Ray and Bandyopadhyay BMC Bioinformatics (2016) 17:121
DOI 10.1186/512859-016-0952-6

A NMF based approach for integrating

BMC Bioinformatics

@ CrossMark

multiple data sources to predict HIV-1-human

PPls

Sumanta Ray'” and Sanghamitra Bandyopadhyay?

Abstract

Background: Predicting novel interactions between HIV-1 and human proteins contributes most promising area in
HIV research. Prediction is generally guided by some classification and inference based methods using single

biological source of information.

Results: In this article we have proposed a novel framework to predict protein-protein interactions (PPIs) between
HIV-1 and human proteins by integrating multiple biological sources of information through non negative matrix
factorization (NMF). For this purpose, the multiple data sets are converted to biological networks, which are then
utilized to predict modules. These modules are subsequently combined into meta-modules by using NMF based
clustering method. The integrated meta-modules are used to predict novel interactions between HIV-1T and human
proteins. We have analyzed the significant GO terms and KEGG pathways in which the human proteins of the
meta-modules participate. Moreover, the topological properties of human proteins involved in the meta modules are
investigated. We have also performed statistical significance test to evaluate the predictions.

Conclusions: Here, we propose a novel approach based on integration of different biological data sources, for
predicting PPIs between HIV-1 and human proteins. Here, the integration is achieved through non negative matrix
factorization (NMF) technique. Most of the predicted interactions are found to be well supported by the existing
literature in PUBMED. Moreover, human proteins in the predicted set emerge as ‘hubs’ and ‘bottlenecks’ in the
analysis. Low p-value in the significance test also suggests that the predictions are statistically significant.

Background

Interaction between proteins is considered to be an
important biochemical reactions which controls different
biological processes. Analysis and prediction of protein-
protein interactions (PPIs) between viral and host proteins
is an important step to uncover the underlying mechanism
of viral infection in host cell machinery. Human Immun-
odeficiency Virus-1 (HIV-1) belongs to a special class
of viruses called retrovirus, in which it is placed in the
subgroup of lentiviruses. It consists of a single stranded
RNA which encodes 19 proteins. HIV-1 virus relies on the
human cellular machinery for its replication. It hijacks the
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human cellular mechanism and uses it to produce viral
genetic material.

One of the most important parts of HIV research is
to discover the underlying mechanism of interactions
between HIV-1 protein and human protein. Predict-
ing such interactions contributes a major task in PPI
research for antiviral drug discovery as well as treat-
ment optimization. There exist several approaches that
exploit different methodologies for predicting HIV-1 —
human PPIs (HHPPIs). These are approximately catego-
rized into three groups: supervised classification based
approach, structural similarity based approach and asso-
ciation rule mining based approach [1]. One of the first
attempts is reported in [2]. Here a random forests clas-
sifier is trained using 35 features derived from different
data sources. As an extension of this work [3] proposed
a semi-supervised multi tasking approach to improve the
predictive performance. Here modified feature set is used
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to precisely capture the HIV related information. In [4],
a supervised classification technique based on Support
Vector Machine (SVM) is proposed to predict HHPPIs.
Here protein domains, sequence and PPI information
are incorporated in the feature set. In [5] protein struc-
ture information available in Protein data bank (PDB)
along with the experimentally verified PPI information
are utilized for prediction. In [6] an association rule min-
ing based approach is utilized. As an extension of this
work, biclustering technique based on association rule
mining is developed in [7] where the type and direc-
tion of interactions are also taken into account. Most of
these works predominantly used the HIV-Human Pro-
tein Interaction Database (HHPID) [8] for prediction and
validation.

The above approaches utilize single data source for pre-
dicting HHPPIs. To the best of our knowledge, no study
exists where different types of biological data sources are
integrated for predicting HHPPIs, although such integra-
tion has already proved to be effective in other domains
[9, 10]. In this work, we have proposed a framework where
three sources of information, namely, gene expression,
PPIs and Gene Ontology based similarity, are integrated
through NMF based clustering. Meta modules are identi-
fied and subsequently these are used for predicting novel
PPIs. For integration purpose all the data sources are first
converted into respective biological network. For keeping
the similar structure of all the data sources this conversion
is necessary. Gene expression dataset is converted into
coexpression network, while PPI information and Gene
Ontology information are converted into PPI network
and GO semantic similarity network, respectively. These
networks are then subsequently utilized for detecting
modules. For this purpose, we have utilized two popular
module finding frameworks. Weighted Gene Coexpres-
sion Network Analysis (WGCNA) [11] is utilized for
detecting coexpression modules, while Protein Com-
plex detection using Semantic Semilarity (PROCOMOSS)
[12] is utilized for detecting functionally coherent pro-
tein modules. The identified modules are then inte-
grated through NMF based clustering method. The
integrated meta-modules inherit the intrinsic proper-
ties of all the data sources and are regarded as con-
sensus of these two categories of modules. We have
observed that HIV-1 interacting proteins in meta mod-
ules show significantly high interactions among them.
This information is used for prediction of HHPPIs.
The overall process of our methodology is shown in
Fig. 1.

Methods

In this section we have discussed the proposed method-
ology for predicting PPIs between HIV-1 and human
protein.
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Dataset preparation

Our study is based on three biological data sources,
gene expression data, protein-protein interaction data and
Gene Ontology data. We downloaded the gene expres-
sion dataset (GSE6740 series) from GEO database (http://
www.ncbi.nlm.nih.gov/geo) which consists of stage spe-
cific expression value of CD4+ and CD8+ cells collected
from a cohort of untreated HIV-1 infected individu-
als. From this, we have taken expression data of acute
stage infection from which we select 2828 most varying
genes among the 22,284 genes. We prepared a coex-
pression matrix of 2828 x 2828 dimension, where each
entry in the matrix represents Pearson correlation sim-
ilarity. For the PPI data, we downloaded human PPI
dataset from HPRD [13]. From the whole human PPI
dataset we take PPI information of the 2828 selected
genes. The 1/0 entry in the adjacency matrix of this data
represents presence/absence of PPI connection. Gene
Ontology information of those selected genes are also
collected from GO dataset. GO terms are indexed by
Uniprot gene id, whereas the proteins in PPI dataset and
in gene expression dataset are indexed by official gene
symbol and affimetrix probesets respectively. To resolve
the mapping between gene ids we have used a widely
used gene id conversion tool named David Bioinformat-
ics resource (https://david.ncifcrf.gov/home.jsp) [14]. We
take the average expression value of multiple probs which
match a gene id in HPRD dataset. Conversely, we take all
the gene ids of HPRD dataset which match with one probe
in affimetrix probeset. Similarly, we retain all uniprot ids
in GO database for a particular gene symbol. Functional
similarity between two proteins are measured by com-
puting semantic similarity between GO-terms associated
with these proteins. For computing semantic similarity
we use biological process annotation of the GO terms.
We have compiled a GO based semantic similarity net-
work using the semantic similarity measure proposed
in [15].

To investigate the stability of these three compiled net-
works, we perform a perturbation experiment. For this
purpose we randomly remove some portion of the net-
works and compute some topological metrics. We repeat
this experiment 100 times and investigate whether the
topological characteristics of the network change due to
random removal of nodes. Here, density, average clus-
tering coefficient, average degree of the network and
average degree of the neighboring nodes of the net-
work are measured. For coexpression network and GO
based semantic similarity network weighted version of
connectivity and clustering coefficient are used [11].
Figure 2 shows change of these topological properties
for the networks. From this figure it is noticed that
the networks are stable under the random removal of
nodes.
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Network construction and module detection

We have followed WGCNA framework for detecting
modules from coexpression network. WGCNA is utilized
to find clusters or modules in gene coexpression network
which follows scale-free topology criterion. For construct-
ing coexpression network we have followed the methodol-
ogy proposed in [11]. At first step, coexpression network
is formed by computing Pearson correlation between each
pair of gene expression profile. Here the following ‘scale
free topology criterion’ is used for choosing an appropri-
ate parameter to construct coexpression network: ‘choose
the parameter for which the network satisfies scale free
topology criterion at least approximately’ To achieve this,

we have raised all correlation values to a power B and
log(p(k))
log (k)
where k represent connectivity and p(k) is the probabil-
ity of nodes having connectivity k. For every scale free

network log(p(k)) and log(k) show linear relationship, so

plot the ratio with respect to different g values,

the value of % converges to 1 when the correspond-
ing network obeys scale free properties. Figure 3 shows at
B =9 it converges to 1 approximately.

After constructing the coexpression network we have
utilized a topological overlap (TOM) based dissimilarity
measure to capture the relative connectedness for each
pair of nodes. Modules are generally represented as a set
of nodes with high topological overlap [16]. The topolog-
ical overlap matrix corresponding to the network is con-
verted to a dissimilarity matrix and then average linkage
hierarchical clustering is performed to detect modules.
The resulting modules are identified from the dendro-
gram by cutting it at a specific level using a dynamic tree
cut algorithm [17]. Total 30 coexpression modules are
identified.

For detecting functional homogeneous modules we
have utilized PROCOMOSS [12] algorithm. PROCO-
MOSS is a multiobjective framework which cluster PPI
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Fig. 2 Figure shows the change of four topological metrics for randomly removal of nodes from the three networks viz, PPl network, coexpression
network, and GO based semantic similarity network. For the three networks, change of four metrics: network density, average clustering coefficient,
average degree of the network and average degree of the neighboring nodes are shown in panel (a), panel (b), panel (c) and in panel (d) respectively

network based on the semantic similarity information
among gene ontology terms of proteins. First, we collect
PPI information for the selected 2,828 proteins from the
PPI dataset downloaded from HPRD [13]. Next, we con-
struct a PPI network for these selected proteins using the
PPI information. The constructed network are undirected
and unweighted. To build semantic similarity network
among the selected proteins, GO based semantic similar-
ity measures is utilized here. Here, we have used a measure
proposed in [15] for computing the semantic similarity
between each pair of protein. The similarity value serves
as the weight between each pair of nodes in the net-
work. These two networks are used to find modules that
captures both the PPI and gene ontology based infor-
mation. The similarity between proteins are measured
by applying GO based semantic similarity measures. By
integrating these two information PROCOMOSS detects
dense clusters in which proteins share similar functional-
ity. We have applied this algorithm to detect modules in
the PPI and GO similarity dataset. Total 40 modules are
extracted from these data using PROCOMOSS. These two

categories of modules are then integrated by using NMF
based technique.

Integration of modules using NMF based clustering

In the integration phase the two categories of identified
modules are combined to preserve the contribution of all
three original dataset in the newly formed groups by using
NMEF based clustering technique. First, individual clus-
ters are formed by applying WGCNA and PROCOMOSS
framework on the coexpression network and PPI and
Gene semantic similarity network, respectively. Formally,
we have constructed a set of representative clustering
M = {My, M5}, one for each dataset. M; consists of coex-
pressed modules whereas M, are the functionally homo-
geneous modules predicted using PROCOMOSS. Each
representative clustering or module set can be viewed by
a non negative membership matrix as follows: M; € Rxki
where 7 is the number of proteins/genes and k; represents
number of clusters in module set M;. Transposing these
two matrices and arranging them vertically, the resulting
matrix can represented as XKxn where K = ki + k.
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Fig. 3 Scale-free topology fitting index (R?) at different threshold value
(B) At B=9 the metric % converges to 1. The red line signifies
the value of B for which the network obeys scale free property

Each row represents an individual cluster whereas column
corresponds to a gene/protein. Each entry in the matrix
corresponds to binary 0 or 1 which represents the mem-
bership of gene/protein in that cluster/module. Searching
for ‘1"’ columnwise, corresponds to searching the mod-
ules in which the gene/protein belongs. To investigate
the gene/protein pair which simultaneously co-occurs in
same modules we perform a logical AND operation on
each pair of columns and make summation of this. This
represents number of modules in which the gene/protein
pairs co-occur. Following this conventions we compile
another matrix which stores the information about the
co-occurrence of pair of genes/proteins. Figure 4 shows
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the whole process. The resulting matrix stores the infor-
mation about the co-occurrence of gene pairs in different
category of modules. The primary goal of the integra-
tion process is to select a set of meta-modules consisting
of genes/proteins which co-occur in two different cate-
gories of modules, thus preserving the characteristics of
two different data resources in those meta modules. NMF
based clustering is established to be a promising technique
for multiple data clustering and consensus clustering [18].
The formulation of NMF can be extended to the cluster-
ing of nonnegative data. The general formulation of NMF
takes the form: given a nonnegative matrix X € R"*" and
a reduced rank k < #u the task is to provide a lower-rank
matrix approximation as: X ~ VHT, where V,H > 0.
Here V € R"™*X represents the projection of original data
to a new set of basis vectors. This is also represented
as meta cluster centroid, where k is the number of meta
clusters. These metaclusters can be additively combined
using the column of matrix H € R¥*™, For measuring the
reconstruction error between original and the factors V
and H, the Frobenious norm is utilized here.

Interaction prediction

From the extracted meta-modules we predict some novel
interactions by integrating HIV-human PPI dataset pub-
lished in [8]. For this, we search the meta-modules for
finding HIV-1 interacting proteins. Figure 5 shows the
proposed technique for interaction prediction.

Consider a meta-module consisting of »n proteins as
M; = 21,2, -8k k+1 - - - g, Where first k proteins are
interacted with HIV-1. As the rest of the proteins are
members of the same module with the first kK HIV-
interacting proteins, so it is obvious that they share

g1 92 g3 gi 9 In
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Fig. 4 Integrating two categories of module into one matrix. The entry (g;, g;) in gene co-occurrence matrix is computed by performing the logical
AND operation between two columns corresponding to g; and g; in the two layered clustering assingment matrix, and taking sum of this ANDing

result
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Fig. 5 A toy example of identified meta-modules. It consists of HIV interacting and HIV non-interacting proteins. Among the non interacting set the

some similar characteristics with them. Here the similarity
occurs in terms of PPI information, expression similarity
information and gene ontology information.

The following mechanism is followed for predicting
interactions:

The proteins in a meta module is divided in two sub-
sets: HIV-1 interacting (H) and HIV-1 non-interacting
(G). Protein g; € G is predicted to interact with HIV-1
protein /; if the following two conditions simultaneously

hold:

® g; shares same module with the k HIV-1 interacting
proteins.

e g; should be interacted with protein g, where gy € H,
and gy is interacted with HIV-1 protein 4;

To prove the significance of the proposed mechanism
we perform a statistical analysis. It is based on the follow-
ing postulate:

HIV interacting proteins in the identified meta-modules
exhibit significantly high interactions among them.

To prove the hypothesis, we first pick 40 random mod-
ules form HIV interacting human protein, retaining the
size same as original meta-modules. We count the num-
ber of interactions among the HIV interacting proteins
in the predicted meta modules as well as in the random
modules by using STRING database. We find the number
of interactions among the HIV interacting proteins in the

meta-modules are significantly high (p-value=6.80e-05)
by using the Wilcoxon Ranksum test.

Predicted interactions are statistically significant

Figure 6 illustrate the statistical validation of the predicted
interactions. one key assumption of our proposed method
is that HIV interacted proteins within a meta module have
significantly higher interactions. Here we investigate this
in more detail for each HIV-1 protein. Let us assume P; =
[p1,P2, - .- pi] represents number of interactions among
human proteins in k meta modules for HIV-1 protein H;.
We have compiled k meta modules randomly, retaining
the size same as original, and count the interactions to
form the set of interactions R; =[rq,79,... ;] similar to
P;, for each HIV-1 protein H;. We have utilized Mann-
Whitney U test to determine number of interactions in the
set P; are significantly higher than the interactions in set
R. The test produces p-value for each of the HIV-1 pro-
tein in the predicted interactions. We have shown this in
Table 1. The predicted interactions consist of 17 HIV-1
proteins, among them the p-value of env_gp120 and Tat is
significantly lower.

Results and discussions

In this section we describe the results of our proposed
method for predicting interactions between HIV-1 and
human proteins.
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Fig. 6 Statistical test to compare number of interactions among human proteins interacted with HIV-1 protein H; in the predicted meta-modules

Degree and betweenness centrality of proteins in
identified meta-modules

It is established that HIV-1 proteins preferentially
attached with highly connected (‘hubs’) and central (‘bot-
tlenecks’) proteins [1]. The proteins having high degree
in the interaction network are termed as ‘hubs’ while
‘bottlenecks’ signify high betweenness centrality. Degree
of a protein measures the number of protein inter-
acted to it. Betweenness centrality of a node is a mea-
sure which counts the number of shortest paths that
goes through that node. We have investigated degree
and betweenness centrality of proteins involved in the
detected meta-modules. This is measured by consider-
ing the whole human protein interaction network. The
degree and betweenness centrality of HIV-1 interacting
and HIV-1 non-interacting proteins involved in the iden-
tified meta modules are shown in scatter plot. In Fig. 7
10 scatter diagram are shown for 10 selected modules. All
the scatter diagram are provided in supplementary site.
In Fig. 7 (a) to (j), X axis represents degree and Y-axis
represents betweenness centrality. The red dots signify
HIV-1 interacting proteins, and blue dots represent HIV-1

non-interacting proteins. Among the non-interacting sets
the proteins, which are predicted to interact with HIV-1
are marked as green dots. From this figure it is evident that
the HIV-1 interacting protein set show high degree and
betweenness centrality, while non-interacting set show
poor values of them. It is noticeable that, among the
non-interacting sets the proteins, which are predicted to
interact with HIV-1 show high degree and betweenness
centrality.

Predicted interactions

From the meta modules we have predicted 110 interac-
tions between HIV-1 and human proteins. For finding the
experimental evidence of our predicted interactions we
have extensively searched the existing literature and found
some evidence where those predicted interactions are
supported. Among them, 26 interactions are found to be
well supported by existing literature. Table 2 shows these
predicted interactions. All the predicted interactions are
provided in the supplementary file. From Table 2, row 1 we
noticed that the protein Integrin, Alpha 4 (ITGA4) is pre-
dicted to interact with HIV-1 envelop protein env_gp120.

Table 1 p-value obtained from Mann Whitney U test for each HIV protein

HIV Capsid env_  env_  env_
protein gp120 gpl160 gp4l
name

integrase matrix Nef

nucleocapsid retropepsin Rev  Tat Vif Vpr  Vpu  Pol

Gag_pr55

p_value 0.0031 0.00091 0.02608 0.00903 0.0156

0.0183 0.082 0.0174

0.0071 0.0115 0.00030 0.0515 0.0200 0.1817 0.1606 0.0021
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Fig. 7 Scatter diagram for 10 selected meta modules showing the degree versus betweenness centrality of HIV-1 interacting proteins, HIV-1
non-interacting proteins, and the proteins that are predicted to interact with HIV-1 proteins. The three categories of proteins are represented by

three separate markers

In [19] it is reported that HIV-1 surface glycoprotein
gp120 binds and signal through integrin Alpha 4 which is
also facilitate HIV-1 infection of CD4(+) T cells. In row
2 the protein Myxovirus Resistance (MX2) is predicted to
interact with HIV Tat protein. In [20] the MX2 protein
is described as an interferon-induced inhibitor of HIV-1
infection. In [21] it is established that HIV-1 protein Tat
is interacted with interferon (IFN) stimulated genes (ISG).
In row 3 of the Table 2 shows the predicted interac-
tion between HIV-1 tat with Estrogen Receptor Binding
Site Associated, Antigen (EBAG9 or RACS1). In [22] it is
established that the expression level of apoptosis associ-
ated protein RCASI (a receptor-binding cancer antigen)
is increased by HIV-1 protein Tat. All the 24 predicted
interactions are shown in Table 2.

For comparing the predicted interaction with some
existing studies we have chosen the predicted interac-
tion set of four literature: Tastan et al. [2], Mukhopadhyay
etal., [6], Doolittle et al., [5] and Ray et al., [7]. We perform
a study to show the over-representation of HIV-1 proteins
in the predicted interaction set in each of the five studies.
In Fig. 8 we notice that in most of the predicted interaction
sets, HIV-1 protein TAT is significantly over-represented.

The possible reason behind that is its essentiality for
efficient transcription of the viral genome.

Assessment of the predicted interaction set

To assesses the predictive performance of our methodol-
ogy we have performed an analysis to measure sensitivity
of the predicted set. Due to the unavailability of true
negative set it is not possible to derive specificity of the
predicted interactions. Among the selected 2828 proteins
875 HIV interacting proteins are randomly divided into
10 equal-sized subsets (S;). Each subset is considered to
be non-interacting for the purpose of this analysis. Using
the detected meta modules (over the full set of 2828 pro-
teins) and the proposed prediction method, predictions
are made for the proteins in each of these subsets. Note
that those that are predicted to be interacting may be con-
sidered as true positives, referred to as p;, i = 1,...,10.
Thereafter, the correct prediction for all the subsets is
summed up to obtain the total C(l)rrect predictions. The
sensitivity is then defined as %. This entire pro-
cess is repeated 400 times, and the average sensitivity is
computed. We obtained an average sensitivity of 74.77 %
by the proposed methodology.
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Table 2 Predicted interactions supported by existing literature

Page 90of 13

To compare the predicted sets of the proposed method

S.No.  HIV-1 protein human Protein ~ PUBMED id with some other state-of-the-art, we detect overlap among
] Env_gp41 TGAA PMID: 25003016 the predicted interaction sets of f0}1r studies Tastan et al.

[2], Mukhopadhyay et al., [6], Doolittle et al., and the pro-
2 Tat MX2 PMID: 24121441 . .

posed method. Figure 9 shows the Venn diagram of the
3 Tat EBAGY PMID:17250817 bredicted interaction sets. It can be seen from the figure
4 Env_gp160 ERGIC3 PMID: 22190034 that there is a disagreement among the predicted sets of
5 Rev HNRNPK PMID: 19808671  interactions. Our present study has overlap of 12 interac-
6 Rev SNRPE PMID: 11780068 tions with Tastan et al., and one interaction is common
7 integrase SUMO2 PMID: 22805507 With DooloFtle et al,, but we do not find any .mteractlon

) common with Mukhopadhyay et al. The possible reason
8 Gag-matrix BANF1 PMID: 14645565 . .. . C
behind this is that the methodologies used for prediction
0 Rev HNRNPK PMID: 19808671 are strongly uncorrelated with each other. Other literature
10 Env_gp120 HLA-A PMID: 1712812 ]ike Bandyopadhyay et al., [1] and Mukhopadhyay et al.,
11 Env_gp120 MSN PMID: 9213396 (6] support the same fact.
12 nucleocapsid TOP1 PMID: 21092135 To get an overview of the quality of the predicted inter-
3 Tat XBP1 PMID: 10982343 Tcnor}ll sets provided by tllle .dlffgrercllt app:lﬁaches, wle f{(il]-

ow the strate roposed in Bandyopadhyay et al. [1].
14 Env_gp120 CD63 PMID: 24507450 8y prob C . YoP vay .

We use conformal prediction approach [23] to assign a
1> Ver CASPBAP2 PMID:12095993 oo nfidence level to each of the predicted pairs of each pre-
16 Tat H2AFZ PMID: 18226242 djcted interaction set. Although it is not possible to draw
17 Tat SOD1 PMID: 24175971  any conclusion about the superiority of the methodolo-
18 reverse transcriptase  ELAVLI PMID: 20450669  8ies, still we use this to get an overview of the possible
19 Env_gp120 LGALS3BP PMID: 24156545 occurrer?ce of t}}e interactions. For fclss.lgmng confidence
20 v SOHAT OMID. 23874603 to each interaction, conformal prediction approach uses

b ' 35 features collected from Tastan et al, [2]. Here, the non-
21 Env_gp120 MAP2K2 PMID:15719026  conformity measure is defined on this feature set and a
22 vif NEDD8 PMID: 23300442 p-value is assigned to each interaction to measure the
23 Nef VAMP3 PMID: 20299515 probability of its occurrence with respect to a previously
24 Env_gp120 D69 PMID: 9604776 defined 1063 pairs of interactions from NIAID [8]. Note
2% Env_gp120 HLA-G PMID: 25472996 thaF the p—Yalues s1gmfy the probability qf occurrence of
% Tt SEMAYD oMID. 20134167 2N interaction. In Fig. 10 we plot a bar diagram to show
i ' the distribution of interactions with p-values of the five
predicted interaction sets. From the figure it can seen
that over 41 % of interactions of the proposed method
have p-value greater than 0.6, where as for Tastan et al.
and Doolittle et al. it is over 60 % and for Ray et al. and
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Fig. 8 Proportion of predicted interactions involving HIV-1 proteins in five studies
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Doolittle

proposed

Fig. 9 Overlap of the predicted interaction sets of four literatures

Mukhopadhtyay

Tastan

Mukhopadhyay et al. it is 33.05 and 56.50 %, respectively.
A possible reason behind the good performance of Tastan
et al. and Doolittle et al. may be that the feature set used by
conformal prediction approach is the one collected from
Tastan et al.

GO term and KEGG pathway analysis of meta modules

Gene Ontology and pathway based analysis are the most
important and powerful methods for better understand-
ing the biological meaning of the observed expression
change. In Table 3 we provide most significant GO-terms,
GO-id and KEGG pathway for each of the identified meta
module. For this purpose, we have utilized the Database
for Annotation, Visualization and Integrated Discovery
(DAVID) [14, 24]. In Table 3, row 1, the meta-module con-
sists of 219 proteins, associate with GO term translational
elongation (1.5e-15) and KEGG pathway Ribosome (6.7e-
16). Translation elongation is a process of successive addi-
tion of amino acid residues to a ppolypeptide chain during
protein biosynthesis. Elongation factor 1-alpha (EFlalpha)
is an essential component of this translation machinery
which delivers aminoacyl-tRNA to ribosomes. In [25] it
is stated that elongation factor 1-alpha (EFlalpha) binds
with the entire HIV-1 Gag polyprotein and inhibits the
translation process. It can be noticed in Table 3, row 18
that, the module consisting of 133 proteins are associ-
ated with GO term regulation of apoptosis (2.7E-5) and
KEGG pathway T cell receptor signaling pathway (1.2E-
2). There are many evidences exist that show the con-
nection of HIV-1 with cell apoptosis [26, 27]. Also in
[28] it is established that HIV-1 proteins are responsi-
ble to alter the T-cell signaling pathways by activating

multiple transcription factors. A careful observation in
Table 3 reveals that some modules are enriched with
different neurodegenerative disease pathways, like Parkin-
son’s disease (6.9E-4), Huntington’s disease (2.1E-2). In
[29] it is demonstrated that HIV-infected peripheral blood
mononuclear cells (PBMCs) show overrepresentation in
neurodegenerative pathways.

Conclusions

In this article, we propose a novel approach based on
integration of different biological data sources, for pre-
dicting PPIs between HIV-1 and human proteins. Here,
the integration is achieved through non negative matrix
factorization (NMF) technique. NMF is utilized here to
construct meta-modules from two different categories
of modules identified using three different types of data
sources, viz., protein-protein interaction (PPI), microar-
ray gene expression and gene ontology based data. The
identified meta-modules inherit the biological properties
of all those data sources. All these data sources are ini-
tially converted to respective biological network, in which
the edges capture the similarity between proteins/genes.
For example in PPI network, the edge signifies interac-
tion, while in coexpression network an edge represent
the correlation similarity between two gene expression
profile, and for gene ontology based semantic similarity
network the edge represents functional similarity between
proteins.

We have analyzed the identified meta-modules biolog-
ically and also investigated topological properties of its
member proteins in the whole PPI network. It is evident
from the analysis that in most of the cases the predicted
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Fig. 10 Bar diagrams that show the distribution of interactions with p-values of the five predicted interaction sets. In each plot X-axis represents

human proteins show high degree and betweenness cen-
trality. As a result these proteins are demonstrated to
be a possible candidate for HIV-1 interactions. We have
analyzed the GO terms and KEGG pathway that are asso-
ciated with the meta modules. We have noticed that most
of the modules are enriched with HIV-1 specific GO
terms and signaling pathways. Different neurodegenera-
tive pathways like Parkinson’s disease and Huntington’s
disease are associated with modules.

We observed that HIV interacting protein in meta-
modules show high interactions among them. The pro-
posed prediction technique is guided by this observation.
Low p-value also suggests that the observation is statisti-
cally significant. For validating the predicted interactions
different evidence are collected from existing literature.
We have extensively searched and find the literature where
the predicted interactions are supported. we have pre-
dicted 110 interactions from which we found 44 evi-
dences. We have compared the predicted interactions
with predicted interaction set of four literature: Tastan

et al., Mukhopadhyay et al., Doolittle et al, and Ray
et al. All these studies have utilized completely uncorre-
lated methodologies for predicting interactions. So, it is
not possible to compare these methodologies in a compet-
itive manner instead it could be more appropriate to con-
sider them as collaborative in order to capture the full set
of possible interactions. The analysis reveals that our pre-
dicted set are overrepresented with the interactions with
HIV-1 protein Vpr. Most of the existing predicted sets are
overrepresented with HIV-1 protein Tat and envelop pro-
tein gp120 and gp41. Our predicted set also captures some
proportion of it.

The proposed methodology can be utilized for gen-
eral computational PPI prediction task. In addition to the
prediction task, it can be applied to predict modules by
aggregating different data sources. This also can easily
be extended to other species or a pair of species or to
integrate other auxiliary information to form modules.
Thus the method has significant potential for intra or
inter-species PPI prediction as well as module detection.
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SI. No of genes GO terms KEGG pathway

No

1 219 translational elongation (1.5e-15) Ribosome (6.7e-16)

2 35 positive regulation of transcription, DNA-dependent (2.8e-2) not found

3 248 RNA processing (7.0E-8) Ribosome (3.6e-4)

4 29 positive regulation of protein metabolic process (1.1e-3) Proteasome (6.1e-3)

5 205 translational elongation (1.3E-28) Ribosome (3.8E-21)

6 32 protein kinase cascade (5.1E-3) Notch signaling pathway (9.7E-2)

7 31 regulation of actin filament polymerization (5.5E-3) Cell cycle (5.7E-2)

8 138 regulation of programmed cell death (1.5E-5) Natural killer cell mediated cytotoxicity (5.1E-4)
9 133 immune response (5.2E-8) Allograft rejection (1.1E-5)

10 106 cell cycle (7.4E-6) DNA replication (2.8E-4)

1 92 translational elongation (1.3E-21) Ribosome (1.1E-19)

12 89 translational elongation (2.4E-15) Ribosome (2.1E-13)

13 80 RNA splicing (3.1E-13) Spliceosome (3.1E-5)

14 82 immune response (3.2E-3) Regulation of actin cytoskeleton (4.9E-3)
15 69 chromatin modification (1.8E-2) Cell cycle (2.2E-2)

16 41 regulation of cellular protein metabolic process (1.8E-4) Huntington’s disease (2.1E-2)

17 76 electron transport chain (8.9E-5) Parkinson’s disease (4.5E-9)

18 68 regulation of apoptotic process (2.7E-5) T cell receptor signaling pathway (1.2E-2)
19 66 DNA metabolic process (1.9E-3) Cell cycle (9.3E-2)

20 40 negative regulation of molecular function (1.9E-4) not found

21 72 regulation of organelle organization (2.2E-3) Fc gamma R-mediated phagocytosis (1.6E-2)
22 64 RNA splicing (2.9E-10) Spliceosome (3.9E-9)

23 62 muscarinic acetylcholine receptor signaling pathway (7.5E-4) Chemokine signaling pathway (1.4E-2)
24 42 RNA processing (7.5E-3) Spliceosome (2.9E-2)

25 68 purine ribonucleoside monophosphate biosynthetic process (1.8E-3) Ribosome (5.9E-3)

26 24 immune response (3.6E-4) Aminoacyl-tRNA biosynthesis (7.8E-2)
27 59 regulation of DNA binding (4.0E-3) Systemic lupus erythematosus (9.6E-3)
28 27 cellular defense response (5.6E-3) Endocytosis (5.3E-2)

29 183 oxidative phosphorylation (7.9E-5) Parkinson’s disease (6.9E-4)

30 19 negative regulation of macromolecule metabolic process (5.3E-2) not found
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