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Abstract

Examination of speech datasets for detecting dementia, collected via various speech tasks, has 

revealed links between speech and cognitive abilities. However, the speech dataset available for 

this research is extremely limited because the collection process of speech and baseline data from 

patients with dementia in clinical settings is expensive. In this paper, we study the spontaneous 

speech dataset from a recent ADReSS challenge, a Cookie Theft Picture (CTP) dataset with 

balanced groups of participants in age, gender, and cognitive status. We explore state-of-the-art 

deep transfer learning techniques from image, audio, speech, and language domains. We envision 

that one advantage of transfer learning is to eliminate the design of handcrafted features based on 

the tasks and datasets. Transfer learning further mitigates the limited dementia-relevant speech 

data problem by inheriting knowledge from similar but much larger datasets. Specifically, we built 

a variety of transfer learning models using commonly employed MobileNet (image), YAMNet 

(audio), Mockingjay (speech), and BERT (text) models. Results indicated that the transfer learning 

models of text data showed significantly better performance than those of audio data. Performance 

gains of the text models may be due to the high similarity between the pre-training text dataset and 

the CTP text dataset. Our multi-modal transfer learning introduced a slight improvement in 

accuracy, demonstrating that audio and text data provide limited complementary information. 

Multi-task transfer learning resulted in limited improvements in classification and a negative 

impact in regression. By analyzing the meaning behind the AD/non-AD labels and Mini-Mental 

State Examination (MMSE) scores, we observed that the inconsistency between labels and scores 

could limit the performance of the multi-task learning, especially when the outputs of the single-

task models are highly consistent with the corresponding labels/scores. In sum, we conducted a 

large comparative analysis of varying transfer learning models focusing less on model 

customization but more on pre-trained models and pre-training datasets. We revealed insightful 

relations among models, data types, and data labels in this research area.
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1 INTRODUCTION

The number of patients with Alzheimer’s Disease (AD) over the age of 65 is expected to 

reach 13.8 million by 2050, leading to a huge demand on the public health system 

(Association, 2020). While there is no proven effective treatment on AD, considerable effort 

has been put forth into early detection of AD, such that interventions can be implemented at 

that stage. Screening measures, neuropsychological assessments, and neuroimaging scans 

are not pragmatic, cost- or time-efficient approaches for widespread use.

Expressive language impairment is common in AD, such as reduced verbal fluency and 

syntactic complexity, increased semantic and lexical errors, generating more high-frequency 

words and shorter utterances, and abnormalities in semantic content (Boschi et al., 2017; 

Fraser et al., 2016; Mueller et al., 2018a; Sajjadi et al., 2012). Expressive language 

impairment has also been observed in patients with Mild Cognitive Impairment (MCI), a 

population at high risk for the development of AD (Kim et al., 2019; Mueller et al., 2018b; 

Themistocleous et al., 2020). Furthermore, recent meta-analytic and systematic reviews have 

found that measures of expressive language contribute to the prediction of progression from 

MCI to AD (Belleville et al., 2017; Prado et al., 2019).

Researchers have explored spontaneous speech as a means of practical and low-cost early 

detection of dementia symptoms. Pitt Corpus (Becker et al., 1994), one of the large speech 

datasets, includes spontaneous speech obtained from a Cookie Theft Picture (CTP) 

description task. Since then, the CTP task has become popular in dementia research and it 

has been further explored with computerized agents to automate and mobilize the speech 

collection process (Mirheidari et al., 2017, 2019b) and in other languages including 

Mandarin (Wang et al., 2019a; Chien et al., 2019), German (Sattler et al., 2015), and 

Swedish (Fraser et al., 2019b). Other spontaneous speech datasets for dementia research 

include those collected from film-recall tasks (Tóth et al., 2018), story-retelling tasks (Fraser 

et al., 2013), map-based tasks (de la Fuente Garcia et al., 2019), and human conversations 

(Mirheidari et al., 2019a). While a number of studies have investigated speech and language 

features and machine learning techniques for the detection of AD and MCI, this research 

field still lacks balanced and standardized datasets on which these different approaches can 

be systematically and fairly evaluated.

Speech datasets available for dementia research are often small. As shown in Table 1, if we 

consider AD and non-AD as two classes, the numbers of user-samples in each class are in 

the hundreds. In the past few years, researchers have explored handcrafted features and 

machine learning algorithms with these datasets for building classification and regression 

models. Mueller et al. (2018a) published a survey to show effective linguistic features 

including semantic content, syntax and morphology, pragmatic language, discourse fluency, 

speech rate, and speech monitoring. The linguistic features were often identified manually, 
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and the analysis methods were complex and highly task- and data-dependent. Croisile et al. 

(1996) manually extracted 23 information units from the picture using language knowledge 

that were effective in dementia detection. Fraser et al. (2019a) developed an auto-generation 

process of information units for the analysis. Yancheva and Rudzicz (2016) and Fraser et al. 

(2019b) further proposed to auto-generate topic models that can recall 97% of the human-

annotated information units. Similarly, the acoustic-based analysis was started with pre-

defined features and recently automated with computational models. Hoffmann et al. (2010) 

considered acoustic features for each utterance. Fraser et al. (2013) evaluated the statistical 

significance of pause and word acoustic features. Tóth et al. (2015) considered four 

descriptors for silent/filled pauses and phonemes. Gosztolya et al. (2016) and Tóth et al. 

(2018) implemented a customized automatic speech recognition (ASR) and automatic 

feature selection for phones, boundaries, and filled pauses. Haider et al. (2019); Luz et al. 

(2020) proposed an automatic acoustic analysis approach using the paralinguistic acoustic 

features of audio segments. However, the performance results of handcrafted features and 

customized machine learning algorithms are highly dependent on the tasks and datasets. In 

2020, the Alzheimer’s Dementia Recognition through Spontaneous Speech (ADReSS) 

Challenge became the first shared-task event focused on AD detection (Luz et al., 2020). 

The ADReSS organizers pre-processed the CTP dataset of the Pitt Corpus and provided the 

same dataset to the challenge participants, enabling a fair competition. The techniques and 

results in this paper will strictly follow the guideline of the ADReSS Challenge.

In recent years, transfer learning techniques have significantly advanced the research on 

Image Recognition (IR), Automatic Speech Recognition (ASR), and Natural Language 

Processing (NLP). Transfer learning focuses on storing knowledge gained from an easy-to-

obtain large-sized dataset from a general task and applying the knowledge to a downstream 

task where the downstream data is limited. A typical transfer learning model incorporates a 

pre-trained model as its backbone and is later customized for the downstream task. The pre-

training process is computationally-intensive and requires a dataset of sufficient size. 

Different pre-trained models result in different performances as they inherit different 

knowledge from the pre-training datasets. It is commonly believed that the higher similarity 

between the pre-training and downstream datasets results in better performance of the 

downstream task. In addition to the selection of an effective pre-trained model, the 

customization of the transfer learning model is critically important to the downstream task. 

This customization is often based on two strategies.

• Fixed feature extractor: Remove the last one or several layers from the pre-

trained model, and treat the rest of the pre-trained model as a fixed feature 

extractor for the downstream dataset. Then, apply a simple classification model 

over the features from the fixed feature extractor. The training process will only 

modify the weights of the classification model. The fixed feature extractor 

strategy can avoid the overfitting problem when the downstream dataset is small.

• Fine-tuning: Replace the last one or several layers of the pre-trained model with 

customized layers for the downstream task. In the training process, the weights 

of the pre-trained model are fine-tuned by continuing the back-propagation. In 

this strategy, the pre-trained model produces generic features, and the fine-tuning 
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process modifies the model to be more specific to the details of the downstream 

task. The fine-tuning strategy often requires the downstream dataset to be 

sufficiently large to avoid the overfitting problem.

We explored transfer learning with a fine-tuning strategy for the following reasons: i) the 

fine-tuning strategy relies more on the data and less on the customization of the network 

architecture. Specifically, for each pre-trained model, we adopted the same modification 

strategy, i.e., replacing the last layer with a standard fully-connected (FC) layer and fine-

tuning the weights of all layers with the training dataset of the downstream task. ii) We 

envisioned the downstream dataset is a special task, which requires a different knowledge set 

from the tasks corresponding to the pre-training dataset. The fine-tuning strategy enables the 

training using a downstream dataset to customize the model using back-propagation, which 

puts more emphasis on the newly acquired knowledge. iii) The fixed feature extractor 

strategies have been explored in literature (Koo et al., 2020; Pompili et al., 2020; 

Balagopalan et al., 2020).

Koo et al. (2020) and Pompili et al. (2020) employed transfer learning techniques to extract 

both acoustic and linguistic features from pre-trained models, combined these features with 

handcrafted features, and customized a convolutional recurrent neural network to perform 

the downstream tasks. Their customized network architectures though different in detail, 

produced similar results and conclusions. In comparison, we did not use pre-trained models 

as a fixed feature extractor, but followed the fine-tuning strategy to train an end-to-end 

network model. Balagopalan et al. (2020) compared handcrafted features including lexico-

syntactic features, acoustic features, and semantic features, with pre-trained automatic 

features using BERT (Devlin et al., 2018), and concluded that automatic features (83.3% 

accuracy) outperform the handcrafted features (75.0% accuracy). Edwards et al. (2020) 

explored multi-scale (word and phoneme level) audio models and their models achieved 

79.2% accuracy at best, which is higher than the models using text features (i.e., Word2Vec) 

and multi-modal fusion. Rohanian et al. (2020) proposed a multi-modal gating mechanism 

to fusion audio and text features in a Long Short-Term Memory (LSTM) model and 

achieved a better accuracy of 79.2% compared to the LSTM model with either audio or text 

features (highest accuracy 73.0%). Yuan et al. (2020) explored disfluencies and fine-tuning 

pre-trained language models, aligned audio and text using forced alignment, and re-created 

the punctuation marks in the text using manually-defined thresholds to identify pauses. It 

achieved an accuracy of 85.4% using BERT and 89.6% using ERNIE (Sun et al., 2020). We 

consider the thresholds used to identify pauses (Yuan et al., 2020) is still a handcrafted 

feature. In comparison with the above works, we avoid the complex design and evaluation of 

handcrafted features and the heavy network architecture. We built an end-to-end network 

model using the pre-trained networks and a fine-tuning strategy. In addition, Pappagari et al. 

(2020) employed speaker recognition and natural language processing methods. Specifically, 

it explored the x-vector (Snyder et al., 2018) and BERT for extracting acoustic and linguistic 

features, fusioned them with Gradient Boosting Regressor, and achieved 75.0% accuracy 

using the ADReSS training/test dataset. We considered that our selected pre-training tasks 

are more representative and similar to the AD classification task, compared to the speaker 

recognition task (Pappagari et al., 2020; Snyder et al., 2018).
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In this paper, we explored a variety of transfer learning techniques and compared several 

transfer learning models. Note that our training and testing processes strictly followed the 

ADReSS challenge, i.e., we only used the ADReSS training dataset for training and reported 

the classification/regression results over the ADReSS testing dataset. Specifically, we 

investigated the following:

• Evaluation of transfer learning: We studied four types of pre-trained models, 

and customized and fine-tuned our transfer learning models based on the 

downstream tasks and datasets. We evaluated the impact of the similarity 

between the pre-training datasets and the downstream datasets on the 

performance.

• Multi-modal transfer learning: We applied a multi-modal transfer learning to 

incorporate inputs of both audio and text. We investigated whether the audio and 

text data share complementary information to further improve the performance 

of the downstream tasks.

• Multi-task transfer learning: We applied a multi-task transfer learning to 

output both the AD/non-AD labels and the Mini-Mental State Examination 

(MMSE) scores (a test assessing global cognitive functioning). We investigated 

whether two downstream tasks are highly correlated and whether integrated 

training can reinforce the performance of the two tasks.

2 SPEECH DATASET FOR DEMENTIA RESEARCH

In the ADReSS challenge (Luz et al., 2020), a pre-processed CTP dataset from the Pitt 

Corpus (Becker et al., 1994) is created with the balanced groups of participants in age, 

gender, and cognitive status. The ADReSS training dataset includes speech data from 24 

male participants with AD, 30 female with AD, 24 male non-AD participants, and 30 female 

non-AD participants. The ADReSS testing dataset includes speech data from 11 male 

participants with AD, 13 female with AD, 11 male non-AD participants, and 13 female non-

AD participants. The complete dataset information can be found in (Luz et al., 2020). In this 

paper, we studied the ADReSS dataset, i.e., we trained our models with the ADReSS 

training dataset and reported the performance of classification and regression tasks over the 

ADReSS testing dataset.

3 PRE-TRAINING DATASETS

In this section, we describe datasets in four domains, i.e., image, audio, speech, and text. 

These datasets have been successfully explored in their domains for enhanced performance 

of transfer learning models.

3.1 Image dataset

The most commonly used large-scale image classification dataset for pre-training is 

ImageNet (Deng et al., 2009). ImageNet (http://image-net.org/) is an image dataset 

organized according to the WordNet hierarchy. Each meaningful concept in WordNet, 

possibly described by multiple words or word phrases, is called a “synset.” There are more 
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than 100,000 synsets in WordNet, the majority of which are nouns (80,000+). ImageNet 

provides, on average, 1000 images to illustrate each synset. Images of each concept are 

quality-controlled and human-annotated. ImageNet pre-training has been widely used in 

various computer vision tasks, such as fine-grained image classification (Cui et al., 2018; Fu 

et al., 2017; Russakovsky et al., 2015), object detection (Redmon et al., 2016; He et al., 

2017), and sense text detection (Zhou et al., 2017; Wang et al., 2019b).

3.2 Audio dataset

AudioSet (https://research.google.com/audioset/) (Gemmeke et al., 2017) is extracted from 

YouTube videos. It consists of 10-second segments, and each segment is labeled by human 

effort. All segments are organized in 632 classes, organized in a hierarchical structure with a 

max depth of 6 levels. AudioSet is considered as a general audio dataset, e.g., the top-level 

classes include “Human sound,” “Animal sounds,” “Natural sounds,” “Music,” “Sounds of 

things,” “Source-ambiguous sounds” and “Channel, environment and background.” The 

dataset contains 1,789,621 segments (4,971 hours) in total. AudioSet is commonly used for 

the pre-training of acoustic event detection (Arora and Haeb-Umbach, 2017) and sound 

event tagging (Diment and Virtanen, 2017).

3.3 Speech dataset

LibriSpeech (http://www.openslr.org/12/) (Panayotov et al., 2015) is a corpus of 

approximately 1000 hours of 16kHz read English speech, prepared by Vassil Panayotov with 

the assistance of Daniel Povey. The data is derived from reading audiobooks from the 

LibriVox project and has been carefully segmented and aligned. The typical usage of this 

dataset is for ASR (Zhang et al., 2020; Huang et al., 2020). It could also be used for self-

supervised training (Liu et al., 2020; Chi et al., 2020), and transfer to the downstream task 

like phoneme classification, speaker recognition, and sentiment classification.

3.4 Text dataset

BERT (https://github.com/google-research/bert) dominates Natural Language Processing 

(NLP) research by learning powerful and universal representation and utilizing self-

supervised learning at the pre-training stage to encode the contextual information. The 

representation is beneficial to performance, especially when the data of the downstream task 

is limited. The pre-training datasets for BERT include the BooksCorpus (Zhu et al., 2015) 

(800M words) derived from textbooks and Wikipedia (2,500M words) derived from 

Wikipedia websites. BERT (Devlin et al., 2018) and its variants (Beltagy et al., 2020; Lan et 

al., 2019; Liu et al., 2019) have been developed using self-supervised training for 

downstream tasks, e.g., text classification and question answering. Longformer (Beltagy et 

al., 2020) is a variant of BERT to allow the model to learn long dependencies in pre-training, 

and its pre-training databases additionally include one-third of a subset of the Realnews 

dataset (Zellers et al., 2019) with documents longer than 1,200 tokens as well as one-third of 

the StoryCorpus (Trinh and Le, 2018).
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4 DEEP TRANSFER LEARNING MODEL

Our transfer learning models were built within three steps, 1) pre-training, 2) fine-tuning, 

and 3) testing. In the pre-training step, a model was trained with a large-sized dataset. In the 

fine-tuning step, we tuned the model with the ADReSS training dataset. In the testing step, 

we evaluated the model using the ADReSS testing dataset. In the following, we introduce 

the transfer learning models based on two pre-training approaches: a supervised 
classification approach and a self-supervised learning approach.

4.1 Supervised classification approach - MobileNet and YAMNet

For this approach, we explored the audio part of the ADReSS datasets. We observed the 

ADReSS organizers segmented the audio data into small pieces by setting the log energy 

threshold parameter to 65dB with a maximum duration of 10 seconds from (Haider et al., 

2019; Luz et al., 2020). However, there was a concern that the segmentation may cause 

critical time-series information loss. Any smaller speech segments hardly represent the 

overall speech sample. In addition, the speech continuity is removed by segmentation, 

making the model inaccurately capture the time-series characteristics. Thus, our approaches 

aimed to accommodate an entire speech sample of each participant as input and preserve the 

time-series characteristics of the speech, similar to works (Hershey et al., 2017; Zhang et al., 

2018).

MobileNet is a lightweight network architecture that significantly reduces the computational 

overhead as well as parameter size by replacing the standard convolution filters with the 

depth-wise convolutional filters and the point-wise convolutional filters, proposed by 

(Howard et al., 2017). The total parameters of the MobileNet backbone are of a size 17.2 

MB, significantly less than other convolutional neural networks. Considering the limited size 

of the speech dataset, we considered a smaller model with less complexity, such as 

MobileNet, which may worth being tested. MobileNet is pre-trained with the ImageNet 

dataset for an image classification task. The MobileNet architecture is shown at the above 

layer of the Figure 1. With an RGB image as input, the output is the probability that the 

image belongs to each of the 1000 classes.

MobileNet architecture. The core of MobileNet architecture is a backbone Convolutional 

Neural Network (CNN), which consists of a set of convolution, pooling, and activation 

operations. The detailed architecture can be found in the paper (Howard et al., 2017). We 

used the full width (1.0) MobileNet backbone pre-trained on a resolution of 128*128 

images. The backbone takes an image as an input, which is 3-dimensional (h, w, 3)-matrix 

where h is height, w is width, and 3 represents the RGB channel. The backbone converts an 

input of (h, w, 3)-matrix to an output of (h′, w′, 1024)-matrix where (h′, w′) are 

functionally related to (h, w), and 1024 represents the feature channel number, i.e., the depth 

of the backbone CNN. The output (h′, w′, 1024)-matrix is then fed to a Global Average 

Pooling (GAP) layer for reducing the dimensions of h′ and w′ and obtaining a 1024-

dimension feature. A Fully Connected (FC) layer with 1000 neurons produces the output 

according to the wanted 1000 classes. Lastly, a softmax activation layer is added to produce 

the classification results as the probabilities for 1000 classes that add up to 1.
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Transfer learning via MobileNet.—MobileNet is pre-trained for an image classification 

task where its input is an image, and its output is probabilities of the classes. To apply 

transfer learning of MobileNet to our AD classification task, in the fine-tuning and testing 

steps, we need to convert an audio sample to an image sample and customize the model for 

the AD/non-AD outputs.

1. Extracting Mel Frequency Cepstral Coefficient (MFCC) feature maps from audio 
samples.: Mel-frequency cepstral coefficients have been widely used in speech recognition 

research (Muda et al., 2010). Yancheva and Rudzicz (2016); Fraser et al. (2016) carried out 

an acoustic-prosodic analysis on the Pitt Corpus using 42 MFCC features. We extracted an 

MFCC feature map for each participant’s entire speech sample. The MFCC feature map is 

denoted as a (p, t)-matrix where the hyper-parameter p (64) is the MFCC order, and t is 

related to the duration of the speech sample. We used the librosa function with a sampling 

rate of 22050, a window size of 2048, and a step size of 512. By extracting the MFCC 

feature maps, we converted the speech dataset to an image dataset. The advantages of MFCC 

feature maps include conversion from speech to MFCC feature maps can be done 

automatically; the silent pauses in the audio data were preserved as a distinctive feature in 

MFCC feature maps; and speech from the investigator and filled pauses from the participant 

were preserved in MFCC feature maps and shown to be important (Tóth et al., 2018). While 

identifying these audio segments requires expensive human efforts or customized ASR, we 

envision the classification model with the input of the MFCC feature maps may learn and 

understand the patterns of the information.

2. Customizing model for the downstream task.: Our proposed model is shown at the 

bottom layer of the Figure 1. Our architecture employs the pre-trained backbone CNN 

module from the MobileNet. Denote the MFCC feature map of the audio sample as a (p, t, 
1)-matrix. To match with the module input, i.e., an RGB image, we duplicated the MFCC 

feature map twice and made the MFCC feature map as a (p, t, 3)-matrix. In this way, we can 

feed the MFCC feature map into the backbone CNN module of the MobileNet in the same 

way as an RGB image. The output of the backbone CNN is denoted as a (p′, t′, 1024)-

matrix where (p′, t′) are functionally related to (p, t). We employed a GAP-2D (two-

dimensional) to reduce p′ dimension and t′ dimension of the matrix. We then employed a 

fully-connected layer and a softmax activation layer to produce the classification results as 

two probabilities for the two classes AD/non-AD that add up to 1.

Transfer learning via YAMNet.—While the MobileNet architecture is pre-trained with 

the ImageNet dataset, Gemmeke et al. (2017) pre-trained a similar architecture using the 

AudioSet dataset, called YAMNet. The input of YAMNet is the Mel spectrogram from audio 

data with dimensions of (p, t, 1). Compared to MobileNet, YAMNet might better apply to 

our downstream task because the pre-training dataset and the downstream dataset are both 

audio datasets; and the input formats to the Backbone CNN in the pre-training/fine-tuning/

testing phase are kept the same, i.e., a feature vector of (p, t, 1).
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4.2 Self-supervised learning approach - BERT

While the supervised classification approach utilizes labeled datasets, self-supervised 

learning approaches take advantage of unlabeled datasets for pre-training. The removal of 

the labeling requirement enables the model to extract knowledge from an extended range of 

data sources, e.g., digital books, and Wikipedia, and online news. We propose a Text BERT 

model and a Speech BERT model for AD classification, as shown in Figure 2.

Transfer learning via Text BERT.—BERT (Devlin et al., 2018) is a milestone in the 

natural language processing domain. BERT is pre-trained with BooksCorpus (Zhu et al., 

2015) (800M words) and Wikipedia (2,500M words). It adopts two self-supervised tasks in 

the pre-training step: Masked Language Model (MLM) and Next Sentence Prediction 

(NSP). Specifically, given a pair of sentences, we first put a special [CLS] token at the 

beginning of the first sentence and a special [SEP] token between two sentences. Secondly, 

random masking is applied to mask a set of words with a special [MASK] token. Then the 

pre-processed input is fed into the BERT model, which then outputs an embedding 

corresponding to each input token. The pre-training is performed via the two self-supervised 

tasks: the MLM task aims to predict the masked words with the context; the NSP task aims 

to predict whether the second sentence is followed by the first sentence in the original 

dataset. In the fine-tuning and testing steps, the output embedding of the [CLS] token is 

used. To apply BERT to our AD classification task, we added a fully connected (FC) layer 

and a softmax activation layer to the output of the BERT model. The FC layer has two 

neurons, which stands for the AD and no-AD classes, respectively.

Transfer learning via Speech BERT.—The Speech BERT, named Mockingjay (Liu et 

al., 2020), is similar to the Text BERT except for some differences: The input is the Mel 

spectrogram of speech data instead of the word embeddings. The pre-training task contains 

only the Masked Acoustic Model (MAM) task. The input does not have the [CLS] and other 

special tokens. Thus, instead of using output embedding of the [CLS] token for 

classification, we used output embeddings of all the tokens. To apply Speech BERT to our 

AD classification task, the output of the Speech BERT is fed into a 1D convolutional layer 

that convolutes through time dimension, then fed into a global average pooling layer to 

obtain the average through time dimension, and finally fed into an FC layer and a softmax 

activation layer.

5 MULTI-MODAL TRANSFER LEARNING

While Text BERT and Speech BERT models analyze text and audio datasets separately, we 

explored a multi-modal transfer learning via a Dual-BERT model, using both text and audio 

as inputs. We envision that the text and audio data of a given patient are highly related, and 

the outputs could reinforce each other during the training process. Dual-BERT incorporates 

two pre-trained BERT models, one is Text BERT, and the other is the Speech BERT. As 

shown in Figure 3, the architectures of the Speech BERT and the Text BERT models remain 

the same as in the previous section. We further designed two types of fusion methods, Add 

fusion and Concat fusion. We used term “training” instead of “fine-tuning” in the following, 
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as we mainly considered the new multi-modal transfer learning. For each fusion method, we 

also considered two types of training strategies, separate training and joint training.

Add fusion model.

The outputs of our previous models are probabilities from the last softmax activation layer. 

Thus, we considered an Add fusion that adds up the outputs of the FC layers of two models, 

as shown in the upper part of Figure 3. If the Text BERT and Speech BERT models have 

consistent classification results, the Add fusion model outputs the result with more 

confidence compared to any of the two single models. On the other hand, if the two models 

have inconsistent classification results, the Add fusion model outputs the result that receives 

higher confidence from any of the two models. We considered two training strategies. 1) 

(Separate) We train the Text BERT and Speech BERT with text and audio, respectively. 

Then, the Add fusion layer will only be considered during the testing process. 2) (Joint) We 

train the Text BERT and Speech BERT jointly using the joint output from the Add fusion 

layer. The difference between these two training strategies is that the first strategy considers 

the confidence of the models, while the second one further considers the complementary 

information between text and audio data. The Add fusion part has no trainable parameters. 

In the separate training strategy, the training does not apply to the Add fusion part; in the 

joint training strategy, the Add fusion part is involved in the training process but has no 

parameters to be learned.

Concat fusion model.

Another way to explore the multi-modal transfer learning is to concatenate the tensors of the 

Text BERT and Speech BERT models before the FC layer. As shown in the bottom part of 

Figure 3, after the concatenation, the Concat fusion model has an FC layer with two neurons 

for classification of AD/non-AD. In this model, features from text and audio are better 

integrated for the classification task. The Concat fusion model always requires joint training 

for the additional FC layer. We have two training strategies. 1) (Separate) We train the 

Concat fusion model using three outputs separately. 2) (Joint) We train the Concat fusion 

model using the joint output only.

6 MULTI-TASK TRANSFER LEARNING

Multi-task transfer learning aims to solve multiple learning tasks at the same time while 

exploiting commonalities and differences across tasks. This can result in improved learning 

efficiency and enhanced performance for the task-specific models when compared to 

training the models separately.

The ADReSS challenge provides both AD/non-AD labels and MMSE scores for each data 

sample. In this section, we focused on the Text BERT as it produces significantly better 

results than the Speech BERT. As shown in the upper part of Figure 4, we first applied 

transfer learning from the Text BERT to an MMSE regression task; we placed an FC layer 

with a single neuron to the output of the Text BERT, and then added a Leaky ReLU layer to 

output the MMSE score. Since the MMSE scores are non-negative values, we adopted the 

Leaky Rectified Linear Unit (ReLU) activation and the mean squared error loss. The bottom 
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figure in Figure 4 shows a multi-task transfer learning where we put an FC layer with a 

single neuron for the regression task and an FC layer with two neurons for the classification 

task. The classification task employs the softmax activation layer, and the regression task 

employs the Leaky ReLU activation layer. For loss functions, the classification task uses the 

cross-entropy loss, and the regression task uses the mean squared error loss. For training, we 

jointly optimized the cross-entropy loss and the mean squared error loss with the 

corresponding labels.

7 PERFORMANCE EVALUATION

In this section, we provide a comprehensive evaluation of the proposed deep transfer 

learning models. We strictly followed the ADReSS challenge (Luz et al., 2020), using the 

ADReSS training and testing datasets.

7.1 Implementation details

We followed the original implementation of the pre-trained models. Specifically, the speech 

BERT and text BERT were implemented with PyTorch. The MobileNet and YAMNet were 

implemented with Tensorflow. We downloaded the pre-trained parameters of these models 

from online sources. For the classification task (AD/non-AD), we used the cross-entropy 

loss, and for the regression task (MMSE), we used the mean squared error loss. We trained 

our models using the Adam algorithm as optimizer (Kingma and Ba, 2014) with batch size 8 

and a small learning rate of 1e-6 for models that do not use Speech BERT. For models that 

use Speech BERT, as our Graphics Processing Unit (GPU) resource has 32GB memory 

(NVIDIA TESLA V100), we used batch size 1 to adapt our training process to the limited 

memory resources. We employed a fine-tuning strategy and trained all layers, including 

those in the pre-trained models.

7.2 Training strategy

Our training strategy for all models had five rounds. In each round, we used the ADReSS 

training dataset to train a model with a maximum of 2000 epochs. The training stopped 

before reaching 2000 epochs only if the training loss was less than a pre-defined threshold of 

1e-6. After the training, we selected the epoch with the smallest training loss and obtained 

the performance result over the ADReSS testing dataset using the selected epoch. We 

repeated the above process for five rounds, obtained five results, and reported their mean and 
standard deviation. We consider that the mean and standard deviation represent the 

effectiveness of the model. We also reported the Best result among all epochs in five rounds 

to reveal the maximum potential of the models.

7.3 Evaluation metrics

For the classification task, we employed evaluation metrics of accuracyTN + TP
N , precision

π = TP
TP + FP , recallρ = TP

TP + FN , and F1 score 2πρ
π + ρ , where N is the number of participants, 

TP , FP and FN are the numbers of true positives, false positives and false negatives, 

respectively. For the regression task, we employed Root-Mean-Square Error (RMSE), the 

same metric used in the baseline paper provided by the ADReSS challenge.
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7.4 Evaluation of deep transfer learning models

In this subsection, we reported the performance results of our transfer learning models with 

an input of audio data or text data. MobileNet, YAMNet, and Speech BERT were pre-

trained with ImageNet, AudioSet, and LibriSpeech datasets, respectively, and were used to 

analyze CTP audio data. BERT base and BERT large were pre-trained with BooksCorpus, 

Wikipedia, and Longformer were pre-trained with additional Realnews and StoryCorpus. 

They were used to analyze CTP text data. To show the advantage of transfer learning, we 

also reported the performance results of the models without pre-training. The performance 

results are shown in Table 2.

MobileNet.—The classification accuracy of MobileNet is 59.00 ± 5.66% without pre-

training or 58.8 ± 3.49% with pre-training. Both MobileNet models achieved low accuracy, 

and the pre-training process surprisingly lowered the performance. We concluded the main 

reason is the knowledge difference between the pre-training image dataset and the CTP 

audio dataset. However, we found that the pre-training helped produce stable results with a 

lower standard deviation (from 5.66% to 3.49%). In addition, we found that Best accuracy 

reaches 77.08% with pre-training, much higher than 72.91% without pre-training. In other 

words, the model with pre-training has the potential to achieve higher accuracy, but the 

model cannot be fine-tuned to the optimal status due to the limited downstream dataset.

YAMNet.—In general, YAMNet would be more effective than the MobileNet for our 

downstream task because the pre-training dataset in YAMNet is AudioSet, which is more 

similar to the CTP audio dataset. We confirmed this conjecture with our evaluation results of 

YAMNet. The classification accuracy of YAMNet without pre-training is 53.8 ± 6.88%, and 

the accuracy of YAMNet with pre-training is increased to 66.2 ± 4.79%. The YAMNet with 

pre-training resulted in a significant improvement of 12.4% compared to the same model 

without pre-training, which demonstrates the similarity between the AudioSet and the CTP 

audio dataset. In addition, the pre-training enabled the YAMNet to produce more stable 

outputs (from 6.88% to 4.79%) and higher Best accuracy (from 79.17% to 83.33%).

Speech BERT.—Speech BERT, similar to Text BERT, employs a self-supervised learning 

approach. The pre-training process employs the Masked Acoustic Model (MAM) task. 

Speech BERT has a length restriction problem of max positional encoding in pre-training of 

5000 tokens (about 1 minute). To solve this problem, in training, if the audio sample 

produces more than 5000 tokens, we randomly choose a window to sample the audio for 

5000 tokens. And in the testing, we used a non-overlapped sliding window technique to 

sample the whole audio and averages the classification probabilities corresponding to all 

windows. We further filtered the audio data of the investigator to reduce the audio length, 

while for MobileNet/YAMNet, both audio data of the investigator and participant were kept 

as input.

We observed that the Speech BERT model with pre-training resulted in less accuracy 

63.33%, compared to 66.67% from the model without pre-training. This finding may have 

been due to the Speech BERT models employing a self-supervised MAM task, which is 

significantly different from our downstream task (i.e., classification). Alternatively, the self-
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supervised MAM task aims to explore the strong correlation between the audio segments. 

While such a correlation in the transcript is explicit due to the language model, the 

correlation among audio segments might be more complicated and more challenging to be 

learned. In addition, the pre-training process helps to increase the potential of the model by 

providing a higher Best accuracy of 79.17% (> 77.08% without pre-training).

Text BERT.—We considered three Text BERT models, i.e., BERT base and BERT large 

(Devlin et al., 2018), and Longformer (Beltagy et al., 2020). The BERT base model has 12 

Transformer encoders, and the BERT large model has 24 Transformer encoders. While the 

BERT base and BERT large were pre-trained with a max length of 512 tokens, the 

Longformer were pre-trained with a max length of 4096 tokens. Therefore, when our text 

sample from ADReSS datasets is converted to be larger than 512 tokens, truncation is 

required in the BERT base and large models. In the Longformer model, all text samples 

from ADReSS datasets can be encoded within 4096 tokens, and thus truncation is not 

needed. In addition, the pre-training databases of Longformer additionally include longer 

text samples from Realnews and StoryCorpus. To adapt the ADReSS text dataset to the Text 

BERT models, we removed the symbols that do not appear in the pre-training dataset but 

appear in the ADReSS text dataset.

We found the performance results of all Text BERT models are better than the previous 

models on audio data. Without pre-training, BERT base achieved 76.67%. With pre-training, 

BERT base achieved 80.83%, BERT large achieves 81.67%, and Longformer achieves 

82.08%. The corresponding Best accuracy increased from 81.25% (BERT base without pre-

training) to 85.42% (BERT base), 87.50% (BERT large), 89.58% (Longformer). These 

findings suggest that the Text BERT models show significantly better performance because 

of the similarity of the pre-training text dataset and the CTP text dataset. In addition, the 

Longformer resulted in improved performance because it supports the input of longer text 

samples without truncation and has been pre-trained with additional similar datasets.

7.5 Evaluation of multi-modal transfer learning

Focusing on evaluating multi-modal transfer learning, we expected the joint training using 

both audio data and text data to improve the performance results of previous models. In 

Table 3, we list the performance results of ten models. The first one is BERT base, and the 

second one is Speech BERT, which was evaluated in the previous section. Their performance 

results will serve as a baseline. The next seven models are variants of the Dual BERT 

models. Their architectures are a combination of a Speech BERT model and a Text BERT 

model. As discussed in Section 5, Dual BERT can employ the Add fusion or the Concat 

fusion to combine the Speech BERT and the Text BERT, and can be trained with a separate 

training strategy or a joint training strategy. The last multi-modal transfer learning replaced 

Speech BERT with YAMNet as YAMNet achieves an accuracy (66.2%) higher than Speech 

BERT (63.33%).

The following observations were made:

• All seven Dual BERT models achieved higher classification accuracy than the 

two baseline models, confirming that the text data and audio data have 
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complementary information that can be jointly learned by the model for 

improved performance.

• Concat fusion achieved higher classification accuracy than Add fusion. While the 

Add fusion picks one model with higher confidence in the classification results, 

the Concat fusion aims to merge the features of both text data and audio data for 

a hybrid representation. The performance gain of the Concat fusion further 

confirms the complementary information between the text data and audio data.

• From the previous analysis, we found the Speech BERT without pre-training 

achieved a higher accuracy (66.67%) than the Speech BERT with pre-training 

(63.33%). Thus, we evaluate a multi-modal transfer learning model using the 

Speech BERT without pre-training and BERT base with pre-training. As shown 

in Table 3, we confirm that the pre-training of Speech BERT helps the multi-

modal transfer learning to achieve a higher accuracy (82.50%), compared to the 

Dual BERT without pre-training on speech model (82.08%).

• From the previous analysis, we found BERT large (81.67%) and Longformer 

(82.08%) outperformed BERT base (80.83%). Thus, we replaced BERT base 

with BERT large and Longformer in the Dual BERT. While the multi-modal 

transfer learning using BERT large achieved the highest accuracy (82.92%), the 

multi-modal transfer learning using Longformer achieves the highest Best 

accuracy (89.58%).

• From the previous analysis, we found the YAMNet yielded the highest accuracy 

result (66.20%) among all the models using audio data. Thus, we evaluated a 

multi-modal transfer learning using the YAMNet and BERT base. However, this 

model did not outperform any of the Dual BERT models.

7.6 Evaluation of multi-task transfer learning

Relation between MMSE regression and AD classification.—Given the ADReSS 

dataset, we explored a threshold-based strategy to understand the relation between the 

MMSE scores and AD/non-AD labels. We set a threshold T on MMSE scores to infer AD/

non-AD status. If a patient’s MMSE score is less than T, the patient’s data is labeled with 

AD; if a patient’s MMSE score is larger or equal to T, the patient’s data is labeled with non-

AD. We reported the performance result of the threshold-based strategy over the ADReSS 

training/testing dataset separately in Figure 5 and Table 4. We found that for the ADReSS 

training dataset, the highest accuracy is 97.2% at a threshold of 26, and for the ADReSS 

testing dataset, the highest accuracy is 91.67% at a threshold of 28. If we adopt the threshold 

of 26 from the training dataset and apply it to the testing dataset, the threshold-based 

strategy results in an accuracy of 89.58%, which is the upper bound that multi-task transfer 

learning theoretically can achieve. According to the CTP dataset description (Becker et al., 

1994), the patients with AD have an MMSE score range 8–30, while the patients with non-

AD have a range 26–30. The AD labels are determined from seven cognitive domains, 

including memory, construction, perception, attention, language, orientation, and executive 

functions. In comparison, the MMSE is a 30-point widely used cognitive screening measure, 

taking about 10 minutes to administer. In our evaluation, given the limited number of data 
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samples, a small number of inconsistent cases might produce a negative impact on the joint 

training process when the outputs of single-task models are highly consistent with the 

corresponding labels/scores.

We focused on evaluating the proposed multi-task transfer learning, which is built on the 

BERT base model with an input of the CTP text data. One challenge of the multi-task 

transfer learning model is the imbalanced loss from the AD classification task and the 

MMSE regression task. Denote the regression loss (mean squared error) as lmse and the 

classification loss (cross-entropy) as lce. We define the total loss of the multi-task transfer 

learning model as l = λlmse + lce, where λ is a balance factor to avoid the unbalanced impact 

between the classification loss and regression loss. In our experiment, we set λ = 0.01.

We evaluated a regression model and a multi-task transfer learning model using BERT base. 

As shown in Table 5, when using BERT base without pre-training, the multi-task transfer 

learning model outperformed the single-task models, i.e., the classification accuracy is 

increased from 76.67% to 78.75%, and the RMSE decreased from 5.18 to 4.70. The 

evaluation results confirmed that the two tasks help each other to achieve a better 

performance, especially when both single-task models have room to be improved. In 

comparison, when using BERT base with pre-training, the multi-task transfer learning model 

introduced limited performance gain in classification and introduced a negative impact in the 

regression model. Specifically, the average classification accuracy remained the same at 

80.83%, the standard deviation decreased from 2.04% to 1.56%, and Best accuracy is 

increased from 85.42% to 87.50%, close to the accuracy of 89.58% from the threshold-based 

strategy. For classification, multi-task learning kept the training more stable and increased 

the maximal potential of the model, and the MMSE scores provide a limited positive impact 

on the AD classification task. For regression, RMSE increased from 4.15 to 4.96, which 

reveals a negative impact of the joint training. This may have been due to the inconsistent 

cases of MMSE scores and AD/non-AD labels, and the MMSE regression task is more 

fined-grained and thus received a stronger impact from the inconsistent cases.

7.7 Summary of best cases using transfer learning

Table 6 shows the best cases of our experiments of text-based, audio-based, and multi-modal 

transfer learning models. The best case of the audio model achieved 66.20%, while the best 

case of the text model achieved 82.08%. We consider the performance gain of the text model 

may be due to the high similarity between the pre-training text dataset and the CTP text 

dataset. In addition, the multi-modal model using both audio and text achieved the highest 

accuracy of 82.92% in its best case, demonstrating that audio and text data provided 

complementary information. Our multi-task model achieved an accuracy of 80.83%, lower 

than the accuracy of the text-based model and the multi-modal model. We consider the 

performance degradation of the multi-task model may be due to the inconsistency between 

labels and scores that were used in multiple tasks.

8 CONCLUSIONS

We explored transfer learning techniques for an AD classification task and an MMSE 

regression task. The transfer learning models were pre-trained with general large-sized 
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datasets, and fine-tuned and tested using the ADReSS datasets. Our models had minimal 

customization and mostly relied on the training data and fine-tuning process to incorporate 

the knowledge of the downstream task into the pre-trained model. From our comprehensive 

evaluation, we drew the following three conclusions.

Transfer learning on text data results in high accuracy, but transfer learning on audio data 
might have more potential.

Our findings showed that the transfer learning on text data achieved high accuracy in the 

downstream tasks and always outperformed the transfer learning on audio data. This 

suggests that the transfer learning model understands the text better than the audio. We 

considered the text data is generated from the audio data through human transcribing effort. 

Thus, the additional information that the text data contains, but not the audio data contains, 

might be the transcriber’s knowledge in the transcribing process. The transcriber extracts 

task-specific information, such as the CTP and information units in the photo. However, 

while the text data implicitly contains the transcriber’s knowledge, the audio data does not 

have. And our training process of the transfer learning models on audio data does not take 

advantage of the transcriber’s knowledge. We expect that the task-specific information is 

highly useful, and our transfer learning models on audio data can be further improved by 

integrating such information. In addition, different parts of the text might be highly relevant, 

but the relevance of different audio segments might be unclear and difficult to be learned by 

the proposed models. Thus, we concluded that the low accuracy of the transfer learning on 

audio data was likely observed because the introduced pre-trained models did not extract 

good representation from the audio data from the downstream perspective. However, we 

envision that the future large-sized speech datasets might contain audio data and auto-

translated text data via ASR. For example, the larger CTP dataset WLS (Herd et al., 2014) 

contains text data from Kaldi ASR. Thus, our future work on transfer learning aims to 

explore a better pre-trained model, including supervised ASR models and self-supervised 

audio models.

Multi-modal transfer learning reveals complementary information of text and audio.

Our multi-modal transfer learning introduced a slight but not significant improvement in 

terms of accuracy, demonstrating that the audio and text data provide complementary 

information. Specifically, while the text model alone already achieved high accuracy, adding 

the analysis of audio data can improve performance results almost in every case. More 

importantly, if we consider that the text data contains semantic information only, the 

complementary information that the audio data contains, but not the text data contains, 

might be the non-semantic information, such as filled pause, silent pause, and other implicit 

features. The non-semantic information may or may not be used to implement effective 

classification alone, but they should be useful if they are jointly analyzed with the semantic 

information. We envision that the model can be improved if it learns the positional 

information of both semantic and non-semantic features, e.g., the pause information between 

words or between sentences.
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Multi-task transfer learning reveals positive and negative impacts on AD classification and 
MMSE regression.

Our multi-task transfer learning of the classification and regression tasks yielded 

significantly better performance when both single-task models did not perform well. The 

performance gain is obtained due to the consistency between most MMSE scores and the 

AD/non-AD labels. However, when the outputs of the single-task models are highly 

consistent with the corresponding labels/scores, the performance of multi-task learning 

declined due to a small number of samples with inconsistent scores and labels. This suggests 

the need to investigate the meaning behind the AD classification task and the MMSE 

regression task. The AD/non-AD labels seem coarse-grained, but they are generated by 

evaluating patients on several cognitive domains. The MMSE is less accurate and considered 

a screening measure of global cognitive functioning. We confirmed that such inconsistency 

existed by exploring a threshold-based strategy on the ADReSS training and testing datasets. 

Thus, we considered that multi-task transfer learning produces a limited impact on accuracy 

improvement due to the inconsistency between labels and scores. In conclusion, we believe 

that the deep transfer learning techniques need to be simple, comparable, and applicable to 

newer tasks, larger datasets, and heterogeneous labels to produce a long-lasting impact in 

dementia research.
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ACRONYM

9

AD Alzheimer’s Disease

MCI Mild Cognitive Impairment

CTP Cookie Theft Picture

MFCC Mel Frequency Cepstral Coefficient

ASR Automatic Speech Recognition

MMSE Mini-Mental State Examination

CNN Convolutional Neural Network

GAP Global Average Pooling

FC Fully Connected

ADReSS Alzheimer’s Dementia Recognition through Spontaneous Speech

NLP Natural Language Processing

RMSE Root-Mean-Square Error
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IR Image Recognition

GPU Graphics Processing Unit

LSTM Long Short-Term Memory
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Figure 1. 
Supervised Classification Approach
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Figure 2. 
Text BERT and Speech BERT
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Figure 3. 
Multi-modal transfer learning using Text/Speech BERT (Dual BERT)
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Figure 4. 
Multi-task learning using Text BERT
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Figure 5. 
Threshold-based strategy (0–30)
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Table 1.

Cookie Theft Picture Datasets

Dataset Language Total HC MCI AD

ADReSS (Luz et al., 2020) English 156 78 78

Pitt Corpus (Becker et al., 1994) English 312 104 208

WLS (Herd et al., 2014) English 1366

IVA (Mirheidari et al., 2019b) English 33 16 17

Hebrew CTP (Kavé and Dassa, 2018) Hebrew 70 35 35

MECSD (Wang et al., 2019a) Mandarin 85 65 20

NTU (Chien et al., 2019) Mandarin 50 40 10

Swedish CTP (Wallin et al., 2016) Swedish 67 36 31

French CTP (Fraser et al., 2019b) French 58 25 33

Front Comput Sci. Author manuscript; available in PMC 2021 May 26.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Zhu et al. Page 28

Table 2.

AD Classification results using audio or text and with or without pre-training. AD: Alzheimer’s Disease. 

Accuracy: mean and standard deviation of results of 5 rounds. Best: highest accuracy of all epochs in 5 rounds.

Model Pre-training dataset Classes Precision % Recall % Fl % Accuracy % Best %

Audio (Luz et al., 2020) -
non-AD 67 50 57

62
AD 60 75 67

MobileNet

-
non-AD 60.40 ± 7.86 58.40 ± 22.76 56.20 ± 13.79

59.00 ± 5.66 72.91
AD 61.40 ± 6.89 59.80 ± 21.07 57.60 ± 10.54

ImageNet
non-AD 72.80 ± 6.97 28.00 ± 8.15 40.40 ± 9.85

58.80 ± 3.49 77.08
AD 55.80 ± 2.48 90.40 ± 1.96 69.00 ± 1.67

YAMNet

-
non-AD 52.20 ± 11.74 19.80 ± 22.61 24.60 ± 22.81

53.80 ± 6.88 79.17
AD 53.40 ± 5.95 87.60 ± 9.56 65.80 ± 1.33

AudioSet
non-AD 69.60 ± 6.80 59.20 ± 7.73 63.40 ± 5.57

66.20 ± 4.79 83.33
AD 64.40 ± 3.93 73.40 ± 8.82 68.60 ± 4.84

Speech BERT

-
non-AD 67.74 ± 3.69 64.17 ± 3.34 65.82 ± 2.68

66.67 ± 2.95 77.08
AD 65.84 ± 2.43 69.16 ± 5.65 67.39 ± 3.71

LibriSpeech
non-AD 66.13 ± 4.12 55.00 ± 4.86 59.94 ± 3.78

63.33 ± 3.12 79.17
AD 61.48 ± 2.76 71.67 ± 4.86 66.12 ± 3.08

Text (Luz et al., 2020) -
non-AD 70 87 78

75 -
AD 83 62 71

BERT base

-
non-AD 78.12 ± 1.98 74.17 ± 3.12 76.05 ± 1.82

76.67 ± 1.56 81.25
AD 75.47 ± 2.08 79.17 ± 2.63 77.23 ± 1.50

BooksCorpus/Wiki
non-AD 78.46 ± 1.89 85.00 ± 2.04 81.60 ± 1.96

80.83 ± 2.04 85.42
AD 83.64 ± 2.22 76.67 ± 2.04 80.00 ± 2.13

BERT large BooksCorpus/Wiki
non-AD 83.05 ± 5.12 80.00 ± 3.12 81.40 ± 3.09

81.67 ± 3.34 87.50
AD 80.65 ± 2.66 83.33 ± 5.89 81.89 ± 3.64

Longformer BooksCorpus/Wiki/ 
Realnews/Stories

non-AD 77.87 ± 3.75 90.00 ± 2.04 83.44 ± 2.33
82.08 ± 2.83 89.58

AD 88.14 ± 2.09 74.17 ± 5.53 80.44 ± 3.55
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Table 3.

AD Classification results of multi-modal learning using both audio and text. AD: Alzheimer’s Disease. 

Accuracy: mean and standard deviation of results of 5 rounds. Best: highest accuracy of all epochs in 5 rounds.

Model Fusion / Training Classes Precision % Recall % Fl % Accuracy % Best %

Speech BERT -
non-AD 66.13 ± 4.12 55.00 ± 4.86 59.94 ± 3.78

63.33 ± 3.12 79.17
AD 61.48 ± 2.76 71.67 ± 4.86 66.12 ± 3.08

BERT base -
non-AD 78.46 ± 1.89 85.00 ± 2.04 81.60 ± 1.96

80.83 ± 2.04 85.42
AD 83.64 ± 2.22 76.67 ± 2.04 80.00 ± 2.13

Dual BERT

Add / Joint
non-AD 78.63 ± 1.77 85.83 ± 2.04 82.07 ± 1.79

81.25 ± 1.86 85.42
AD 84.41 ± 2.13 76.67 ± 2.04 80.35 ± 1.95

Add / Separate
non-AD 78.96 ± 1.57 87.50 ± 2.64 82.99 ± 1.68

82.08 ± 1.66 85.42
AD 86.05 ± 2.60 76.67 ± 2.04 81.06 ± 1.69

Concat / Separate
non-AD 80.39 ± 1.56 85.00 ± 3.33 82.57 ± 1.26

82.08 ± 1.02 85.42
AD 84.21 ± 2.52 79.17 ± 2.63 81.54 ± 1.01

Concat / Joint (No pre-train 
speech)

non-AD 80.36 ± 2.06 85.00 ± 2.04 82.59 ± 1.56
82.08 ± 1.66 87.50

AD 84.10 ± 1.91 79.17 ± 2.63 81.53 ± 1.83

Concat / Joint (Longformer)
non-AD 78.83 ± 4.18 88.33 ± 4.09 83.15 ± 1.79

82.08 ± 2.12 89.58
AD 86.95 ± 3.38 75.83 ± 6.12 80.79 ± 2.74

Concat / Joint
non-AD 80.02 ± 1.16 86.67 ± 1.67 83.20 ± 1.01

82.50 ± 1.02 85.42
AD 85.48 ± 1.46 78.34 ± 1.67 81.74 ± 1.10

Concat / Joint (BERT large)
non-AD 83.62 ± 4.25 82.50 ± 5.53 82.80 ± 1.76

82.92 ± 1.56 87.50
AD 83.04 ± 3.97 83.33 ± 5.89 82.92 ± 1.86

YAMNet + BERT 
base Concat / Joint

non-AD 78.06 ± 2.53 85.83 ± 2.04 81.76 ± 2.22
80.83 ± 2.43 89.58

AD 82.70 ± 3.65 82.50 ± 5.53 82.45 ± 3.07

Front Comput Sci. Author manuscript; available in PMC 2021 May 26.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Zhu et al. Page 30

Table 4.

Threshold-based strategy (20–30). The highest accuracy in training, the highest accuracy in testing, and the 

testing accuracy corresponding to the highest accuracy in training are in bold.

T Accuracy (Training) Accuracy (Testing) %

20 86.92 75.00

21 88.79 79.17

22 89.72 81.25

23 90.65 83.33

24 92.52 87.50

25 95.33 87.50

26 97.20 89.58

27 96.26 89.58

28 95.33 91.67

29 87.85 83.33

30 71.03 70.83
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Table 5.

Classification and regression results of multi-task transfer learning using CTP text. AD: Alzheimer’s Disease. 

Accuracy: mean and standard deviation of results of 5 rounds. Best: highest accuracy of all epochs in 5 rounds. 

RMSE: mean and standard deviation of Root-Mean-Square Errors of 5 rounds. Best RMSE: lowest RMSE of 

all epochs in 5 rounds.

Model Pre-training Settings Accuracy % Best % RMSE Best RMSE

Text (Luz et al, 2020)
- Classification 75 -

- Regression 5.20 -

BERT base

No

Classification 76.67 ± 1.56 81.25 - -

Regression - - 5.18 ± 0.04 4.65

Multi-task 78.75 ± 1.56 83.33 4.70 ± 0.02 4.39

Yes

Classification 80.83 ± 2.04 85.42 - -

Regression - - 4.15 ± 0.01 4.06

Multi-task 80.83 ± 1.56 87.50 4.96 ± 0.01 4.20
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Table 6.

The best classification cases of the audio-based, text-based, and multi-modal models. AD: Alzheimer’s 

Disease. Accuracy: mean and standard deviation of results of 5 rounds. Best: highest accuracy of all epochs in 

5 rounds.

Input Model (with pre-training) Classes Precision % Recall % Fl% Accuracy % Best %

Audio YAMNet
non-AD 69.60 ± 6.80 59.20 ± 7.73 63.40 ± 5.57

66.20 ± 4.79 83.33
AD 64.40 ± 3.93 73.40 ± 8.82 68.60 ± 4.84

Text Longformer
non-AD 77.87 ± 3.75 90.00 ± 2.04 83.44 ± 2.33

82.08 ± 2.83 89.58
AD 88.14 ± 2.09 74.17 ± 5.53 80.44 ± 3.55

Audio + Text Dual BERT Concat / Joint (BERT 
large)

non-AD 83.62 ± 4.25 82.50 ± 5.53 82.80 ± 1.76
82.92 ± 1.56 87.50

AD 83.04 ± 3.97 83.33 ± 5.89 82.92 ± 1.86
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