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Frequency-specific patterns of
neural activity are increasingly
interpreted as transient bursts of
isolated events rather than as
rhythmically sustained oscilla-
tions. This has potentially far-
reaching implications for theories
of how such oscillations originate
and how they shape neural com-
putations. As this debate unfolds,
we explore alternative interpreta-
tions and ask how best to distin-
guish between them.

The recasting of neural oscillations as
burst-events is gaining momentum, and
is already inspiring the quantification of
novel neural parameters such as burst-
rate. The ‘bursting’ interpretation comes
with far-reaching implications, but of
course its significance hinges on it being
an accurate reflection of the physiological
measurements in each particular case.
This Forum article aims not to argue for,
or against, bursts, but instead aims to
help to guide this incipient debate onto
productive tracks. To do so, we clarify
what burst versus sustained oscillation-
based interpretations of frequency-spe-
cific neural activity precisely entail, and
we explore methodological approaches
that may be well suited for arbitrating
between these interpretations. In the pro-
cess, we illustrate how the two scenarios
can be easily confused when it comes to

realistic (noise-containing) neural data,
and we raise the possibility of a novel
‘hybrid’ scenario.

This Forum article comments specifically
on recent studies of beta (�15–30 Hz)
and gamma (�40–100 Hz) oscillations
in humans and non-human primates
[1–5]. Although the points raised may
be particularly applicable to these phe-
nomena, they could possibly be relevant
for other frequency-specific neural phe-
nomena as well. In the following we use
the term ‘frequency-specific patterns of
neural activity’ to refer to a larger set of
phenomena that are typically labeled
‘neural oscillations’. We emphasize that
the answer to our title question may well
turn out to be different for different phe-
nomena (e.g., slow wave vs spindle
activity during sleep), or even the same
apparent phenomenon in different con-
texts (e.g., sensorimotor beta activity
during rest vs tonic contraction). It will
thus be vital for this debate to be held
for each frequency-specific pattern of
neural activity separately, and the con-
siderations below, when applied to each
specific case, are not necessarily
expected to converge into a single, over-
arching picture that is equally applicable
to all neural systems, species, and fre-
quency bands. Indeed, it is likely that
both burst-events and sustained oscilla-
tions coexist in the brain and, in some
cases, these may even occupy similar
frequency ranges.

Origin and Relevance of the
Debate
Frequency-specific patterns of neural
activity, as observed in local field poten-
tials (LFPs) or magneto/electroencepha-
lography (M/EEG), have traditionally been
thought of as sustained rhythmic fluctua-
tions in the excitability of the underlying
neural populations. Such ‘oscillations’
have come to the fore of the scientific
quest for the mechanisms by which the
brain flexibly codes and routes

information [6]. Recently, however, sev-
eral studies in humans and non-human
primates have questioned the very nature
of some of these oscillations – namely,
their regular recurrence or ‘rhythmicity’
[1–5]. By evaluating time–frequency data
at the level of single trials it has been
suggested that neural activity – particu-
larly in the beta- and gamma-frequency
ranges – may come in small packets, or
‘bursts’, that last only one or very few
cycles. It is only through the averaging
(e.g., over trials) of time-varying bursts
that these phenomena (and their task-
related modulations) appear to be sus-
tained. Thus, instead of conceiving pri-
mate beta- and gamma-band activity as
sustained oscillations, these recent stud-
ies invite us to reconsider such activity as
transient, isolated burst-events which can
be described not only by their frequency
and amplitude but also by their rate, tim-
ing, duration, and shape.

Embracing this reinterpretation of oscil-
lations as burst-events has far-reaching
consequences. Conceptually, it chal-
lenges models of how such ongoing
oscillations serve to route information
flexibly through neural networks to
enable, for instance, sustained selective
attention [6] and working memory [2].
While bursts may still enable transient
communication channels between neu-
ral populations, it is more difficult to
envisage how bursts may enable lon-
ger-lasting communication channels to
facilitate, for example, working memory
retention. It also challenges models pro-
posing that such oscillations are gener-
ated through ongoing recurrent
excitation and inhibition (e.g., [7]). In
practice, the burst-event picture
prompts us to conceive of new ways
to quantify these events and to chart their
parameters. It may further impact on clin-
ical models and therapeutic interventions
for cases of aberrant ‘oscillations’ – such
as beta oscillations in Parkinson’s
disease [5].
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In the remainder we clarify what the pos-
sible alternative interpretations of fre-
quency-specific neural activity precisely
entail, and we outline some guiding prin-
ciples on how one may best arbitrate
among them.

Conceptual Alternatives
We consider four alternative interpreta-
tions of frequency-specific activity pat-
terns in LFP or M/EEG measurements
(Figure 1). For each scenario, the sche-
matic shows a hypothetical signal (left
columns), and the same signal with noise
(right columns), mimicking data as typi-
cally observed in LFP and M/EEG meas-
urements. The time-domain signals are
shown alongside their signal generators
(below), which in real situations most
often remain unavailable and are there-
fore inferred. For simplicity, we consider
these generators as ‘pulses’, which
determine the amplitude and timing of
the observed activity, but whose precise
physiological origins are beyond the
remit of this article ([7] for discussion)

and may differ between scenarios. For
completeness, we also show the associ-
ated time–frequency map of power next
to each time-domain signal.

Scenario 1 shows the simplest model in
which the observed oscillatory signal is
generated by rhythmic pulses (i.e., a pace-
maker) with constant amplitude. Next, by
adding time-varying modulation in the
strengths of these generating pulses, we
arrive at a model that resembles more
closely the dynamics of brain activity as
often measured empirically (scenario 2).
The strength of these pulses may be
dependent, for example, on the summa-
tion of inputs or on global excitatory–inhib-
itory balance. We consider that this the
‘standard model’ for interpreting fre-
quency-specific brain activity: while the
amount of spectral energy may vary, for
example, with physiological state and task
context, the underlying pulsing shows
sustained rhythmicity (although this may
not always be apparent from the corre-
sponding time–frequency maps; Figure 1).

By contrast, in the emerging ‘burst’ view
(scenario 3), the underlying pulses no lon-
ger occur rhythmically, but occur stochas-
tically instead. While individual pulses may
still generate physiological responses
whose characteristic shapes are best
captured in a particular frequency range
(e.g., beta-bursts), the generator pulses
themselves are no longer rhythmic. Finally,
we raise the possibility of a novel (to our
knowledge) ‘hybrid’ account (scenario 4)
in which the generator pulses are rhyth-
mic, but where a threshold (dashed line,
Figure 1) determines whether any given
pulse will result in a measurable burst-
event. When single pulses cross the
threshold, isolated bursts result (left pulse,
scenario 4), whereas when multiple suc-
cessive pulses cross the threshold, multi-
cycle oscillations result (right pulses, sce-
nario 4). Although purely hypothetical, this
scenario could possibly provide a single
substrate to both types of phenomena in
observed measurements.

The behavioral state, it is worth mention-
ing, is likely to play a major role in deter-
mining parameters of frequency-specific
activity. The duration over which sus-
tained oscillations or bursts occur is likely
to be linked to their utility in guiding cur-
rent behavior. In scenario 4, for example,
the period over which a threshold is
crossed may depend on behavioral
demands, yielding transient bursts for fast
computations but sustained oscillations
for more prolonged computations.

Means of Arbitration
When individual trials differ in the precise
timing of their amplitude dynamics or
bursts, trial-averaging may yield patterns
that appear sustained, even for scenarios
2–4.We set this single-trial versus average
issue aside here ([2,8,9] for discussion),
and ask how single-trial scenarios 2 and
3 themselves can be distinguished. In
other words, we do not question that brain
activity (before averaging) will vary over
time, but instead ask what form this
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Figure 1. Four Alternative Conceptual Scenarios. (1) Rhythmically sustained oscillation without ampli-
tude dynamics. (2) Rhythmically sustained oscillation with amplitude dynamics. (3) Burst-events with no
underlying rhythmicity. (4) A hybrid scenario in which the consequences of rhythmically sustained generator
processes depend on a certain threshold being crossed. Time–frequency maps were estimated using a
wavelet analysis with 3 cycles per wavelet. Time and frequency units are arbitrary. Abbreviations: LPF, local
field potential; M/EEG, magneto/electroencephalography.
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variability takes – isolated burst-events or
dynamic amplitude variations of sustained
oscillations. This is particularly non-trivial
when only LFP or M/EEG data are avail-
able. In the presence of noise (Figure 1,
right column), periods of sustained, but
low-amplitude, oscillations (scenario 2)
may be obscured, and spurious amplitude
fluctuationsmay be introduced.Moreover,
periods of low-amplitude oscillations may
remain hidden in time–frequency maps of
power, even when dealing with clean sig-
nals (scenario 2, Figure 1).

One approach is to use amplitude-thresh-
olding to identify putative bursts. While
thresholding opens the door to quantify-
ing novel burst parameters [1–5], which
may vary with task and performance in
interesting ways [1,2,4], we stress that the
interpretation of such parameters is only
meaningful if the burst scenario is indeed
valid – of course, burst statistics may still
provide a sensitive proxy of amplitude
dynamics in scenario 2, and vice versa
for amplitude statistics in scenario 3. It is
thus vital to establish ways to arbitrate
among the scenarios.

An important feature that sets the burst
scenario apart is the lack of continuous
phase-progression between successive
timepoints – and therefore the ability to
predict the future phase of the signal – at
least beyond the borders of individual
bursts. Measures that capture the rhyth-
mic regularity of such phase-preservation
[10] could thus be key in advancing this
debate. Although such measures are cur-
rently not mainstream, one relevant pre-
vious study investigated sensorimotor
beta activity in MEG data, and argued
that this activity can be well characterized
by such phase-preservation [10], at least
for the temporal intervals over which
phase-preservation was considered in
that study. Increasingly popular accounts
representing the same type of sensorimo-
tor beta activity as transient bursts [1,3,4]
predict that the temporal extent of its

phase-preservation will be bound to the
duration of individual bursts. In future
endeavors it will thus be informative to
systematically map out the temporal
extent of phase-preservation – and this
will be relevant not only for sensorimotor
beta activity but also for all other fre-
quency-specific phenomena at stake. It
will also be important to directly compare
phase-preservation with thresholding
approaches to achieve a better grasp of
their scope, utility, and limitations. One
noteworthy feature of phase-preservation
measures is that they can be aggregated
across time and trials such that estimates
will become increasingly accurate with
more data.

As our schematic hopefully makes clear,
advancing this debate will require data
with high signal-to-noise ratio (SNR).
Complementing this, we anticipate valu-
able contributions from methods that
move beyond the predefined temporal
windowing and linearity constraints of
conventional Fourier-based analyses,
and that do not easily adapt to the
timescales of the dynamics. Two prime
candidates are empirical mode decom-
position [11], which also brings increased
temporal and spectral resolution, and hid-
den Markov modeling, which provides a
natural description of time-series as a
sequence of states that can help to boost
the effective SNR by pooling over different
state-visits (e.g., in different trials). These
approaches offer useful alternative
descriptions of the time-varying nature
of brain activity before averaging – includ-
ing specific information about the timing
and duration (‘lifetimes’) of states, which
can then be related to behavior [12]. The
connectivity profiles associated with such
states may further enrich the debate by
inviting consideration of frequency-spe-
cific phenomena related to functional
coupling between regions, thereby
unlocking a next set of fundamental
questions relating to inter-areal coupling.
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