology: Yered Pita-Juárez.
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