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Development of a chemical‑free 
floatation technology 
for the purification of vein 
graphite and characterization 
of the products
Gamaralalage R. A. Kumara1*, Herath Mudiyanselage G. T. A. Pitawala2,5*, 
Buddika Karunarathne1, Mantilaka Mudiyanselage M. G. P. G. Mantilaka2, 
Rajapakse Mudiyanselage G. Rajapakse3, Hsin‑Hui Huang4, K. Kanishka H. De Silva4 & 
Masamichi Yoshimura4

A novel and simple flotation technique has been developed to prepare high‑purity graphite from 
impure graphite. In this method, a suspension of pristine powdered graphite (PG) is dispersed and 
stirred in water without adding froth formers or supportive chemicals. This makes fine particles of 
graphite move upwards and float on water. X‑ray diffraction (XRD) analysis reveals that the floated 
graphite (FG) has a lower c‑axis parameter, indicating the removal of interlayer impurities. A notable 
increase in the intensity ratio of the D band to G band in the Raman spectra indicates that the FG 
has more edge defects due to their smaller crystallite sizes. Transmission electron microscopic (TEM) 
analysis shows the number of layers in FG has been reduced to 16 from 68 in PG. The absence of C=O 
vibration of Fourier Transformed Infrared (FT‑IR) spectroscopy in treated and untreated samples 
suggests that their layers are not significantly oxidized. However, X‑ray photoelectron spectroscopic 
(XPS) analysis shows the presence of C–O–C ether functionalities, possibly on edge planes. Further, 
the product has higher purity with increased carbon content. Therefore, the technique is helpful for 
the value enhancement of graphite, the reduction of the chemical cost of the conventional techniques, 
environmental friendliness, and improvement of its applications.

Graphite is one of the important naturally occurring minerals characterized by its inherent specific properties 
such as low hardness, metallic lustre, high lubricity, refractoriness, high heat and electrical conductivities, and 
ability to withstand to high temperatures. These properties of graphite make it an attractive material for many 
technological  applications1,2. Naturally occurring graphite has a wide range of purities depending on its geologi-
cal  occurrence3–5.

Demand for high purity graphite has been progressively increasing in the recent past due to its versatile tra-
ditional applications and numerous novel applications that researchers foresee, in the near  future4,6,7. Naturally 
occurring graphite is classified into three forms: (i) flake graphite, (ii) vein graphite and (iii) amorphous  graphite8. 
Flake graphite is found in regionally metamorphosed sedimentary rocks and has a distinctly flaky morphology, 
and is typically found as flat and plate-like  masses9. They are very common in many parts of the world. However, 
vein graphite is found only in Sri Lanka, India, Madagascar, the USA, Canada and the  UK10–12.

Although the carbon content of vein graphite varieties is considered to be high up to about 90–99.8%, their 
natural purity is often in the lower-end of this range due to the presence of gangue minerals which are naturally 
associated with the graphite  veins5,13. Furthermore, the purity of natural vein graphite varies from place to place 
in the same deposit. Impurities are present as mineral inclusions, or they are intercalated between graphite 

OPEN

1National Institute of Fundamental Studies, Hantana Road, Kandy 20000, Sri Lanka. 2Postgraduate Institute 
of Science, University of Peradeniya, Peradeniya 20400, Sri Lanka. 3Department of Chemistry, University of 
Peradeniya, Peradeniya 20400, Sri Lanka. 4Graduate School of Engineering, Toyota Technological Institute, 
2-12-1 Hisakata, Tempaku, Nagoya 468-8511, Japan. 5Department of Geology, University of Peradeniya, 
Peradeniya 20400, Sri Lanka. *email: grakumara2000@yahoo.com; apitawala@pdn.ac.lk

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-021-02101-9&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |        (2021) 11:22713  | https://doi.org/10.1038/s41598-021-02101-9

www.nature.com/scientificreports/

layers. The major impurities of vein graphite are Fe, Ca, Mg, Si, Al and Na with minor to trace concentrations 
of transition metals such as Cu, Ni, Co and  Zn14. The presence of impurities inevitably decreases the quality of 
even such highly pure vein graphite. Thus the development of simple, low-cost, scalable and industrially-viable 
purification techniques is still required for better industrial utilization of natural graphite.

Several methods have been introduced to enhance the purity of graphite powders but the majority of them 
are based on environmentally unfriendly acid or alkali  treatments15. In contrast, other methods involve expan-
sion processes and physical  treatments16. Among these techniques, floatation is an industrially adaptable, simple, 
cost-effective and selective mineral-processing  technique17. The raw material concentration by floatation gener-
ally utilizes the surface physicochemical properties of water-repellent (hydrophobic) particles to enable them to 
float with air bubbles in order to form a  froth18. Together with the froth the fine particles move upwards to float 
on the water surface. In the absence of considerable amounts of functional groups such as ether, hydroxyl and 
carboxyl formed by the ariel oxidation of valence-unsatisfied surface carbon atoms of graphite crystals, natu-
rally occurring graphite forms with high carbon percentages are generally hydrophobic. The hydrophobicity of 
graphite particles, together with some added specific chemical reagents to help improve froth formation, is used 
in the purification of mined  graphite19.

Although graphite has specific gravity around 1.9–2.3, the hydrophobic nature of fine graphite particles aids 
the floatation process when water is used as the floating medium. The contact angle in the air–water–mineral 
system measures the hydrophobicity of a mineral surface and graphite is characterized by relatively large contact 
angles that depend, to some extent, on the pH of the water used and also on the characteristics of the surface 
 preparation17. Graphite floatation is not new and has been already studied by several  researchers19–21. However, 
most of these studies have focused on the chemical composition of the floated graphite, particularly, on the total 
carbon content and trace elements. But the structural and morphological characteristics of floated graphite, 
which are key properties for industrial applications, have not been evaluated. In graphite floatation, oils such 
as  kerosene22 and  diesel23 combined with froth formers are used to enhance froth formation. The use of such 
chemicals undoubtedly complicates the purification process since all these chemicals that may have bound or 
adsorbed on graphite crystallites have to be removed at the final stage. Usage of chemicals has increased environ-
mental problems due to the generation of wastes, high production costs and consequent reduction of profits. This 
process demands not only chemicals but also intensive labour, making it industrially less attractive. Also, most of 
the froth formers used in the floatation of graphite are environmentally unfriendly chemicals. Hence a method 
that does not require any chemical to float graphite on the water will be more industrially-viable and adaptable.

In this manuscript, we reveal an effective chemical-free, simple floatation technique developed to obtain high-
purity and well-crystalline graphite products by floating fine particles of graphite on water. The pristine powdered 
graphite (PG) and floated graphite (FG) are characterized using several independent material characterization 
techniques. The method’s success is explained in terms of improved physical and chemical properties of FG. This 
method is scalable, simple and of low-cost, making it industrially viable, adaptable and environmental-friendly. 
The developed method has enhanced the purity of graphite from 91.9 to 98% of carbon content which makes 
a 4–12 times value addition to raw-graphite. Therefore, the developed chemical-free floatation technique is 
beneficial for the value enhancement of graphite, reduction of chemical cost involved in the conventional froth 
floatation techniques and environmental friendliness.

Results and discussion
Out of 5.0 g of PG taken for floating in water 4.5 g of FG was recovered. Thus, the process of converting PG to 
FG has 90% efficiency. The reaming 10% is due to the removed inclusion mineral impurities together with some 
larger particles that are too heavy to float in water. Since we have limited the ball-milling time to a short 20 min. 
there is a very small amount of larger particles remaining in the PG samples. Out of the 10% the majority is the 
removed inclusion mineral impurities.

Figure 1 shows the XRD patterns of the PG and FG samples. The intense (002) diffraction peak appearing 
at 2θ = 26.52° of PG has been shifted to 26.56° in FG indicating that the c-axis lattice parameter of the FG to be 
smaller (0.3353 nm) than that of the PG (0.3358 nm). Moreover, the FG’s full width at half-maximum (FWHM) 
of the (002) XRD peak is significantly larger than that of PG. Application of the Scherer equation to the FWHM 

Figure 1.  (a) XRD patterns of the PG and FG samples. (b) The enlarged (002) reflections used for the 
calculation of crystallite size.
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of the (002) peak gives the crystallite size of the FG and PG to be approximately 86 nm and 101 nm, respectively. 
However, the intrinsic instrumental broadening should also be considered when elucidating exact values. A 
slight decrease in interlayer spacing suggests the removal of interlayer species that are present in low quantities 
in pristine graphite samples. As such, XRD provides indirect evidence to show that the floating technique can 
aid the enrichment of carbon percentage in graphite samples. It has been proven by the quantitative elemental 
analysis of the two samples (vide infra). The XRD analysis of flake graphite (99% Purity, Alfa Aesar) done by 
Abdolhosseinzadeh et al. shows a very similar pattern where the peak positions of flake graphite have been 
shifted to higher 2θ value of 26.7° giving a d-value of 0.3340 nm. This is a further evidence to show the effect of 
purity on lattice parameters of graphite crystallites. Although absolute values of intensities  (Is) of XRD depend 
on the amount of diffracting atoms present in the sample, which in turn depends on the amount of material 
used to get the diffractograms, the normalized intensities obtained by dividing  I(002) by  I(004) are meaningful and 
independent of the amount of materials used. As revealed by XRD data, the floating of ball-milled graphite has 
increased this intensity ratio indicating that floating of ball-milled graphite has resulted in increased crystallinity 
of the sample. The decreased crystallite size and the decreased interlayer distance of the FG collectively indicate 
the shrinking of particles due to floating, which may be due to the removal of impurities in the pristine graphite 
when it is milled and floated in the water.

Figure 2 shows the SEM images and atomic distribution as determined by the EDX images of two pristine 
graphite samples obtained from different location without powdering. It is clear that the impurities of the graphite 
samples, determined by EDX, are different in terms of their composition and distribution. The C EDX shows 
full coverage since C is the major element present in graphite. The O distribution is shown in yellow patches and 
dots. This indicates that O is present in mineral inclusions and not attached to C to form graphite oxide. Further, 
the distribution of other elements indicates the presence of several mineral inclusions. Therefore, it is very likely 
that O is present as Al-bearing silicates which may also contain Mg and Fe also. Additionally, Fe and Cu can 
exist as their oxides, sulphites or mixed oxide/sulphides. There is a possibility for Cu to present as native Cu also.

The compositions of FG and PG samples determined by the SEM-EDX and IPC-MS are given in Tables 1 
and 2, respectively. As can be seen from Table 1, the C atomic percentage has been increased by 7.86% when 
PG is converted to FG showing a significant enrichment of the carbon content. At the same time, the O and 
Si atomic percentages have been decreased by 5.76% and 2.16%, respectively. However, the EDX results show 
higher atomic percentages of S, Mg, Fe, Al and Cu in FG than those in PG. In order to explain the increase in 

Figure 2.  The (a) SEM images of pristine graphite samples collected from different locations and (b) EDX 
images showing elemental distributions of graphite in the two samples.
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the atomic percentages of some elements, it is important to consider the nature of the impurity elements present 
in the graphite samples. The impurities in vein graphite can occur either as mineral inclusions such as quartz, 
pyroxene, pyrrhotite, pyrite, chalcopyrite, sphalerite, marcasite, chlorite, calcite, siderite, dolomite, copper or as 
elements incorporated into the crystalline  lattice10,14,24 Depletion of elements in low-carbon graphite indicates 
that most of the impurities exist as mineral inclusions. Some of these mineral inclusions are removed during the 
flotation as can be seen by the decreased atomic percentages of Si and O. This shows that some silicate minerals 
included in graphite have been removed by the flotation. However, there are some minerals still remaining in the 
FG indicating that it contains fine inclusion of some minerals, as shown in the EDS images given in Fig. 2. There-
fore, silicate minerals such as quartz  (SiO2), pyroxene group minerals (Mg,Fe)SiO3 or  (CaxMgyFez)(Mgy1Fez1)
Si2O6) and chalcopyrite  (CuFeS2), as well as native element minerals such as copper (Cu) and iron (Fe) can be 
suggested from EDS elemental distribution of original graphite sample.

Further, some silicate minerals with copper and iron are also present in raw samples. These minerals may have 
formed due to the alteration processes of the hydrothermal fluids. However, the carbon percentage has increased 
to 97% from 86% in the original mineral, due to the removal of silicate minerals during the flotation process. 
However, the fine inclusion such as iron-bearing and silicate minerals have not been fully removed, and they 
have floated with graphite (Table 2) as some of them occur as nanometer-scale minerals (see Fig. 2b). Since the 
EDX calculates the mass percentages by considering available elements it is possible to show higher values when 
the number of different elements is less. This may be the reason for the increased atomic percentages of Fe, Al 
and S shown in FG samples. The enrichment of Ba in floated graphite indicates that the element is incorporated 
into the crystalline lattice. However, the final FG products in all products contain over 97.3% of carbon content 
(Table 2). Therefore final FC products are suitable for applications including nuclear reactors, furnaces, advanced 
materials, specific niche applications, expandable graphite products, composites, and electronic applications. 
The final products can be marketed for USD 4000–6000 per tonne as per the graphite market in  20194 whereas 
the PG with 91–95.9% carbon content has market value of USD 500–1100 per tonne. Therefore, the simple 
floatation technique reported in this study gives a considerable high value addition of 4–12 times. This can be 
further increased by making even smaller PG particles and utilizing processes such as magnetic separation to 
remove iron in final FG products.

The Raman spectra given in Fig. 3 show three prominent bands centred at 1347  cm−1, 1579  cm−1, and 
2690  cm−1 which correspond to the D, G, and 2D bands of both PG and FG samples, respectively. Interestingly, 
the band positions have not been changed due to crystallite size reduction. However, the intensity of the D 
band of FG is higher than that of PG and the intensity ratio of the D band and G band  (ID/IG), of FG and PG 
are 0.10 and 0.03, respectively. The increased intensity of the D band is due to increased defects in the sample. 

Table 1.  Elemental analysis of graphite samples by EDS. b.d below the detection limits, n.d not detected.

Elements C O Si S Mg Fe Al Cu

Sample FG mass% 96.54 2.66 0.23 0.18 b.d 0.26 0.12 b.d

Sample FG atomic % 97.67 2.02 0.10 0.09 b.d 0.06 0.06 b.d

Sample PG mass% 84.69 9.77 4.99 b.d 0.18 0.22 n.d 0.19

Sample PG atomic % 89.81 7.78 2.26 b.d 0.06 0.05 n.d 0.04

Table 2.  Compositions of the graphite samples as determined by ICP-MS analysis.

Sample Purity

Carbon content together with some minor 
elemental impurities as mass%

Al K Fe Ca Mg Ctotal

PG
High

< 0.01 < 0.01 0.03 0.05 0.01 95.9

FG < 0.01 < 0.01 0.09 0.01 0.01 98.0

PG
Moderate

0.04 < 0.01 0.11 < 0.01 0.06 92.9

FG 0.04 < 0.01 0.12 < 0.01 0.06 97.3

PG
Low

0.14 < 0.01 0.21 0.09 0.14 91.9

FG 0.09 0.01 0.14 0.03 0.09 98.0

Sample Purity

Trace elements in ppm (abundance is too low to be 
given as mass %)

Ba Bi Cr Cu Mn Mo Pb

PG
High

7.3 1.7 6 24.6 6 0.2 1

FG 11.7 1.6 4 19.7 7 0.1 1

PG
Moderate

7.7 1.7 1 38.5 7 0.3 1.3

FG 8.1 1.6 < 1 38.1 7 < 0.1 1.5

PG
Low

6.2 0.4 14 19 31 0.6 1.3

FG 11.8 0.2 8 10.1 20 0.3 0.9
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The floating has reduced the crystallite size by removing some mineral inclusions and during this process more 
edge defects have been formed.

Figures 4 and 5 show the TEM images of PG and FG, respectively. The size of the sheets are in the 0.5–4 µm 
range. Insets in Figs. 4a and 5a are the corresponding [0001] SAED patterns. This shows that distinct six-fold 
symmetry diffraction spots are present more frequently in the FG specimen when compared to those of the PG 
sample. Moreover the electron diffraction pattern of the PG exhibit rather ring-like reflections (polycrystalline), 
as shown in the inset of Fig. 5a. It indicates that the FG shows either high crystallinity or/and without rotational 
boundaries in the observed area. The lattice parameters of PG and FG are 0.247 nm and 0.246 nm, respectively. 
A commonly used method to quantify the number of layers in graphite/graphene is by counting the number 
of folds at the edge of the flakes/sheets in high-resolution TEM images (HRTEM) as shown in Figs. 4b and 5b. 
This counting gives more than 68 layers in PG whereas FG has only 16 layers. The calculated interlayer distance 
of PG sheet is 0.339 nm, which is corresponding to (002) graphite crystal spacing. However, FG has a relatively 
smaller interlayer spacing of 0.326 nm. This is consistent with the XRD results in which FG’s (002) peak shifted 
toward the higher 2θ angle resulting in a smaller lattice spacing.

To distinguish the features more efficiently we remove the contrast due to the presence of amorphous materi-
als, in Figs. 4c and 5c by the Fast Fourier Transform (FFT) method. The corresponding FFT images are shown 
in Figs. 4d and 5d for PG and FG respectively. It should be noted that the HRTEM images were taken at the 
featureless regions which may contain a few-layer graphene. The interplanar spacing along (100) planes obtained 
are 0.230 nm and 0.242 nm for the PG and FG, respectively, which are closely matching the lattice parameters 
calculated from the diffraction patterns. However, it is important to note that the periodicity in the region might 
not be the original position of the spots due to the instrumental limitations.

Figure 6 depicts the FT-IR spectra of PG and FG samples. The spectra of both samples are basically very 
similar with broad band between 3200 to 3700  cm−1 resembling the O–H vibrations of adsorbed water molecules 
on graphite surfaces and narrow band centered at 1622  cm−1 due to C=C stretching of conjugated double bonds 
that are present in graphene layers. The absence of bands at 2925  cm−1 (asymmetric C–H stretching in  CH2 
groups) 2855  cm−1 (symmetric C–H stretching in  CH2 groups) suggests that there are no detectable amounts 
of saturated  sp3 carbon atoms in both PG and FG samples. In other words, there are no noticeable defects due 
to hydrogenated double bonds in both samples. The absence of C=O vibration centred at 1738  cm−1 shows that 
the unsaturated carbon atoms do not contain any carbonyl functionality and hence the materials contain only 
conjugated C=C in their graphene sheets.

XPS was used to monitor the chemical state of carbon in both PG and FG samples. The survey scan spectra 
(Fig. 7) of PG (a) and FG (b) samples indicate the presence of C and O as major elements. The oxygen to carbon 
ratios (O/C) of PG and FG samples are 0.04 and 0.05, respectively. The C 1s spectra of the PG and the FG samples 
are shown in Fig. 7c,d. Both are fitted with four Lorentzian-Gaussian peaks of 20:80  ratios24. The most intense 
peak, at 284.5 eV, is assigned to  sp2 C=C bonds together with the weak component at 290.1 eV that corresponds 
to its π–π transition (signature of graphitic carbon). The peak at 285 eV is due to  sp3 C–C bonds. The component 
at 286.5 eV can be attributed to C–O–C/C–O bonds (ether and hydroxyl bonds, respectively). It is noted that 

Figure 3.  Raman spectra of (a) powdered graphite (PG) and (b) floated graphite (FG) samples. The D peak 
appears in FG sample due to the edge effects.
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the two samples exhibit similar patterns. However, FG has slightly higher percentage of the C–O and C–C com-
ponents and lower percentage of the C=C and π–π bonds than PG. With respect to PG there is 4% reduction of 
C=C bonds, 3% increase in C–C and 11% increase in C–O–C in FG. It is generally accepted that C–O bonds can 
be formed at the edges of the graphene sheets. These edge functionalities can also be a reason for the increased 
intensity of the D peak in the Raman spectrum of FG.

The present study is the first attempt to understand the characteristics of the floated graphite in de-ionized 
water. This simple floatation technique has been introduced to float ground graphite particles with mineral impu-
rities on the surface of de-ionized water, and floatation has been affected with the aid of shaking. This technique 
does not require any froth formers or floatation aiding chemicals and as such it is highly industrially viable and 
environmentally friendly. Furthermore, the complex purifying methods used in the literature and the graphite 
industry are tedious involving large number of processes which consume more  energy25–27. Because of the low 
chemical and labour costs involved in the process described here, manufacturing of pure graphite is substantially 
less expensive and the innovative laboratory approach can be simply transferable to the industrial scale without 
having to alter to suit to industrial requirements.

The powdered and floated graphite samples have some differences in their crystallite sizes, morphologies, and 
purities. Floatation has resulted in the shrinking of crystallite size due to removing mineral inclusions within 
the interlayer spaces. The number of defects has been increased in floated graphite and both samples have some 
C–O–C ether bonds but in slightly higher amounts in the FG. The number of layers present in crystallites has 
been remarkably decreased in floated graphite compared to that of PG. The floatation technique can remove some 
impurities which are present as mineral inclusions in graphite. The floatation aids the remarkable enhancement 
of carbon content in graphite samples. It is more prominent when the original samples are impure with lower 
carbon percentages, leading to 4–12 times high-value addition to graphite. This technique can be applied to vein 
graphite rich in silicate minerals (especially along the wall zones of graphite veins) which are considered a waste 
of mining products. Further purification of the final graphite product is possible by removing iron components 
of the final FG product by magnetic separation and using very fine graphite powders for the flotation process.

Methods
Materials. Vein graphite samples collected from Bogala mines, Sri Lanka, were selected for this study. Mor-
phologically different samples such as (a) flakes of radial graphite (b) flakes of striated graphite and (c) needle-
platy graphite attached to the wall rock were subjected to the study.

Figure 4.  (a) Low-magnification bright-field TEM image of the PG specimen with an inset of corresponding 
[0001] electron diffraction pattern. (b) TEM image of the folded edges for the PG specimen. (c) Fourier filtered 
high resolution TEM image and (d) the corresponding FFT image.
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Figure 5.  (a) Low-magnification bright-field TEM image of the FG specimen. The inset is the corresponding 
selected-area electron diffraction pattern showing the primarily single crystalline nature. (b) High resolution 
TEM image of the edge of the flakes consisting approximately 16 layers. (c) Fourier filtered high resolution TEM 
image of the FG and (d) the corresponding FFT image.

Figure 6.  FT-IR spectra of (a) powdered graphite (PG) and (b) floated graphite (FG).
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Figure 7.  XPS survey spectra of (a) PG and (b) FG samples. Deconvoluted C1s spectra of (c) PG and (d) FG 
samples.

Figure 8.  The process flow diagram of obtaining floated graphite from Sri Lankan vein graphite.



9

Vol.:(0123456789)

Scientific Reports |        (2021) 11:22713  | https://doi.org/10.1038/s41598-021-02101-9

www.nature.com/scientificreports/

Purification of graphite by floatation method. Figure 8 shows the process flow diagram using pho-
tographs taken at each step. Coarse samples from each variety were broken into small chips and crushed in a 
ball-mill for 20 min to form powdered graphite (PG). The grinding time was deliberately selected to be short to 
prevent the changes that may result in graphite structure due to mechanical shear. A portion of 5.0 g of particle 
size fraction less than 63 μm added to 500 mL of deionized water, at room temperature while stirring continu-
ously. The fine graphite particles are then dispersed in the solution and coarser particles settled at the bottom of 
the container. A glass rod was dipped in the suspension and the suspension was shaken by rotating the glass rod 
about the vertical axis. Then the fine particles move upwards with the air bubbles generated. These fine particles 
were eventually floated on the surface of the water. This flotation technique does not require any chemicals for 
froth formation nor does it require chemicals for specific gravity adjustments.

Characterization. X-ray diffraction (XRD) patterns were recorded using a powder diffraction machine, 
Rigaku, (RINT-TTR III), under Cu Kα radiation (λ = 1.5406 Å). Raman spectroscopic measurements were taken 
using a Renishaw InVia Reflex Raman microscopy system with a 532 nm laser. Fourier transform infrared (FT-
IR) spectra were collected using an IR Prestige-21 Shimatzu FT-IR spectrophotometer using the KBr pellet 
method. Here, each sample was ground-well and homogenized. The samples were mixed with dry KBr in 1:40 
mass-ratio to make the pellets. The transmittance of FT-IR spectra of the sample pellets were recorded by using 
a pure KBr pellet as the blank. Field-emission scanning electron microscopy along with energy-dispersive X-ray 
spectroscopy (EDS) was done by FE-SEM, Hitachi S-4700. Transmission electron microscopic (TEM) images 
were obtained on a JEM-2100 electron microscope (JEOL Ltd. Japan), at an accelerating voltage of 200 kV. The 
specimen was prepared by dispersing graphite powders in ethanol to form a suspension followed by ultrasonica-
tion for 1 h. A drop from each sample was put, separately, on carbon film-coated copper grids for observation. 
The high-resolution images of periodic structures were analysed and filtered by the Fast Fourier Transforma-
tion (FFT) method. X-ray photoelectron spectroscopic (XPS) measurements were performed using PHI 5000 
VersaPribe II ESCA with a monochromated Al Kα radiation (1486.6 eV) available at the Toyota Technological 
Institute, Japan. Full scans (Binding energies ranging from 0 to 1200 V) were acquired using 1 eV/step, while 
the higher resolution scans were obtained using 0.025 eV/step. The pressure during the data acquisition was less 
than 1 ×  10–8 Torr. The experimental curves were fitted using the Multipack data analysis software. The chemi-
cal composition of graphite samples was analysed by the Inductively Coupled Plasma Mass Spectrophotometry 
(ICP-MS- Perkin Elmer Sciex ELAN- 6000) at Activation Laboratories Ltd., Ontario, Canada. Detection limits 
for the ICP-MS were ranged between 0.2–0.001 ppm for trace elements.

Received: 27 September 2021; Accepted: 10 November 2021
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