
biology

Review

Potential and Limits of Cannabinoids in Alzheimer’s
Disease Therapy

Giulia Abate 1 , Daniela Uberti 1 and Simone Tambaro 2,*

����������
�������

Citation: Abate, G.; Uberti, D.;

Tambaro, S. Potential and Limits of

Cannabinoids in Alzheimer’s Disease

Therapy. Biology 2021, 10, 542.

https://doi.org/10.3390/

biology10060542

Academic Editor: Annette Graham

Received: 14 May 2021

Accepted: 14 June 2021

Published: 17 June 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia,
25123 Brescia, Italy; giulia.abate@unibs.it (G.A.); daniela.uberti@unibs.it (D.U.)

2 Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research,
Division of Neurogeriatrics, Karolinska Institutet, 171 64 Solna, Sweden

* Correspondence: simone.tambaro@ki.se

Simple Summary: This review was aimed at exploring the potentiality of drugging the endo-
cannabinoid system as a therapeutic option for Alzheimer’s disease (AD). Recent discoveries have
demonstrated how the modulation of cannabinoid receptor 1 (CB1) and receptor 2 (CB2) can exert
neuroprotective effects without the recreational and pharmacological properties of Cannabis sativa.
Thus, this review explores the potential of cannabinoids in AD, also highlighting their limitations in
perspective to point out the need for further research on cannabinoids in AD therapy.

Abstract: Alzheimer’s disease (AD) is a detrimental brain disorder characterized by a gradual
cognitive decline and neuronal deterioration. To date, the treatments available are effective only in
the early stage of the disease. The AD etiology has not been completely revealed, and investigating
new pathological mechanisms is essential for developing effective and safe drugs. The recreational
and pharmacological properties of marijuana are known for centuries, but only recently the scientific
community started to investigate the potential use of cannabinoids in AD therapy—sometimes
with contradictory outcomes. Since the endocannabinoid system (ECS) is highly expressed in the
hippocampus and cortex, cannabis use/abuse has often been associated with memory and learning
dysfunction in vulnerable individuals. However, the latest findings in AD rodent models have
shown promising effects of cannabinoids in reducing amyloid plaque deposition and stimulating
hippocampal neurogenesis. Beneficial effects on several dementia-related symptoms have also been
reported in clinical trials after cannabinoid treatments. Accordingly, future studies should address
identifying the correct therapeutic dosage and timing of treatment from the perspective of using
cannabinoids in AD therapy. The present paper aims to summarize the potential and limitations of
cannabinoids as therapeutics for AD, focusing on recent pre-clinical and clinical evidence.

Keywords: Alzheimer’s disease; cannabinoids; THC; cannabidiol; CB1; CB2; anandamide; 2-AG;
amyloid-β; FAAH

1. Introduction

Alzheimer’s disease (AD) is one of the principal conditions of disability among older
people, which impairs a person’s ability to function in daily life. Currently, it is estimated
that more than 50 million people are suffering from AD worldwide [1]. Furthermore,
since one of the main risk factors of AD is aging, and the human lifespan is constantly
increasing, the number of AD cases is projected to double in the following decades [1]. AD
can be divided based on its pathophysiology in sporadic or late-onset AD and familial
or early-onset AD. Sporadic AD, the preeminent form of AD (about 95% of all cases), is
a multifactorial disease, where the etiopathogenesis is still not fully understood and is
influenced by epigenetic and genetic variants combined with environmental and lifestyle
factors. In contrast, familial AD is rare (<5%) and is caused by gene mutations of amyloid
precursor protein (APP) and presenilin-1 and 2 (PSEN1 and PSEN2) [2]. Both sporadic
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and familial AD develop a similar pathology consisting of parenchymal deposition of
amyloid-β (Aβ) in plaques and intraneuronal accumulation of hyperphosphorylated tau
protein, leading to brain inflammation and oxidative stress that have a fundamental impact
on the onset of the disease [3–5]. To date, there is no effective cure, and the treatments
available can reduce only the symptoms in the initial phase of the disease. For that reason,
it is of paramount importance to identify novel effective compounds for counteracting
the AD course or even treat the disease [6,7]. Therefore, a better understanding of the
etiopathological mechanisms involved in AD may provide novel effective, druggable
targets for AD treatment.

The Endocannabinoidergic System (ECS) plays an essential role in brain memory
and cognitive function in multiple ways, and most importantly, ECS is involved in synap-
tic responsiveness and plasticity [8]. The high presence of the primary ECS receptor,
the cannabinoid receptor 1 (CB1) in the hippocampus and cortex, seems to be the main
factor responsible for the psychotropic and cognitive effects linked to cannabis use. Con-
troversial side effects have been observed after marijuana and synthetic cannabinoids
exposition [9,10]. Learning and memory impairment has been reported in several stud-
ies, especially in young individuals [11,12]. Since brain development is completed only
around the age of 25, cannabis use in adolescence may be associated with increased adverse
effects on brain formation and function, particularly in areas sensitive to the pharma-
cological effects of cannabis. However, over recent decades the modulation of the ECS
has emerged as a potentially attractive strategy for treating AD. Activation of both CB1
and cannabinoid receptor 2 (CB2) has revealed beneficial neuroprotective effects reducing
β-amyloid deposition and tau phosphorylation. It should also be noted that low doses of
∆9-tetrahydrocannabinol (THC) showed several beneficial effects by inducing hippocam-
pal neurogenesis and reducing Aβ toxicity (i.e., plaque deposition) in rodents, as well
as in other dementia-related symptoms in both pre-clinical and clinical studies [13,14].
Furthermore, (i) the phytocannabinoid cannabidiol, (ii) the activation of the CB2 receptors,
and (iii) the modulation of the endogenous cannabinoid levels all seem to be potentially
attractive strategies for the absence of psychoactive effects, instead observed, after stimula-
tion of the CB1 receptor [15–17]. Several synthetic selective CB1/CB2 agonists/antagonists
and inhibitors of endogenous cannabinoid degradation have been generated and tested for
their therapeutic effects in the last years. Thus, this review aims to summarize the most
recent advances in cannabinoids research for AD, describing their limitations and potential
as a therapeutic option.

2. Cannabinoids and Endocannabinoid Systems

The recreational and pharmacological properties of marijuana have been known since
ancient times. The first texts documenting the medical benefits of marijuana dates back
to a Chinese medical manual from approximately 2700 B.C. [18]. In recent decades, the
scientific community has deepened its investigation of the chemical properties of the
principal actives in marijuana extract, yet recently, the attention has been focused on under-
standing the biological mechanism involved in their multifaceted effects [19]. Marijuana
(or Cannabis sativa) contains more than 500 distinct compounds, where 120 are classified
as phytocannabinoids with different chemical structures and pharmacological proper-
ties [20]. The first compounds isolated from marijuana extract were cannabinol (CBN)
and cannabidiol (CBD) in 1940 [21], followed years later in 1964 by the isolation of the
main psychoactive component of marijuana (−)-trans-∆9-tetrahydrocannabinol (∆9-THC
or THC) [22]. A milestone in the modern history of the therapeutic use of cannabis is
associated with the identification of the endocannabinoid system in the early 1990s [23].
The isolation, cloning, and expression of the CB1 receptor were succeeded some years later
with the characterization of the CB2 receptor [24]. Both these receptors are coupled to the
Gi/o proteins signal transduction pathway. Over recent years, several other receptors have
been associated as part of the endocannabinoidergic system and were able to modulate the
effect of phyto- and synthetic cannabinoids and endogenous ligands, such as the orphan
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G protein-coupled receptors, GPR3, GPR6, GPR12, and GPR55, and the nuclear hormone
peroxisome proliferator-activated receptors (PPARs) [25–28]. The CB1 receptor is expressed
in both the peripheral and central nervous systems, where it is predominantly presynap-
tically located (Figure 1). The brain distribution of CB1 is consistent with the known
physiological effects of cannabinoids as impairment of short-term memory formation,
altered motor activity, and anxiety [29]. High levels of CB1 receptors have been detected
in the hippocampus, cortical regions, and the cerebellum. Only recently studies have
reported the presence of CB1 receptors in astrocytes [30–32], where CB1 activation was
associated with an increase in calcium uptake and release of glutamate. On the contrary,
the CB2 receptor is, for the most part, expressed in the peripheral immune system cells
and tissues. The presence in the brain of CB2 is very low compared to CB1 and has been
detected in the ventral tegmental area and hippocampal neurons [33]. Nevertheless, CB2
seems to play a crucial role in macrophage/microglia functions [34,35]. The expression
of CB2 drastically increases in activated microglia, and activation of CB2 decreases the
production of proinflammatory molecules [36]. Another important event in revealing the
brain cannabinoidergic system was the isolation of endogenous compounds, which were
able to modulate the cannabinoid receptors. The most investigated and characterized are
the arachidonic acid derivatives: N-arachidonoylethanolamine (anandamide or AEA) and
2-arachidonoylglycerol (2-AG) [37,38]. A particularity of endocannabinoids is that they are
produced postsynaptically on demand and are not stored in vesicles [39]. As described in
Figure 1 that reported a schematic representation of the endocannabinoidergic system at the
neuronal level, endocannabinoids are released in the synaptic cleft from the postsynaptic
neurons. They interact with the cannabinoid receptors located on the presynaptic neurons,
negatively modulating the GABA and glutamate release [40]. Anandamide and 2-AG have
a very short half-life. After their secretion in the synaptic cleft, these compounds re-uptake
and are hydrolytically inactivated by the integral membrane enzyme fatty acid amide
hydrolase (FAAH) and the monoacylglycerol lipase, respectively (MAGL) [41,42]. Most
remarkably, the release of anandamide and 2-AG in the brain affects memory, memory
acquisition, and consolidation such as long-term potentiation [43].

2.1. Phytocannabinoids and Modulation of Cannabinoid Receptor 1 (CB1)

The CB1 receptor is one of the most abundant G protein-coupled receptors present
in the brain. In humans, it is mainly expressed in the hippocampus, cortex, basal ganglia,
brainstem, and cerebellum [44]. The high presence of CB1 in the hippocampus and cortex
correlates with the documented effect of cannabinoids on the learning and memory pro-
cess. Although the pathophysiological role of CB1 in AD is still elusive, the lack of CB1
receptors has been associated with a faster decline of cognitive function and loss of neurons
in the hippocampus in WT mice [45]. Lee and colleagues (2010) [46] demonstrated that
CB1 receptor levels do not change in AD, and they suggested a role of CB1 in preserving
cognitive function. Interestingly, CB1, together with the CB2 cannabinoid receptor, was
found in Aβ plaques in post-mortem brain tissue from individuals with AD [47]. Several
findings showed that acute activation of CB1, especially at a young age, negatively affects
dose-dependently short-term memory performance [48,49]. An analogous consequence
has also been reported for chronic users, through observation, a decrement in the capacity
to learn and remember new information compared to non-marijuana users [50]. In contrast,
there is no clear evidence that acute or chronic use of cannabis has a permanent impairment
in long-term memory and working memory [51]. Even though undesired psychoactive
effects have conditioned the medical research and have created skepticism in the thera-
peutic use of cannabis and its related chemicals, a consistent beneficial impact in memory
impairment in AD-aged rodents and humans has been described for THC, cannabidiol,
and other synthetic compounds. Findings that endorse the CB1 receptor as a potential
therapeutic target for AD treatment and it needs and deserves further investigation.
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Figure 1. Schematic representation of the endocannabinoidergic system in the brain. Putative localization of endocannabi-
noid receptors in the nervous and glia system. Enzymes involved in endocannabinoid biosynthesis and degradation are
reported in both pre-and postsynaptic neurons. 2-AG (green) and AEA (blue) are synthesized from phospholipids on
demand. Activation of presynaptic CB1 receptors negatively modulates cell calcium influx and the release of GABA and
glutamate neurotransmitters in GABAergic and glutamatergic neurons, respectively. Instead, the stimulation of CB1 in
astroglia positively modulates calcium influx and glutamate release. Activation of CB2 in microglia negatively affects the
release of TNFα and ILs. AA: arachidonic acid; 2-AG: 2-acylglycerol; AEA: anandamide; PPARs: peroxisome proliferator-
activated receptors; FAAH: Fatty acid amide hydrolase; MAGL: monoacylglycerol lipase; mGluR metabotropic glutamate
receptors; ILs: interleukins; TNFα: tumor necrosis factor-α.

2.2. THC

∆9-THC or THC is the most abundant compound among the more than 500 compo-
nents isolated from marijuana extract [52] and is the primary psychoactive component of
cannabis. THC has a similar affinity for both CB1 and CB2 receptors, although most of the
THC psychoactive effects are related to the activation of CB1 receptors [53].

Chronic and acute intoxication by marijuana, and consequently to THC, has often been
associated with several adverse effects, such as a reduction in most cognitive functions,
learning, memory, attention, and executive function [54], and in some vulnerable subjects,
an increased risk of both psychotic symptoms and schizophrenia-like psychoses [55]. In
cannabis-dependent subjects, a deficit in striatal dopamine release was found [56], and
a single-photon emission computed tomography analysis showed lower hippocampal
perfusion among marijuana users than controls [57]. Furthermore, abnormalities in axonal
connectivity and hippocampus and amygdala volumes have been found in long-term,
heavy cannabis users [58,59]. The recreational consumption of cannabis has increased in
the past few years, and particularly in those countries that have legalized the use as well
as reduced the starting age for consumers. With the increased potency of cannabis in the
last few years, vulnerable users being negatively impacted has ensued. There has been
a continual increase in the THC content or potency of marijuana in recent decades, from
approximately 4% in 1995 to 17% in 2017 [60]. This rise increases the chance of experiencing
adverse effects linked to recreational consumption [61].
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Conversely, the use of marijuana and THC have shown a strong therapeutic potential
for the treatment of neuronal inflammation and neurodegenerative diseases such as AD.
For the correct interpretation of the therapeutic potential of THC, it is vital to circumscribe
and separate the THC or marijuana effects reported under a “non-medical” (recreational
consumption), and list it under recreational consumption along with the pre-clinical find-
ings and the effects reported in clinical trials under medical supervision. Essentially, the
primary reported harmful effects of marijuana came from studies conducted in young
adults or in adolescents, which is a critical period of development associated with a high
vulnerability to the central effects of the drugs, whereas few studies have been conducted
in adults. Only recently, a biphasic dose-response and an age-related effect started to be
considered important discriminative factors to induce a beneficial impact of THC on the
brain and cognition [62] (Figure 2). THC showed a broad spectrum of effects that could
be potentially beneficial in blocking or preventing AD. For example, THC has shown
an anti- Aβ aggregation activity in an in vitro study. THC reduced the fluorescence in-
tensity in the thioflavin test in a dose-dependent manner by direct interaction with the
Aβ peptide [63], affecting Aβ fibril formation and aggregation [64]. THC stimulates the
removal of intracellular Aβ and blocks the inflammatory response [65,66]. THC has been
shown to inhibit the enzyme acetylcholinesterase (AChE) activity more effectively than the
approved drugs for AD treatment—donepezil and tacrine [67]. In rat cortical neuron cul-
tures, the toxicity induced by high levels of the excitatory neurotransmitter glutamate was
inhibited by THC. The neuroprotection effects of THC were not reduced by cannabinoid
receptor antagonist, indicating a therapeutic mechanism not mediated by cannabinoid
receptors [68]. Administration of low doses of THC in rats was associated with enhanced
neurogenesis in the brain, especially in the hippocampus, and an improvement of cognitive
functions. The administration of ultralow doses of THC in mice protected the brain from
LPS neuroinflammation-induced cognitive damage [69]. THC was effective in significantly
reducing Aβ levels and neurodegeneration in 5XFAD transgenic mice by increasing the
levels of neprilysin, the endopeptidase responsible for Aβ degradation [70]. In APP/PS1
mice treated with THC, astrogliosis, microgliosis, and inflammatory-related molecules
were found reduced with effects that were even stronger in the combined treatment of
THC and CBD [71]. Chronic treatment with THC and CBD improved memory impairment
in APP/PS1 mice at advanced stages of the AD pathology. However, this treatment did
not change the Aβ deposition and gliosis; phenomena instead observed when THC and
CBD were administered at the early stages of the disease [72]. The therapeutic effects
produced by THC and CBD in aged APP/PS1 mice were combined with an improvement
of synaptic function. In particular, the treatment induced a reduction in metabotropic
glutamate receptor 2/3 and increased the levels of GABA-A Rα1 compared with control
mice [72]. In general, CB1 receptor agonists and THC induced the release of brain-derived
neurotrophic factor BDNF in cells and several brain regions [73]. This phenomenon can
be one of the main biological events linked to the THC neuroprotective effect. In this
respect, Marsicano et al. [74] revealed that the CB1-induced BDNF expression participates
in the therapeutic effect of CB1 receptor activity against neurotoxicity. These results have
a high translational value considering that BDNF signaling regulates morphological and
physiological synaptic plasticity. Most importantly, BDNF expression declines with aging
and even more in pathological aging, and re-established BDNF physiological levels can be
considered an essential way for rescuing synaptic plasticity in AD patients.

On the clinical side, in patients with AD treated for six weeks with dronabinol (2.5 mg),
a synthetic form of THC was observed as a positive effect on body weight and an improve-
ment in disturbing behavior [14]. After two weeks of treatment, dronabinol (2.5 mg) re-
duced nighttime activity and agitation in patients in advanced stages of AD [75]. In another
study, low-dose oral THC (1.5 mg)—in a 21-day-treatment—did not affect dementia-related
neuropsychiatric symptoms. In contrast, it was tolerated in treated patients, and no rele-
vant side effects were reported [76]. THC safety at low concentration and rapid absorption
(with maximum plasma concentrations at two hours after treatment) was also reported in
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another clinical study on older dementia patients [77]. Efficacy and safety with a significant
reduction in the Neuropsychiatric Inventory and Clinical Global Impression severity scale
was also reported in patients treated with medical cannabis oil (MCO) containing THC [78].
The synthetic oral THC analog Nabilone significantly reduces agitation over six weeks of
treatment in AD patients. Nabilone was also associated with significant improvements in
overall neuropsychiatric symptoms and caregiver burden [79].
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The clinical efficacy of THC on agitation and aggression in patients with AD remains
inconclusive, though there may be a signal for a potential benefit of synthetic cannabinoids.

2.3. Cannabidiol

The other main phytocannabinoid in cannabis plants is cannabidiol (CBD), which
comprises up to 40% of the total compounds extract. CBD, as opposed to THC, has no
psychotropic properties, as also confirmed in a recent trial where healthy volunteers did
not show any effects in the emotional state, cognitive performance, or attention after re-
ceiving CBD [80]. CBD has a very low affinity to the CB1 and CB2 receptors [53], and
several findings proposed that CBD operated as a negative allosteric modulator/inverse
agonist in both CB1 and CB2 receptors [81–83]. Furthermore, CBD acts as an inverse
agonist for G protein-coupled orphan receptors such as GPR3, GPR6, and GPR12. Other
studies reported that CBD could activate the Transient Receptor Potential Vanilloid (TRPV)
channels, serotonin (5-HT1A), PPARs, N-methyl-D-aspartate (NMDA) receptor, and α-
amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors. The potential
employment of CBD in AD therapy is under debate, with still few studies available. How-
ever, several findings support the therapeutic potential of this compound in improving
some symptoms associated with AD. Notably, in preclinical characterization, CBD exhib-
ited neuroprotective, anti-inflammatory, anxiolytic, and anti-insomnia properties. In this
context, the strong antioxidant effect of CBD was reported against glutamate toxicity in
primary neuronal culture [68]. The neuroprotection and antioxidant properties of CBD
were also observed on β-amyloid peptide-induced toxicity in cultured rat PC12 cells [84].
CBD modulates microglial cell function in vitro and prevents the learning of a spatial
navigation task and TNF-α and IL-6 gene expression in β-amyloid-injected mice [71,85].
Tau hyperphosphorylation plays a crucial role in the pathogenesis of AD. In this regard, it
has been demonstrated that CBD inhibits β-amyloid-induced tau protein hyperphosphory-
lation nitric oxide production [86,87]. In mesenchymal stem cells treated with CBD, a lower
gene expression of some specific genes associated with AD were observed, including genes
coding for the proteins responsible for tau phosphorylation and Aβ production as the β-
and γ-secretase genes [88]. Likewise, CBD prevented the expression of proinflammatory
glial molecules in the hippocampus of an in vivo model of Aβ-induced neuroinflammation.
CBD prevented the expression of proinflammatory glial peptides in the hippocampus of
mice Aβ-induced neuroinflammation [89]. Long-term oral CBD treatment improved the
social recognition memory and pathophysiology of a double transgenic APP × PS1 mouse



Biology 2021, 10, 542 7 of 21

model for AD [90]; in the same mouse model, CBD treatment significantly up-regulated
the autophagy pathway [91]. Furthermore, in a recent case study, CBD consumption
significantly improved neuropsychiatric symptoms in AD patients [92].

2.4. Synthetic CB1 Modulators

Several synthetic cannabinoid compounds have been generated in the last decades
with the aim to selectively investigate the physiological and pathophysiological role of
the two primary endocannabinoid receptors CB1 and CB2. These synthetic compounds
have been tested as a therapeutic tool in several pre-clinical models, including in vivo and
in vitro AD models. To date, the only chemical modification of ∆9-THC that has reached
the status to be an approved drug from the FDA is nabilone, under the name Cesamet,
for the treatment of nausea and vomiting associated with cancer chemotherapy [93]. CP
55,940 was the first synthetic cannabinoid analog to be synthesized from a chronological
perspective [94], followed by several others. Some of the most extensively studied selective
CB1 or mixed CB1/CB2 agonists are WIN 55,212-2, HU 210, ACEA, and JWH-018. Regard-
ing these compounds, in recent decades, numerous preclinical studies in rodents, despite
sometimes controversial, have highlighted their positive effects on memory and learning
processes and on other neurobiological mechanisms underlying AD. Systemic adminis-
tration of CP 55,940, WIN 55,212-2, and ACEA affected working memory [95] and object
recognition memory in rats [96,97]. A similar effect using CP 55,940 was also reported in
mice [98]. The negative effects of synthetic cannabinoids (WIN 55,212-2 and CP 55,940)
on learning and memory appear to be directly linked to the inhibition of acetylcholine
release in the hippocampal region [99,100] and the inhibition of glutamatergic synaptic
transmission in the prefrontal cortex [101,102]. Nonetheless, CB1 receptor modulation
in the hippocampus is essential for the memory disruptive effects of cannabinoids but
are not essential for the other common CNS actions [103]. Hippocampal slices exposure
to synthetic cannabinoid agonists (WIN 55,212-2, HU 210) affects long-term potentiation
(LTP) [104,105], and (HU 210; JWH-018) alter spontaneous firing, bursting, and synchronic-
ity in hippocampal cells [106–108]. Acute administration in mice of JWH-018, known in the
illegal market as Spice and ‘herbal blend’, impair cognitive function affecting hippocampal
synaptic transmission and memory mechanisms [108]. A decrease in BDNF following
JWH-018 treatment was observed in the hippocampus. As previously mentioned, the
neurotrophic factor BDNF plays an important role in modulating the learning and memory
process, promoting neurogenesis, synaptogenesis [109], and the alteration of BDNF levels
after JWH-018 exposition, which may explain its negative effect on memory performance.
Nevertheless, this effect on BDNF release observed with JWH-018 is in contradiction with
the effect reported previously with THC administration, where an increased BDNF produc-
tion was observed. Together with the negative effect on memory and learning processes,
other findings strongly supported a beneficial therapeutic effect by CB1 receptors activa-
tion. Likewise, reported for the phytocannabinoid THC, neurogenesis in the hippocampus
of aged rats could be induced using a low dose of WIN 55,212-2 [110]. A similar effect
was also observed after chronic treatment with HU 210, which promoted neurogenesis in
the dentate gyrus of adult rats [111]. The primary role of CB1 cannabinoid receptors in
regulating neurogenesis in the adult brain was confirmed in CB1-knockout mice, which
showed reductions in the number of BrdU-labeled cells to −50% of WT levels in the dentate
gyrus and subventricular zone—suggesting that CB1 activation promotes neurogenesis.
The involvement of CB1 in neurogenesis was further confirmed in CB1 knockout mice
where it was observed defective adult neurogenesis [112]. Furthermore, the treatment of
activated primary human astrocytes with WIN 55,212-2 significantly reduced in a dose-
dependent manner the expression and release of cytokines [113]. HU 210 ameliorated
the memory deficits of olfactory bulbectomized (OBX) rats [114]. In contrast with what
was previously reported, chronic treatment with WIN 55,212-2 significantly normalizes
this cognitive deficit in old Tg APP mice accompanied by a reduction in the inflammation
and an increased Aβ clearance [115,116]. Chronic administration of the selective CB1
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agonist ACEA at pre-symptomatic or early AD stages reduced the learning and memory
deficits observed in the double APP/PS1 transgenic mice. In primary neuronal cell cultures,
ACEA reduced the cytotoxic effect induced by Aβ42 oligomers and reduced Aβ-induced
glycogen synthase kinase-3β activity in cortical neurons. Moreover, a defect in astroglial
response and a decreased expression of the proinflammatory interferon-gamma were found
in the surrounding area of Aβ plaques deposition in ACEA-treated mice when compared
with non-AD mice [117]. The infusion of ACEA in the rat hippocampus prevented the
neurotoxic Aβ-induced effect. ACEA prevented cognitive impairment and decreased the
activation of microglia and astroglia in the dentate gyrus [118].

2.5. Modulation of Cannabinoid Receptor 2 (CB2)

The other side of the endocannabinoid system is mainly represented by the CB2
receptor—mostly considered as related to the periphery—as it was initially found to be
highly expressed at the spleen level and hard to detect in the brain. Today, many confirmed
CB2 expression in selective areas of the brain, despite its main localization in the microglia.
In detail, Svizenska et al. [119], mapping the CB2 receptor distribution in the mammalian
nervous system, found CB2 receptor in the anterior olfactory nucleus in the neurons of the
piriform, orbital, visual, motor, and auditory cortex. However, CB2 receptors in physiolog-
ical conditions are expressed very low in the brain while increasing in the expression in
both neuronal and non-neuronal cells but only in pathological conditions. CB2 receptors
may play a role in nociception [120,121], gastrointestinal function [122], neural progenitor
cell proliferation and axon guidance [123,124], and synaptic transmission [125,126] among
other functions.

Since CB1 receptors are primarily related to the unwanted psychotropic effects of
marijuana-derived cannabinoids, the CB2 receptor becomes really attractive as a druggable
target. The potential therapeutic use of CB2-agonist in AD is also reinforced by the findings
that in the AD human brain, CNR2 (the gene encoding the CB2 receptor) was found to be
increased compared to age-matched controls [127]. The anti-inflammatory effects of CB2
agonists have been widely described in different transgenic mouse models of AD and in
in vitro AD-like models [128]. Additionally, it was demonstrated that in Aβ-treated mice,
cannabinoid treatment prevented microglial activation and avoided induced cognitive
impairment. In human postmortem AD brain tissues, cannabinoid CB2 receptors were
found selectively overexpressed in neuritic plaque-associated glia [129]. A novel CB2
agonist (MDA7) promised improved cognitive performance in rats microinjected with Aβ

into the hippocampus by favoring Aβ clearance [130]. CB2 receptors, as reported for CB1,
are involved in neurogenesis. In fact, in CB2-deficient mice, the number of BrdU+ cells in
the dentate gyrus was found reduced [15,123].

Evidence suggests that neuroinflammation may be pivotal in tangle formation [131].
Thus, another therapeutically CB2-mediated effect was also linked to the modulation of
hyperphosphorylated tau, another benchmark of AD. In fact, chronic administration of
JWH-133, a selective CB2 receptor agonist, was found effective in reducing tau hyper-
phosphorylation surrounding Aβ plaques in APP/PS1 mice [132]. Furthermore, mice
overexpressing human tau (PK−/−/TauVLW) showed a marked reduction in neurofibril-
lary tangles with prolonged treatment with Sativex®, an already approved medicine based
on mixed ∆9-THC and CBD natural extracts [133]. Due to the multifactorial and sporadic
nature of AD, multi-target drugs capable of acting on multiple targets simultaneously
(comprising the CB2 receptor) are becoming an attractive therapeutic option in the field
of AD. Recently, Scheiner et al. [134] synthesized dual-acting hybrid compounds combin-
ing the effects of a benzimidazole-based CB2 selective agonist with those of tacrine as a
cholinesterase (ChE) inhibitor. These hybrids showed neuroprotection against glutamate-
induced oxidative stress when tested in vitro while showing pronounced effects on short-
and long-term memory, avoiding the hepatotoxicity side effect of tacrine [134]. Again,
with a similar hybrid approach, Montanari et al. [135] identified a potent and selective
hybrid CB2-ligand able to simultaneously restore the cholinergic system by inhibiting
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butyrylcholinesterase (BuChE), within addition neuroprotective activity against Aβ1-42
oligomers and immuno-modulatory effects, addressing microglia to the neuroprotective
M2 phenotype [135]. Consequently, multi-target CB2 agonists can be useful in the develop-
ment of neuroprotective and potential immunomodulating drugs for AD, acting via the
endocannabinoid system.

2.6. Modulation of Endogenous Cannabinoid Anandamide and 2-AG

Modulating the levels of the endogenous cannabinoid compounds (i.e., anandamide
and 2-AG by pharmacological blockade of their degradation) is a potential therapeutic
approach for treating AD. The inhibition of the two main endocannabinoid hydrolase
enzymes, FAAH and MAGL, augments the levels of endocannabinoid available for in-
teraction with their receptors. Most importantly, it augments no relevant undesirable
side effects in motility, catalepsy, body temperature, or cognition as reported for high
doses of CB1 agonists [136–138]. Specifically, relevant expression changes of anandamide
(2-AG) and their proteolytical enzymes (FAAH and MAGL) during normal aging and the
neurodegenerative process have been observed in both humans and rodents [139,140].

In humans, the analysis of frontal and temporal cortex tissues from post-mortem
AD patients revealed significantly reduced levels of anandamide compared to the control
subjects. Yet, no differences in 2-AG levels were observed [141]. Moreover, anandamide
levels have been inversely correlated with Aβ42 but not with Aβ40, amyloid plaque
deposit, or tau protein phosphorylation. In another study, on the contrary, in the frontal
cortex from human AD patients and in aged-rat synaptic terminals, a higher anandamide
availability and reduced FAAH synaptic activity were observed [142]. High levels of the
anandamide hydrolase enzyme FAAH were instead found around the amyloid plaque
deposition in astrocyte and microglia cells, supporting the ECS may play a modulatory
role in the inflammatory response in the AD neuroinflammation process surrounding the
plaques [129]. The hippocampal protein concentrations for the DAGLα and DAGLβ, 2-AG-
biosynthesizing enzymes, were also found to be significantly increased in the advanced
stage of AD (Braak stage VI) in microglia accumulating near senile plaques [143].

In rodents, an enhancement in the mRNA levels of the 2-AG-biosynthesizing enzyme
DAGLα together with a higher level of 2-AG was also observed at hippocampal level after
acute stereotaxic injection of amyloid proteins into the rat cortex [144]. In the same study,
the β-amyloid-induced neuronal toxicity in the hippocampus was reversed by VDM-11,
an inhibitor of endocannabinoid cellular reuptake. In WT mice, hippocampus 2-AG, but
not anandamide levels, decreased during aging; this decrease seemed to be linked with
a significant reduction in DAGLα expression at both protein and mRNA levels and by
enhanced MAGL activity [140]. Still, there is a lack of information concerning the age-
related changes in endocannabinoid levels, and more research is needed to clarify some
controversial findings reported in the literature. However, re-establishing the physiological
endocannabinoid tone may represent a preventive or even a potential treatment for AD.

In this context, the selective pharmacological inhibition of FAAH and MAGL or
dual inhibition of FAAH/MAGL—with the following increase in anandamide and 2-AG—
promotes a reduction in Aβ-protein deposition in an AD rodent’s model. Currently, several
classes of reversible and irreversible covalent FAAH inhibitors have been developed, such
as URB597, OL-135, PF-3845, AM3506, PF-04457845, JNJ-40355003, JNJ-42165279, JNJ-
1661010, and BIA 10-2474, although the majority of studies have involved URB597. The
irreversible covalent URB597 promoted the increase in endocannabinoid anandamide by
inhibiting FAAH activity [145,146]. Furthermore, URB597 efficiently suppressed glutamate
Aβ42-induced toxicity in primary hippocampal neurons and stimulated the mitochondrial
membrane potential [147]. URB597 treatment is associated with the reduction in inter-
leukin (IL)-1β, tumor necrosis factor-α (TNFα) expression, and restoration of long-term
potentiation in aged rats [148]. Similar findings have been recently reported after treating
monocytes/macrophages from AD patients with URB597, where a general reduction in
proinflammatory cytokines was observed [149]. It is noteworthy to mention the inhibi-
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tion of FAAH by OL-135 accelerated acquisition and extinction rates in a spatial memory
task [150]. Many FAAH inhibitors (i.e., PF-04457845 and JNJ-42165279) have been charac-
terized mainly for their analgesic and anxiolytic effects in rodents and humans [138,151]. In
particular, PF-04457845, which is 25-fold higher for human FAAH inhibition than URB597,
showed a high in vivo efficacy and long duration of action in a rat model of inflammatory
pain with also a high oral bioavailability and high brain penetration. These results made
this compound a strong candidate to be used in the clinical treatment of central nervous
system disorders. So far, only a few clinical trials exist; however, the pharmacological
effects of PF-04457845 have been evaluated in humans and were found to be very well
tolerated in healthy subjects [152]. It should also be mentioned that the inhibition and the
knockdown of FAAH suppressed prostaglandin E2 production and proinflammatory gene
expression [153] supported even stronger FAAH inhibition as a therapeutic strategy for
reducing AD-related neuroinflammation. The effects of selective inhibition of MAGL have
also been characterized. The MAGL inhibitors synthesized can be classified into irreversible
inhibitors (maleimides, disulfides, carbamates, ureas, and arylthicarmide) and reversible
inhibitors (tetrahydrolipstatin-based derivatives, isothiazolines, natural terpenoids, and
amide-based derivatives). Pharmacological and genetic inactivation of MAGL (in a mouse
model of AD) attenuated eicosanoid levels, attenuated glial activation and associated
neuroinflammation, lowered amyloid β levels, and reduced amyloid plaque burden [154].
Interestingly, a reduced prostaglandin production, rather than enhanced endocannabinoid
signaling, seemed to be the underlying main pathophysiology mechanism involved. In
this regard, MAGL has been shown that, with the hydrolyzes of 2-AG, it generates the
primary arachidonic acid pool for neuroinflammatory prostaglandins [155]. Among dif-
ferent MAGL inhibitors, JZL184 was characterized first, and then after further structural
modification, several new derivatives of JZL184 were generated [17]. In an AD mouse
model where JZL184 was used as a treatment, a decrease in proinflammatory reactions
of microglia, along with reduced total Aβ burden and its precursors, were found. Like-
wise, it reduced the proinflammatory responses of microglia and astrocytes isolated from
adult mice [156]. Inhibition of MAGL enzyme activity and subsequent increase in 2-AG
correlated with decreased Aβ accumulation and expression of β-secretase (or BACE1),
an enzyme involved in APP cleavage and Aβ generation. MAGL inhibition has been
associated with several anti-AD effects: reducing neuroinflammation, improving synaptic
plasticity, spatial learning, and memory in AD animals [8].

The compound JZL195 is a potent inhibitor of both FAAH and MAGL, with an IC50
of 2 and 4 nM, respectively [17]. Subcutaneous delivery of JZL195 enhanced the brain
levels of anandamide and 2-AG in a concentration-dependent way and produced anti-
allodynic effects in a mice model of chronic neuropathic pain [17,157]. The important
role of the endocannabinoid system in the adult neurogenesis process was confirmed in
FAAH-deficient mice [158]. In these mice, the hippocampal proliferation of multipotent
neural progenitor cell counting was significantly higher when compared with control WT
mice. A similar finding was also observed increasing the levels of anandamide by phar-
macological inhibition of FAAH activity [159]. Additionally, in DAGL-KO mice, the adult
neurogenesis in the hippocampus and the subventricular zone was compromised [160].
Although the molecular mechanisms responsible for the FAAH and MAGL effects against
neuropathology of AD remain to be determined, the findings reported so far support that
FAAH and MAGL would be promising therapeutic targets for preventing and treating AD.
Therefore, the pharmacological inhibition of these two enzymes has appeared as a poten-
tially appealing strategy to elevate endocannabinoidergic tone. Table 1 summarizes the
principal AD-related beneficial and adverse effects of the prevalent cannabinoids described.

Another potential of endocannabinoids as a therapeutic option for AD is their ability
to modulate the mammalian target of the rapamycin (mTOR) signaling pathway [161,162].
The activation of mTOR is a trigger for Aβ generation; thus, its inhibition is an important
therapeutic target for AD [163]. Of note, 2-AG treatment was able to prevent the activa-
tion of mTOR signaling pathway in the hippocampus in mice through a CB2-dependent
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mechanism [164]. Again, CB1 and mTOR are intimately linked and involved in regulating
excitatory glutamatergic inputs and energy balance at the brain level [165]. Overall, despite
this intriguing link between endocannabinoids and mTOR need to be further explored,
these data further confirmed the endocannabinoid system as an attractive therapeutic
strategy to be further deepened in AD.

Table 1. Cannabinoids principal AD-related beneficial and adverse effects.

Compounds Endocannabinoid
System Targets Beneficial Anti-AD Effects Adverse/Unwanted Effects

THC Mixed CB1 and CB2 agonist

Inhibition of achetylcholinesterase [67]
Reduce Aβ levels [63]

Hippocampal neurogenesis [166]
Induce BDNF release [73,74]

Psychotic effects [55]
Reduce cognitive functions [54]

A deficit in dopamine release [56]

CBD Mixed CB1 and CB2 agonist

No psycoactive effets [80]
Neuroprotection [84]

Reduce microglia activation [85]
Delay cognitive decline [167]

Hypotension at high doses [168]
Anxiogenic-like effect [169]

WIN 55,212-2
HU 210

CP 55,940
JWH-018

Mixed CB1 and CB2 agonist
Increase Aβ clearance [116]
Promote neurogenesis [111]

Prevent cognitive impairment [113,114]

Defect in working memory [95–97]
Affects long-term potentiation [104,105]

Sedation [170]

ACEA Selective CB1 agonist Anti-inflammatory [117]
Prevent spatial memory impairment [118] N.R.

JWH-133
AM-1241

MDA7
Selective CB2 agonist

Increase Aβ clearance [116]
Improve cognitive performance [116]

Prevent microglial activation [128]
Reduce tau hyper-phosphorylation [132]

Immune suppression [171]

URB597
PF-04457845

JZL184
JZL195

Modulation of endogenous
cannabinoid anandamide

and 2-AG

Suppress glutamate Aβ42-induced
toxicity [147]

Reduce proinflammatory interleukin
expression [148,156]

Restore long-term potentiation [148]
Reduce amyloid plaque burden [154]

Cardiac diastolic stiffness [172]

3. The Orphan G Protein-Coupled Receptors (GPRs)

In addition to the two well-characterized G protein-coupled receptors CB1 and CB2,
several orphan G protein-coupled receptors or GPRs have been described in the last
years to be putative cannabinoid receptors, such as GPR3, GPR6, GPR12, GPR18, and
GPR55 [173–175]. GPR3, GPR6, and GPR12 have a close phylogenetic affinity and conserve
specific sequences with the cannabinoid receptors CB1 and CB2 [173]. Moreover, these
receptors are highly expressed in several brain areas, where sphingosine 1-phosphate
(S1P) and sphingosylphosphorylcholine have been identified as putative endogenous
ligands of GPR3, GPR6, and GPR12 [176,177]. Recently, it has also been shown that CBD,
the non-psychotropic phytocannabinoid, binds to GPR3, GPR6, and GPR12, acting as an
inverse agonist [27]. Therefore, besides their physiological role is still unclear, they seem
involved in several brain processes related to pain, memory, and emotion. Interestingly,
GPR3 was found highly expressed in the AD postmortem brain and correlated with
the entity of the AD pathology [178]. The activation of GPR3 directly affects Aβ-plaques
deposition by stimulating Aβ production [179]. On the other hand, genetic deletion of GPR3
decreased the amyloid plaque deposition and improved cognitive impairment in preclinical
AD mouse models [178]. An increased hippocampal expression was also observed for
GPR6 in the 3 × Tg AD mouse model, where GPR6 modulates the neuroprotective effect
of the complement protein C1q against Aβ [180]. GPR18 and GPR55 despite, GPR3,
GPR6, and GPR12, have low homology with CB1 and CB2 [175]. GPR55 has opposite
signaling pathways from CB1/CB2 since it is coupled to Gα12,13, and its activation is
linked to an outflow of calcium from intracellular stores via phospholipase C [181]. Several
cannabinoid compounds have been found to bind to GPR18 and GPR55 as anandamide,
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2-AG; the bioactive lipid related to endogenous cannabinoids lysophosphatidylinositol
(LPI); the phytocannabinoids THC and CBD; and the synthetic compounds CP 55,940,
AM251 [181–183]. Both GPR18 and GPR55 form a receptor-receptor interaction with CB2
in microglia [184,185]. The physiological properties of this heteroreceptor are not still
fully elucidated; however, some studies showed a negative cross-talk between GPR55 and
CB2 [185,186]. GPR55 modulates neuroinflammation, and its activation has been reported
to increase the release of interleukins (ILs) [187]. On the other hand, GPR55 antagonists
effectively block microglial activation, similarly in GPR55−/− knockout mice have observed
a reduction in the release of the proinflammatory cytokines [188,189]. GPR55−/− mice
show a normal life span and no alteration in endocannabinoids and related lipids levels;
however, a deficit in motor coordination was reported, supporting a role for GRP55 in
motor function [190]. GPR55 is highly expressed in the hippocampus, which suggests a
role in learning and memory processes. The pharmacological inhibition of GPR55 has
been associated with an improvement in spatial learning and memory in rats [191]. In a
recent study, GPR55 was found highly expressed in the hippocampus dentate gyrus, CA1,
and CA3 of the 5xFAD AD mouse model [192]. These findings, taken together, support
GPRs being potentially involved in AD pathology and can be considered promising novel
pharmacological targets for AD treatment. In particular, despite just a few studies are
available to date, and GPR antagonism might be associated with side effects mostly in
motor function as for GPR55 deletion, the GPR modulation of inflammatory response could
be a new therapeutic opportunity to counteract AD neuroinflammation.

4. Limits of Cannabinoids in Alzheimer’s Disease Therapy

To date, cannabis and cannabis-derived compounds have not been approved by the
US Food and Drug Administration (FDA) to treat or manage Alzheimer’s, and only a
few clinical trials to evaluate the use of THC (dronabinol and nabilone) or CBD have
been completed or are ongoing. For example, nabilone, a synthetic cannabinoid currently
approved for the treatment of chemotherapy-related nausea and vomiting, was found
effective in reducing symptoms of agitation and aggression among AD patients [79].
However, to ensure patient safety, it becomes critically important to closely monitor side
effects such as sedation and possibly cognitive decline.

Considering cannabinoids as a therapeutic option, identifying an effective dosage and
treatment time is challenging. It is already well-known that molecular changes related
to AD began several years before symptoms manifest. As a result, neuroprotective and
immunomodulatory potential effects of cannabinoids should be administered before AD is
exacerbated and prolonged in time. However, studies on the long-term effects of cannabi-
noids are not yet available. While studies on the long-term cognitive effects of heavy
cannabis use suggest, cannabis negatively influences cognitive functions, such as episodic
memory, attentional control, and motor inhibition [193,194]. For this reason, further studies
to explore the short- and long-term effects of cannabinoids are urgently needed.

Unfortunately, studies investigating cannabinoid drug-drug interactions are still lim-
ited. Several investigations would be fundamental to underpinning this critical point,
considering patients with dementia take multiple medications, and cannabinoids could be
included as an additional therapeutic strategy to tackling the symptoms of dementia.

5. Final Remarks

Marijuana and cannabinoids have been associated with a wide range of beneficial
pharmacological effects from one side and with harmful and adverse effects from the other.
The mechanisms behind this opposed phenomenon are not fully understood. However,
emerging data suggest that dosage and user age are crucial factors involved in multifaceted
cannabinoids effects. Marijuana’s adverse effects are mainly related to interfering with cog-
nitive and executive functions. Many western countries are legalizing the use of marijuana
without giving any education and information to users about the risks associated with
its abuse. An open market makes cannabis easily accessible, increases consumption, and
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consequently leads to adverse health repercussions in individuals in vulnerable categories
such as adolescents and young adults.

On the contrary, increasing scientific evidence supports that the ECS is associated
with neurodegenerative diseases, and modifying its tone could be a promising thera-
peutic tool for treating AD. In some cases, the same substances implicated in impairing
learning and memory functions could be beneficial in counteracting neurodegenerative
processes at low doses. Cannabinoids can reduce oxidative stress and excitotoxicity, amy-
loid plaques, and neurofibrillary tangles formation. AD neuroinflammatory processes can
be suppressed by the immunomodulatory effect of the CB2 receptor controlling microglial
activity. Another significant effect is on the availability of acetylcholine and prevention of
acetylcholinesterase-induced Aβ aggregation. Most importantly, accumulated evidence
indicates that cannabinoids induce neurogenesis in the hippocampus in adults. Likewise,
the inhibition of endocannabinoid degradation can be a promising pharmacological strat-
egy to counteract the aging process and have a beneficial impact on AD progression. The
modulation of production and degradation of endocannabinoids can be other than effi-
cacious, with low side effects, compared to synthetic CBs receptors agonist/antagonist
compounds. Clinical studies reported several beneficial effects in AD-related symptoms
after cannabinoid administration. After dronabinol consumption, patients in the late stages
of dementia showed a reduction in nocturnal motor activity and agitation. Notably, CBD
has shown relevant high safety and anti-AD properties by mediating mechanisms related
to the non-canonical cannabinoid receptor, making it one of the most prominent candidates
between the phytocannabinoid compounds to be further tested in clinical trials. Recently,
spray cannabinoid-based drugs such as Sativex (containing a 1:1 ratio of THC:CBD) and
Epidiolex (containing only CBD) have been approved for chronic pain conditions in the
USA, Canada, and several European countries, which makes it easy to control the cannabi-
noid dose delivery if compared to smoke inhalation [195]. In addition, this mouth spray
and oral delivery approach could be especially beneficial for individuals with AD.

6. Conclusions

The last in vitro and in vivo studies strongly supported the further investigation into
the use of cannabinoids as a therapeutic approach to AD. Currently, only a few clinical
trials have been performed. Therefore, a deeper investigation is necessary to evaluate
the safety, pharmacokinetic, pharmacodynamic, and most importantly, the efficacy of
cannabinoid-based drugs for treating AD.
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