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A B S T R A C T   

Cervical cancer is a global public health subject as it affects women in the reproductive ages, and accounts for the 
second largest burden among cancer patients worldwide with an unforgiving 50% mortality rate. Relatively scant 
awareness and limited access to effective diagnosis have led to this enormous disease burden, calling for point-of- 
care, minimally invasive diagnosis methods. Here, an end-to-end quantitative unified pipeline for diagnosis has 
been developed, beginning with identification of optimal biomarkers, concurrent design of toehold switch 
sensors, and finally simulation of the designed diagnostic circuits to assess performance. Using miRNA expression 
data in the public domain, we identified miR-21–5p and miR-20a-5p as blood-based miRNA biomarkers specific 
to early-stage cervical cancer employing a multi-tier algorithmic screening. Synthetic riboregulators called 
toehold switches specific to the biomarker panel were then designed. To predict the dynamic range of toehold 
switches for use in genetic circuits as biosensors, we used a generic grammar of these switches, and built a neural 
network model of dynamic range using thermodynamic features derived from mRNA secondary structure and 
interaction. Second-generation toehold switches were used to overcome the design challenges associated with 
miRNA biomarkers. The resultant model yielded an adj. R2 ~0.71, outperforming earlier models of toehold- 
switch dynamic range. Reaction kinetics modelling was performed to predict the sensitivity of the second- 
generation toehold switches to the miRNA biomarkers. Simulations showed a linear response between 10 nM 
and 100 nM before saturation. Our study demonstrates an end-to-end computational workflow for the efficient 
design of genetic circuits geared towards the effective detection of unique genomic/nucleic-acid signatures. The 
approach has the potential to replace iterative experimental trial and error, and focus time, money, and efforts. 
All software including the toehold grammar parser, neural network model and reaction kinetics simulation are 
available as open-source software (https://github.com/SASTRA-iGEM2019) under GNU GPLv3 licence.   

1. Introduction 

Cervical cancer is the second most common cancer affecting women 
worldwide [1–3], with 20% of cases in India [4,5]. Most cervical cancers 
could be attributed to the HPV16 and HPV18 strains of Human Papil-
loma Virus (HPV) [1,2]. Lifestyle factors also contribute to the etiology 
of the disease [2]. Cervical cancer tumorigenesis involves infection of 
the metaplastic epithelium by HPV at the cervical transitional zone, 

followed by viral persistence and the progression to pre-cancerous 
epithelial cells, thus nucleating the initiation of cancer [6]. Pap smear 
test is the gold-standard diagnostic method, but it is invasive, expensive, 
and time-consuming [4,7]. Alternative testing strategies are necessary 
[8–10], and micro-RNAs (miRNAs) circulating in the blood have 
emerged as effective biomarkers in many cases [11–14]. Using 
data-driven methods for the identification of reliable early-stage diag-
nostic/prognostic biomarkers, coupled with the concurrent design of 

Peer review under responsibility of KeAi Communications Co., Ltd. 
* Corresponding author. 

E-mail address: apalania@scbt.sastra.edu (A. Palaniappan).   
1 These authors contributed equally. 

Contents lists available at ScienceDirect 

Synthetic and Systems Biotechnology 

journal homepage: www.keaipublishing.com/en/journals/synthetic-and-systems-biotechnology 

https://doi.org/10.1016/j.synbio.2022.03.008 
Received 4 July 2021; Received in revised form 25 February 2022; Accepted 23 March 2022   

https://github.com/SASTRA-iGEM2019
mailto:apalania@scbt.sastra.edu
www.sciencedirect.com/science/journal/2405805X
http://www.keaipublishing.com/en/journals/synthetic-and-systems-biotechnology
https://doi.org/10.1016/j.synbio.2022.03.008
https://doi.org/10.1016/j.synbio.2022.03.008
https://doi.org/10.1016/j.synbio.2022.03.008
http://crossmark.crossref.org/dialog/?doi=10.1016/j.synbio.2022.03.008&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/


Synthetic and Systems Biotechnology 7 (2022) 802–814

803

biosensors offers potential for the development of a new generation of 
molecular diagnostics in a single workflow [15,16]. 

Synthetic biology is delivering on its promise of harnessing nature’s 
inherent diversity for the betterment of human health [17]. Bio-
electronic diagnostic devices comprise an integrated single-unit reaction 
chamber housing the sensor element with the necessary reagents for 
analyte detection, and the corresponding transduction module for 
providing a reaction readout with optical, piezoelectric, or electro-
chemical means [18–20]. Toehold switch riboregulators are synthetic 
mRNA elements, which function by occluding the ribosome from 
translating a downstream gene [21]. Upon base pairing with the trigger 
RNA sequence, the toehold structure of the switch unfolds, permitting 
expression of a reporter gene. Such sensors could sense virtually any 
RNA sequence with excellent biosensor properties, namely specificity, 
modularity, and orthogonality [21], and could be freeze-dried on a 
microfluidic platform for biomarker detection using a cell-free colori-
metric assay [22]. The toehold-switch concept was extensively utilised 

in the design of a biosensor for detecting Zika virus infection [23,24]. 
Takahashi et al. designed a toehold switch sensor that could detect the 
conserved region of C. difficile in a paper based platform [25]. In this 
work, we have formulated an alternative testing strategy for cervical 
cancer based on data-driven identification of biomarker miRNAs, design 
of cognate toehold-based sensors, followed by in silico modelling of 
sensor-circuit performance. The main contributions are twofold: (1) an 
end-to-end unified computational pathway from disease omics to 
biosensor design; and (2) application of this pathway to yield potential 
diagnostics/prognostics for cervical cancer. Supplementary Information 
accompanying the manuscript could be found at https://doi.org/10. 
6084/m9.figshare.14915619.v5, and the software required to repro-
duce the workflow and use the tools described herein is available 
open-source under GNU GPLv3 at https://github.com/SASTRA 
-iGEM2019. 

2. Methods 

The overall strategy is outlined in Table 1 and discussed in detail 
below. 

2.1. Biomarker panel development 

The Cancer Genome Atlas (TCGA) provided the miRNA-Seq dataset 
with 309 cervical adenocarcinoma samples and 3 tumor-normal 
matched controls [26]. The stage information was extracted from the 
associated clinical data using the attribute ‘patient.stage_event.clin-
ical_stage’. There were 163 stage-I, 70 stage-II, 46 stage-III and 21 
stage-IV samples. The patient sample barcode encoded in variable 
hybridisation_REF was parsed to annotate the sample as cancer or normal. 

RSEM-normalized Illumina HiSeq miRNASeq gene expression data 
[27] was log2 transformed, and analyzed for differential expression 
using R (https://www.r-project.org/) limma package [28]. Linear 
modelling of stage-annotated gene expression matrix was performed, 
followed by empirical Bayes adjustment to obtain moderated t-statistics. 
To account for multiple hypothesis testing and the false discovery rate, 
the p values of the F-statistic of linear fit were adjusted using the BH 
method [29]. Differentially expressed miRNAs were considered signifi-
cant if the absolute log-fold changes >1.5x and the p-value was <0.05 
[30]. A tiered contrast analysis for identifying stage-specific DE miRNAs 
was then carried out (see the Methods section in Ref. [30]). Finally, the 
association between the significant early-stage DE miRNAs and the 
overall survival of a patient was evaluated by univariate Cox propor-
tional hazards regression analysis, and the significant prognostic miRNA 

Table 1 
Iterative Design, Build, Test & Learn (DBTL) cycles deployed for developing 
toehold-switch biosensors specific for a panel of miRNA biomarkers of early- 
stage cervical cancer.  

DBTL 
phase 

Iteration 0: 
Biomarker signature 
development 

Iteration 1: 
Optimal toehold 
switch design 

Iteration 2: 
Reaction network 
modelling of circuit 
performance 

DESIGN TCGA data-driven 
differential 
expression analysis, 
survival analysis 

Machine learning to 
design optimal 
toeholds for 
identified biomarkers 

Modelling the 
designed circuit 
using chemical and 
biochemical kinetics 

BUILD Cancer vs. control 
linear models, 
univariate K-M plots, 
multivariate Cox 
regression models 
(using R) 

Feature engineering 
of toehold datasets 
using ViennaRNA 
and in-house Python 
and shell scripts 

Generalising the 
model to second- 
generation toeholds 
with anti-miRs, to 
inform the design of 
experiments 

TEST Models evaluated 
using p-values and 
log fold-change of 
differential 
expression, and p- 
values of prognosis 
models. 

Multivariate 
regression model of 
toehold efficacy 
evaluated using R2 

goodness of fit (using 
R) 

Validation of 
predictive modelling 

LEARN Filtering to four 
biomarkers, then to 
three, and finally to 
two 

Optimized toehold 
switch sequences 

Sensitivity, onset of 
saturation, and 
specificity of each 
sensor  

Fig. 1. Anatomy of a toehold switch, showing its main features; and below, translating the secondary structure into a generic dot-bracket representation of the 
toehold switch grammar. The following criteria were used in the rational design of toehold sequences. 
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biomarkers were identified. Survival analysis was done using the R 
survival package [31]. 

2.2. Toehold switch design 

2.2.1. Toehold switch grammar 
Toehold switches act as sensors for exact sequences of RNA and could 

be designed to hybridize with cognate molecules. The toehold structure 
is marked by a hairpin loop sequestering the RBS, an internal loop 
containing the start codon, and two base paired stems, and functions as a 
regulatory-switch of translation by occluding the RBS in the absence of 
the cognate trigger molecule (‘ground state’) [21] (Fig. 1). Upon binding 
of the cognate miRNA (i.e, the trigger sequence) to the linear toehold 
domain, the bottom stem unravels and the double-looped structure of 
the toehold switch collapses to a linear structure, exposing the seques-
tered start codon to expression of the reporter gene (‘active state’). Each 
toehold switch is a modular entity with distinct sequence domains 
engineered de novo for a particular trigger RNA. The dot-bracket nota-
tion encodes a representative grammar of RNA secondary structure, ‘.’ 
representing unpaired bases, and matched-parentheses ‘(’ and ‘)’ rep-
resenting paired bases (Fig. 1, bottom). Regular expressions could be 
used to parse dot-bracket notation. An in-house Python script based on 
regular expressions and ViennaRNA utilities [32] was developed to 
parse the grammar of toehold switches into their constituent domains 
(https://github.com/SASTRA-iGEM2019), accounting for the following 
scenarios:  

1. Wobble base-pair between G-U in the secondary loop containing the 
start codon.  

2. Base-paired toehold domains  
3 Base-paired linker regions  
4 Possible unpaired bases in the top stem  
1. The sequence of the toehold domain depends on the trigger complex 

and was at least 10 nts to allow effective binding of the trigger to the 
switch.  

2. The descending bottom stem of the toehold switch was about 12 
nucleotides, to maintain switch stability in the OFF state and ORF 
integrity.  

3. The canonical RBS sequence AGAGGA was used.  
4. The primary loop was made adenine-rich to maintain a larger loop 

structure. 

The toehold-switch design and grammar are anchored with the 
following parts: RBS, 21-nt linker, start codon region, and Shine Dal-
garno sequence. The variable domain is the trigger binding region (in-
clusive of the toehold domain and the ascending bottom stem) which 
obeys base-complementarity with the trigger. 

In this case, the triggers of interest are mature miRNAs about 22 nts 
long, which might include a stop-codon trinucleotide towards their 5′

sequence. The presence of stop-codon subsequences could halt the 
expression of the downstream GFP, and pose a problem to the use of 
toehold-switches. Second-generation toehold switches are one solution 
to this problem (Fig. 2(A)) [33]. In addition to binding the miRNA, the 
toehold switch is required to bind another molecule, the anti-miRNA 
(antimiR) that is complementary to 12 nucleotides at the 3′-end of the 
toehold switch (Fig. 2(B, C)). Essentially, the trigger is represented by a 
hybrid molecule with a base-paired region and two free ends. The design 
of the antimiR sequence could be used in improving the trigger binding 
event. 

2.2.2. Machine learning of toehold switch efficacy 
The sensitivity of the toehold switch is described by its dynamic 

range, defined as the ratio between the maximum and minimum 
measurable intensities of reporter protein (typically GFP) expression, 
also known as ON/OFF ratio [21]. The dynamic range of a toehold 
designed for exact sequences of trigger RNA is the key indicator of its 
effectiveness, and is generally unknown for new toehold designs. The 
problem can be addressed using supervised machine learning on 
toehold-sequence datasets with available dynamic range responses. A 
previous model developed by CUHK iGEM 2017 offered a web tool for 
predicting the dynamic range of toehold switches with modest goodness 
of fit (unadjusted R2 ~0.04–0.16) [34]. To address this lacuna, we 
constructed multiple models that utilize the generic grammar of the 
toehold switch discussed above. A dataset of the toehold switches and 
their dynamic range responses was formed by combining the studies of 
Green et al. [21] and Pardee et al. [22,23]. A total of 228 toehold switch 

Fig. 2. Second-generation toehold switches. (A) Illustration of a second generation toehold switch construct with the hybrid trigger complex between the miRNA and 
antimiR. (B) Binding of the hybrid trigger with the toehold domain, unspooling the bottom stem, and (C) subsequent linearization of the toehold switch releasing the 
RBS from occlusion, and yielding translation of the reporter gene. Created with BioRender.com. 
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sequences with ON/OFF ratios were obtained, consisting of: 

(1) first-generation switches with moderate dynamic range (168 in-
stances) [21].  

(2) forward-engineered switches with significantly higher dynamic 
range ratios (13 instances) [21]. 

(3) toehold switches engineered for detecting Zika virus (47 in-
stances) [23]. 

The toehold sequence of each instance was parsed into its sub- 
domains using our software. Sequence features were considered but 
rejected in favor of the more informative structure-based features [34], 
which were computed using ViennaRNA utilities. These features 
included the overall switch minimum free energy (MFE), RBS-linker 
MFE, bottom-region MFE, and the net MFE of the second-generation 

switch-trigger complex (which was calculated as the difference in MFE 
between the final and initial states). The overall switch MFE determines 
the switch stability in the OFF state, the RBS-linker MFE is a thermo-
dynamic proxy of the translation initiation rate, and the net MFE mea-

sures the energetic cost of the binding events taking place during 
toehold-mediated strand displacement. 

In this manner, a dataset of engineered features and the corre-
sponding toehold efficacies was compiled. Following an 80:20 train:test 

split, the features were normalized. Two regressor techniques were used 
to learn the relationship of the toehold-switch dynamic range with the 
feature space. One, a multivariate linear regression model was built with 
the selected features on the train data, and evaluated on the test data for 
significance and goodness-of-fit, using Python scikit-learn (https: 
//scikit-learn.org/). Second, a neural network with one hidden layer 

of 6 neurons, with L1 regularization and early stopping to control 
overfitting, was constructed based on the Keras framework [35]. 

2.3. Reaction network modelling 

The chemical and biochemical kinetics model was developed by 
adding the following features to the first generation toehold switch 
model developed by CLSB-UK iGEM 2017 [36]:  

(i) interaction of transcribed miR and ntimir oligos to form the miR- 
antimiR complex with two free ends, which then binds with the 
toehold switch  

(ii) maturation kinetics of the expressed GFP. 

This generalized model can be presented as:   

Here, kmiR antimiR f and kmiR antimiR b are the rate constants for forward 
and backward reactions, respectively.   

The corresponding ODEs can be given by:   

d[miRNA − anti miRNA]
dt

= − kcomplex CTS[CTS][miRNA − anti miRNA]

d[CTS]
dt

=ktranscription[DNA]–kcomplex CTS[CTS][miRNA− anti miRNA]− kdecay[CTS]

Equation                                                                                         (1)  

Equation                                                                                          (2)  

GFP →
kmaturation Mature GFP(downstream reaction) (3)   

d[miRNA]
dt

= − kmiR antimiR f [anti miRNA][miRNA] + kmiR antimiR b[miRNA − anti miRNA] − kdecay[miRNA]

d[anti miRNA]
dt

= − kmiR antimiR f [anti miRNA][miRNA] + kmiR antimiR b[miRNA − anti miRNA] − kdecay[anti miRNA]

d[miRNA − anti miRNA]
dt

= − kmiR antimiR f [anti miRNA][miRNA] + kmiR antimiR b[miRNA − anti miRNA]
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d[OTS]
dt

= kcomplex CTS[CTS][miRNA − anti miRNA] − kdecay[OTS]

d[GFP]
dt

= ktranslation[OTS] − kmaturation[GFP]

d[mature GFP]
dt

= kmaturation[GFP]

The kinetic parameters for the transcription, translation and matu-
ration reactions in the genetic circuit were identified from literature [36, 
37] and provided in Supplementary File S6. The kinetics for the 
miR-antimiR complex formation were modelled assuming a steady state 
with negligible backward flux, so that the equilibrium constant ap-
proximates the forward rate constant at equilibrium. From equation (1), 
the equilibrium constant for the complex formation is defined as: 

keq =
[hsa miR 21 5p − anti hsa miR 21 5p]
[hsa miR 21 5p][anti hsa miR 21 5p]

(4) 

NUPACK Analysis tool was used to obtain the equilibrium concen-
tration of the miR, ntimir and their complex [38]. The chemical and 
biochemical kinetics were simulated using MATLAB R2017b 
(https://www.mathworks.com/). 

3. Results 

3.1. Omics analysis 

The top 100 miRNAs of the linear model were screened for log-fold- 
change with respect to the control samples, stage-specificity, and sig-
nificance of the trend, and finally corroborated with the literature evi-
dence. This analysis yielded four DE miRNAs (Table 2) [12,39]. It could 
be seen from the heat map and violin plots that hsa-miR-21–5p is the 
most significantly differentially expressed miRNA (Fig. 3). The detailed 
results of the differential expression analysis and linear modelling are 
provided in Supplementary Files S1 and S2, respectively. It is interesting 
to note that all four miRNAs are upregulated across all stages of cervical 
cancer, suggesting possible role as oncomiRs and use in molecular di-
agnostics (Fig, S4, Supplementary File S3). 

3.2. Survival analysis 

The differential expression profiling of miRNAs associated with 
early-stage cervical cancer identified potential biomarkers, which were 
further investigated using survival analysis with the Cox proportional 
hazards model and Kaplan-Meier curves. The biomarkers were subjected 
to univariate survival analysis and the model significance was estimated 
using the log-rank test [32]. Fig. 4 shows the K-M plots of the univariate 
survival analysis for the four differentially expressed miRNAs. It could 
be seen that hsa-miR-29a-3p was insignificant (p-value > 0.05), and was 
consequently dropped from the hazard ratio estimation (Table 3). 

Next, we constructed a survival risk-score using multivariate Cox 
regression model [19], to obtain an equation for the survival risk score 
(SRS).   

Finally, a biomarker panel of hsa-miR-20a-5p, hsa-miR-21–5p and 
hsa-miR-200a-5p was constructed, classifying patients into high-risk 

and low-risk groups using an optimal cut point identified with the 
maxstat statistic of survminer R package. Overall survival curves were 
generated using the K-M method, and two-sided log-rank tests were used 
to compare the differences in overall survival between the risk groups. 
The K-M analysis shown in Fig. 5 (a), indicated that the biomarker panel 
with three miRNAs was significant (p-value < 0.001). Considering the 
significance attributed to hsa-miR-21–5p in the literature [12,39–44], 
we then evaluated a biomarker panel of just the two miRNAs, 
hsa-miR-20a-5p and hsa-miR-21–5p,. The K-M curve shown in Fig. 5 (b), 
indicated that the significance of this panel was also significant (p-value 
< 0.001). However, a multivariate model of hsa-miR-21–5p and 
hsa-miR-200a-5p was not significant (p-value ~ 0.1). The univariate 
model shown in Fig. 4(b) and the form of eqn (5) both suggest that the 
overexpression of miR-200a-5p might have a protective effect against 
cervical cancer, and its expression might be a response to the cancer 
progression, making it inefficacious as a marker of cervical cancer. From 
the above results on differential expression and prognosis, we proposed 
to consider the two-marker panel of hsa-miR-20a-5p and hsa-miR-21–5p 
as the signature of early-stage cervical cancer. 

We sought to validate this identified biomarker panel with an 
external miRNA dataset. Towards this, we used the GEO dataset, 
GSE30656, of 10 normal and 37 cervical cancer patients. The dataset 
was subjected to stage-annotated linear modelling as in the previous 
case (using the protocol described in Ref. [30]), and yielded a confir-
mation that hsa-miR-21–5p is the top-ranked differentially expressed 
(upregulated) miRNA in this dataset as well (p-value < 1E-4). The de-
tails of this analysis are provided in Supplementary File S4. There is 
extensive literature support for hsa-miR-20a-5p as an upregulated 
early-stage serum biomarker of cervical cancer progression [40,41, 
45–51]. To investigate the pathways activated by the identified bio-
markers, we first identified their regulatory targets, and then performed 
an enrichment analysis of the target genes using miRabel [52] and 
DAVID [53], ascertaining the involvement of oncogenic pathways 
(Supplementary File S5). In particular, the KEGG enrichment analysis of 
the consensus target genes of both the biomarkers yielded significance 
for the MAPK signaling pathway. The two differentially expressed 
up-regulated miRNAs with prognostic significance constituted a reliable 
biomarker panel. 

3.3. Toehold switch design 

Two toehold switches were designed to target the biomarkers, hsa- 
miR-21–5p and hsa-miR-20a-5p. Table 4 shows the domain-by-domain 
decomposition of each of these toehold switches. The folding of the 
transcribed RNA of the designed sequences was predicted using Vien-
naRNA [32], and the predicted secondary structure was consistent with 
the toehold conformation (Fig. 6(a, b)). The minimum free energies of 
the hsa-miR-21–5p toehold switch and the hsa-miR-20a-5p toehold 
switch were estimated to be − 21.20 kcal/mol and − 19.20 kcal/mol 
respectively, suggesting a stable toehold conformation ready for inter-
action with the cognate hybrid miR-antimiR trigger. 

In addition to the secondary structure and the minimum free energy, 
the dynamic range of the designed toehold switches is a key parameter 
determining the effectiveness of system. A correlation plot of all 

considered features for learning the dynamic range of toehold switches 
is discussed in Supplementary File S6. The linear model yielded signif-
icance (p-value < 0.05) for all the six features (Supplementary File S6) 

SRS=( − 0.5967 * expression value of hsa − miR − 20a − 5p)+ (0.5376 * expression value of hsa − miR − 200a − 3p) + (

− 0.4736 * expression value of hsa − miR − 21 − 5p) (5)   
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on the training set, with an adj. R2 ~ 0.59. This provided a baseline to 
compare the performance of the neural network regressor. The detailed 
architecture and hyperparameters used in the neural network could be 
found in Supplementary File S6. The neural network architecture was 
experimented with different random seeds, yielding a series of models 
with variable performance. Of these, we chose the top twelve models 
that had adj. R2 > 0.50 on the test set. The best of these models achieved 
an adj. R2 ~ 0.71. The performance of this model is shown in Fig. 7, 
illustrating a steady improvement in the test set metrics with the 
training epochs. A 10-fold cross-validation with this best-performing 
model yielded an adj. R2 ~ 0.49. The growth of the small-sample 
correction to the R2 score during k-fold cross-validation tends to 
quickly diminish the cross-validated goodness-of-fit. The script to build 
and train the neural network model is provided as a Jupyter notebook 
(https://github.com/SASTRA-iGEM2019/). All the top models are 

deposited in the project Github repository, along with the usage notes 
for all the software tools developed in this work. 

We then applied the top twelve neural network models to predict the 
efficacies of the toehold switches designed for the two identified miRNA 
biomarkers. For the two switches, we obtained a predicted dynamic 
range ~ [88.34 ± 16.39, 92.86 ± 18.74] respectively, which indicated 
potential robust design of the biosensors. This part of our workflow has 
been bundled into a single bash script that returns the predicted efficacy 
for any input toehold-switch sequence, and would be useful in toehold- 
based synthetic biology. 

3.4. Reaction modelling 

We employed reaction network mass action kinetics to computa-
tionally evaluate the performance of the designed second-generation 

Fig. 3. Stagewise linear modelling of the top differentially expressed miRNAs from TCGA cervical cancer dataset. (A) Heat map with the four DE miRNAs considered 
in this study, and (B) violin plots of the two miRNAs taken forward for the final biomarker panel. 

Table 2 
DE miRNA biomarkers of cervical cancer. LogFC (log-fold change) and adj. p-values with respect to the control as estimated by the linear model are shown. The 
stage-specificity (individual log-fold changes and overall significance of contrast analysis) of the miRNA is computed using the protocol described in Ref. [30].  

DE miRNAs logFC Adj. P value LFC: Stage_1 – Control LFC: Stage_2 – Control LFC: Stage_3 – Control LFC: Stage_4 – Control p.value: Stage-specificity 

hsa-miR-21–5p 15.75 3E-151 2.63 2.63 2.75 2.65 4E-08 
hsa-miR-20a-5p 6.60 5E-26 2.01 2.02 2.22 2.20 1E-02 
hsa-miR-29a-3p 13.06 1E-70 1.99 2.31 2.18 2.64 6E-03 
hsa-miR-200a-5p 3.27 9E-07 6.60 6.43 6.32 6.63 3E-17  
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toehold switches as biosensors of miRNA biomarkers (available as 
executable SBML model in github repository, and as BioModels 
MODEL2107150001). As a prelude, we emulated the model proposed by 
iGEM CLSB-UK (2017) [36] for the first-generation toehold switches 
(Supplementary File S7). 

3.4.1. Generalization to second generation toehold switches 
The miRNA biomarkers induced a stop codon in the design of first- 

generation toehold switches, which could be circumvented by the use 
of anti-miR based second-generation toehold switches. The second- 
generation toehold switches were modelled by adding a reaction up-
stream of the miRNA-closed toehold switch binding, where the miRNA 

Fig. 4. K-M plot for (a) hsa-miR-20a-5p, (b) hsa-miR-200a-5p, (c) hsa-miR-21–5p and (d) hsa-miR-29a-3p. Except miR-29a-3p, the others are significant in the 
univariate survival model. Survival probability is adversely impacted by overexpression of miR-21–5p and miR-20a-5p, supporting their use as biomarkers and even 
as targets for therapy. 

Fig. 5. Kaplan-Meier curves of multivariate models. (a) Panel with three biomarkers: hsa-miR-20a-5p, hsa-miR-21–5p and hsa-miR-200a-5p, and (b) panel with two 
biomarkers: hsa-miR-20a-5p and hsa-miR-21–5p. 

Table 3 
Hazard ratio (HR), Z-score and p-value for the chosen miRNA biomarkers. HR > 1 indicates a covariate that is 
positively associated with the event probability (here, negatively with survival). The Z-score is an estimate of the 
significance of the hazard ratio under the assumption of standard normal distribution of the log-rank test 
statistic.  

Gene Symbol HR Z-score p-value 

hsa-miR-20a-5p 0.523 − 2.479 0.013 
hsa-miR-200a-5p 1.808 2.076 0.038 
hsa-miR-21–5p 0.595 − 1.961 0.050  
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Fig. 6. ViennaRNA predicted MFE structures of the designed second-generation toehold switches. (a) hsa-miR-21–5p, (b) hsa-miR-20a-5p. It is visually clear that the 
toehold sequences fold into structures consistent with the canonical toehold-switch grammar with the hairpin loop, internal loop and bottom stem. 

Fig. 7. Epoch tuning curves for the top-performing neural network model for the loss function and the adjusted R2. The adj. R2 was coded as a custom metric in the 
model definition. The validation loss is better than the training loss, an observation that can be traced to the use of L1-regularization in the model [35]. Initial 
negative values for adj. R2 indicate that the fit is worse than a ‘horizontal line’ in the learning manifold, but progressively trains to achieve a better fit. A steady 
convergence beyond epoch ~#50 is visible. 

Table 4 
Domain-wise sequence design of the second generation toehold switches targeting specified miRNA biomarkers.  

Domain Biomarkers Source 

hsa-mir-21–5p hsa-mir-20-a-5p 

Toehold Domain ucaacaucagc cuaccugcacuau Complementary to the 3′ end of the biomarker 
Ascending Bottom Stem ucguuuauc ucguuuaguc Complementary to the 5′ end of the anti-miR designed for the 

biomarker 
Secondary Loop (nucleotides opposing start 

codon) 
acg acg  

Ascending Top Stem uuuac uuuac Sequence used in Green et al. [21] 
Primary Loop (RBS sequence in bold) aaaaagaggaga aaaaagaggaga Chosen from the Anderson RBS family 
Descending Top Stem guaaa guaaa Complementary to the ascending top stem 
Start Codon aug aug  
Descending Bottom Stem gauaaacga gacuaaacga Complementary to the ascending bottom stem 
Linker aaccuggcggcagcgcaaaag aaccuggcggcagcgcaaaag Sequence used in Green et al. [21]  

P.R.S. Baabu et al.                                                                                                                                                                                                                             



Synthetic and Systems Biotechnology 7 (2022) 802–814

810

hybridizes with the antimiR. NUPACK [38] was used to estimate the 
equilibrium concentrations of 100 nM hsa-miR-21–5p miRNA and 100 
nM antimiR hybridizing at 18 ◦C to form the trigger complex (yielding 
0.0264 nM, 0.0264 nM and 99.97 nM, respectively). This yielded a 
hybridisation rate constant kmiR_antimiR_f on the order of 105 nM− 1 s− 1 

(Eqn (4)). The above analysis was repeated with hsa-miR-20a-5p, and 
the details could be found in Supplementary File S7 – Sec. S2. 

Following the binding of the complex to the toehold switch, the 
switch would open, enabling translation of the downstream GFP. Since 
GFP fluorescence is associated with a lag between production and 
emission, a GFP maturation reaction was considered with a maturation 
factor ~0.2 min− 1. A scaling factor of 79.429 was used to obtain the 
readout in fluorescence units, after iGEM Valencia_UPV 2018 [54]. The 
concentration profiles obtained from the model for the first toehold 
switch (hsa-miR-21–5p) is shown in Fig. 8(a). The trends of declining 

miRNA and antimiR concentrations, and increasing complex concen-
tration are evident. The complex formation occurred with exponential 
kinetics, and both the complex and the miRNA/antimiR attained satu-
ration well before t = 500s. It is clear from Fig. 8(b) that the CTS and 
complex rapidly hybridized to open the CTS, with a significant drop in 
their concentrations concomitant while OTS concentration rises. The 
increase in OTS concentration permitted the translation of downstream 
GFP followed by the slow maturation kinetics of fluorescence. At about 
500s, the complex was completely consumed, and OTS began to decay, 
while unhindered transcription allowed the CTS to continue to increase. 
Similar kinetics were observed in the case of the second toehold-switch 
(hsa-miR-20a-5p), with the smaller hybridisation rate constant slowing 
all intermediate reactions up to the final fluorescence readout (Supple-
mentary File S7). 

The concentration profiles for both the miRNA biomarkers informed 

Fig. 8. Circuit kinetics modelling. (a) Concentration profiles of miR, odelli and the complex. It is seen that miR and odelli profiles are identical. (b) Concentration 
profiles of the complex, CTS and OTS in a 2 h time frame with a miR-antimiR binding rate constant of 105 nM− 1s− 1. The inset shows the profile over 7200s. 

Fig. 9. Simulations show the fluorescence intensity increasing with trigger concentration. (a) An 819-fold change for trigger concentrations between 98.7 pM and 
9.87 μM. (b) Detail of the linear trend for trigger concentrations between 10 nM and 100 nM. 

Table 5 
Simulated fluorescence intensity variations with different concentrations of the complex over a 4 h period. The intensity shows sigmoidal kinetics with the logarithm of 
the trigger-complex concentration.  

miRNA/anti-miR concentration (nM) Complex (miR-antimiR-Toehold switch) (nM) CTS (nM) OTS (nM) GFP (nM) Mature GFP (μM) Fluorescence Intensity 

0.1 0.1 810 0.001 0.08 0.0055 4.76 
1 0.98 810 0.01 0.07 0.055 47.73 
10 9.87 810 0.13 0.79 0.551 477.17 
25 24.69 810 0.34 1.97 1.38 1188.49 
50 49.37 810 0.73 3.23 2.75 2382.83 
75 74.05 810 1.13 5.58 4.32 3722.41 
100 98.74 810 1.38 7.96 5.51 4754.40  
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the range of complex concentration (viz. 100 pM to 10 μM) for model-
ling the fluorescence intensity emission. The plot of intensity against the 
complex concentration over a 2-h interval obtained a sigmoidal fit with 
a steep rise between 10 nM and 100 nM (Section S4, Supplementary File 
S7). This showed that the model is sensitive to changes in the concen-
tration of the trigger miRNA biomarker in the range of interest, satis-
fying a necessary biosensor property [25,55–60]. A similar trend of 
sigmoidal kinetics was observed for the hsa-miR-20a-5p biomarker over 
a complex concentration range of 100 nM and 1 μM (Supplementary File 
S7). This suggested that the slower kinetics in the case of 
hsa-miR-20a-5p might require a higher biomarker concentration for 
detection. We repeated the calculations with a 4-h extended time in-
terval, and found that the increased reaction time did not alter the 
sigmoidal kinetics, only yielding higher fluorescence intensity than the 
2-h interval case (R2 = 0.99) (Fig. 9). These theoretical calculations 
require experimental validation prior to clinical translation. Table 5 
shows the concentration trajectories of various species and the predicted 
fluorescence intensity readout for different miRNA-antimiR complex 
concentrations over a 4-hr simulation.  

(iii) Discussion 

Towards the development of complete sensor circuits, medium-sized 
DNA constructs known as gBlocks (Integrated DNA Technologies; www. 
idtdna.com), housing one or more genes and conforming to the speci-
fications in the Registry of Biological Parts [61], could be developed. In 
this direction, three independent gBlocks were designed using the 
standard BioBricks (https://biobricks.org), comprising the constitutive 
E. coli T7 promoter, a 5′ prefix sequence with EcoRI and XbaI recognition 
sites, and a 3’ suffix sequence with SpeI and PstI recognition sites, with 
the GFP-mut3b reporter gene. DNA sequences of the designed 
toehold-switches and genetic circuits are given in Supplementary File 
S8, while the gBlocks schematic, antimir design and BioBricks sub-
missions are noted in Supplementary File S9. A limitation of the present 
study is that experimental validation with these synthetic circuits would 
be necessary before deployment in the clinic. 

Neural networks have yielded useful applications for problems 
related to riboswitches [62]. Deep learning has been used for predicting 
toehold switch efficacy, with raw R2 ~ 0.43–0.70 [63,64]. These models 

Fig. 10. (a) An end-to-end computational approach for design of toehold switch biosensors (b) A scheme for developing biosensor-based disease diagnostics; toehold 
switches and genomic signatures act as the biosensory element and analyte, respectively. 
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are trained on a dataset of fused cis-triggers, significantly constraining 
their application to second-generation toehold switches. They require 
fixed-length inputs and do not lend to ready interpretation. Another 
application, MoiRNAifold is proprietary software and uses 
constraint-based linear programming to solve the inverse problem [65], 
and does not predict the efficacy of toehold switch structures. 

In comparison, our work is an all-in-one package providing a light-
weight solution to the problem of computational toehold design, effi-
cacy prediction, and circuit modelling. Our tool is (i) agnostic of input 
sequence length, (ii) trained on free triggers, and (iii) capable of pre-
dicting in batch mode (any number of sequences in one go). Though the 
mechanistic understanding of RNA structure is yet incomplete, model-
ling attempts with interpretable features is a necessary step towards this 
goal. Further, miRNAs are an emerging class of biomarkers with desir-
able serum profiles, and typically induce a rogue stop codon in toehold 
switches immediately downstream to the start codon of the gene to be 
expressed. In this context, second-generation toehold switches are the 
viable solution, and it is hoped that our approaches would yield effective 
diagnostics for miRNA biomarkers of disease conditions. Any input 
sequence conforming to the generic toehold grammar will be processed 
by our rational pipeline thus:  

(i) call to ViennaRNA RNAfold to parse the input sequence into its 
dot-bracket representation  

(ii) call to GrammarParser to extract the segments of the toehold 
switch based on the dot-bracket representation  

(iii) call to more ViennaRNA RNAfold utilities to obtain engineered 
feature values for use in the regression/neural network model  

(iv) passing of feature values as arguments to the prediction script 
which yields the predicted dynamic range of the toehold switch 
sequence(s). 

Geraldi et al. have highlighted the importance of synthetic biology in 
developing portable in vitro based diagnostic kits [66]. Toeholds 
embedded in genetic circuits enable the measurement of the intensity of 
expression of a downstream reporter protein – for e.g., GFP – that could 
yield a precise quantification of the trigger itself. Pardee has reviewed 
the potential of freeze-dried cell-free (FD-CF) systems in health care for 
diagnostic and sensing purposes, given their biosafe mode [67], and the 
promising opportunity for the rational design and manipulation of 
biological systems in relation to cell based systems has also been 
reviewed [68]. Fabricating microfluidic devices with our designed ge-
netic circuits in a cell-free system followed by rigorous testing and 
validation would yield a point-of-care portable diagnostic tool for the 
real-time detection of early-stage cervical cancer. 

Our workflow is modelled on the DBTL approach, which is analogous 
to the Design, Construct, Evaluate, Optimize (DCEO) approach in 
biotechnology [69], and Fig. 10 captures the methodology we have 
adopted here, in two parts. The end-to-end computational approach 
employed in this study is illustrated in Fig. 10(a). It includes four broad 
phases, namely identification of biomarker signatures, design of the 
biosensory toehold switch element, followed by the synthetic genetic 
circuit design comprising modular constructs and finally validating a 
proof-of-concept of the designed synthetic circuit using predictive 
modelling. Candidate toehold switches could be ranked for efficacy, and 
the predicted most efficacious toehold switch could be potentially used 
to optimize experimental workflows. This approach could be general-
ized to the design of portable, highly sensitive and specific biosensors for 
any condition, especially infectious diseases. The ongoing nCoV-SARS2 
pandemic has highlighted the need for constant vigil for outbreak of 
infections. Such emerging agents require accurate, rapid, and scalable 
detection platforms, all requirements for which toehold biosensors are 
well-suited. Fig. 10(b) illustrates a scheme to produce such a toehold 
biosensor. Here the biomarker would be an optimal genomic fragment 
signature, unique to the pathogen but absent in the host. The toehold 
construct serves to signal the presence of the infectious agent that would 

then release the expression of the reporter gene, yielding a simple 
real-time visual readout. The proposed technique would generate a 
simple, reliable, rapid, portable and affordable printed diagnostic tool 
that could be made available at a global level in a point-of-care setting 
outside clinical diagnostic laboratory conditions. This biosafe product 
would be an asset in the field, especially in remote locations where it 
could help in curtailing the transmission and limiting the reproductive 
ratio of the infectious agent. Such a product would be vital in 
low-resource settings since it is sterile, abiotic and active for a year at 
room temperature. Extension of more than two biomarkers would allow 
for the simultaneous detection of, say, a family of coronaviruses, an 
imperative in our times. Thus, end-to-end scalable science is expected to 
overcome the limitations of ad-hoc diagnostic devices, thereby enabling 
affordable diagnosis in pandemic situations and other health 
emergencies. 

4. Conclusion 

Cervical cancer is a major public health issue with significant global 
burden of disease, but it is also an addressable one with the design of 
better molecular diagnostics. Early detection is necessary for effective 
treatment and greater compliance. In this work, three DBTL iterations 
were used to generate an in silico workflow for biomarker detection, 
sensor design and systems dynamics modelling. In the first cycle, we 
identified miRNAs that were significantly differentially expressed for 
early-stage cervical cancer using TCGA data and optimized down to two 
miRNA biomarkers based on prognostic significance. In the second 
cycle, we designed second-generation toehold switches and antimiRs for 
the two miRNAs. In this course, we developed a machine learning model 
of toehold-switch dynamic range that yielded adj.R2 ~0.71, a major 
improvement in efforts in this direction. Finally we simulated the cell- 
free protein synthesis reactions to study the emergent kinetics. The re-
sults indicated that the fluorescence intensity underwent a sigmoidal 
transformation between 10 nM and 100 nM before reaching saturation. 
In summary, we have developed an end-to-end reproducible computa-
tional workflow for the sake of design of RNA biosensor devices for given 
conditions. Subsequent experimental validation would essentially 
democratize detection of emerging infectious diseases and life- 
threatening conditions with a ready transportable instrument based on 
real-time visual readout. 
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