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Abstract. The most common type of lung cancer is non‑small 
cell lung cancer (NSCLC), which is frequently characterized 
by a mutation in the epidermal growth factor receptor (EGFR). 
Determining the presence of an EGFR mutation in lung cancer 
is important, as it determines the type of treatment that a 
patients will receive. Therefore, the aim of the present study 
was to apply high‑resolution metabolomics (HRM) using 
liquid chromatography‑mass spectrometry to identify signifi-
cant compounds in human plasma samples obtained from 
South Korean NSCLC patients, as potential biomarkers for 
providing early detection and diagnosis of minimally‑invasive 
NSCLC. The metabolic differences between lung cancer 
patients without EGFR mutations were compared with 
patients harboring EGFR mutations. Univariate analysis was 
performed, with a false discovery rate of q=0.05, in order to 
identify significant metabolites between the two groups. In 
addition, hierarchical clustering analysis was performed to 
discriminate between the metabolic profiles of the two groups. 
Furthermore, the significant metabolites were identified and 
mapped using Mummichog software, in order to generate a 
potential metabolic network model. Using metabolome‑wide 
association studies, metabolic alterations were identified. 
Linoleic acid [303.23 m/z, (M+Na)+], 5‑methyl tetrahydro-
folate [231.10 m/z, (M+2H)+] and N‑succinyl‑L‑glutamate‑5 

semialdehyde [254.06 m/z, (M+Na)+], were observed to be 
elevated in patients harboring EGFR mutations, whereas tetra-
decanoyl carnitine [394.29 m/z, (M+Na)+] was observed to be 
reduced. This suggests that these compounds may be affected 
by the EGFR mutation. In conclusion, the present study 
identified four potential biomarkers in patients with EGFR 
mutations, using HRM combined with pathway analysis. These 
results may facilitate the development of novel diagnostic tools 
for EGFR mutation detection in patients with lung cancer.

Introduction

In South Korea, lung cancer is expected to contribute to 17,505 
male mortalities in the year 2016 which is the highest number 
among all cancers (1). The increasing mortality rates in 
patients with lung cancer, has led to an increase in the number 
of studies investigating this malignancy. There are two major 
types of lung cancer; one of which is small‑cell lung cancer, 
which is clinically aggressive and often already advanced at 
diagnosis. The remaining type is non‑small cell lung cancer 
(NSCLC), which is the most common type of lung cancer, 
and is known to exhibit various pathological features (2,3). 
The major criteria that distinguishes these forms are based 
on their histological characteristics, such as cell size and the 
nuclear/cytoplasmic ratio (4). Adenocarcinoma and squamous 
cell carcinoma are the dominant phenotypes of NSCLC. 
Squamous cell carcinoma is strongly associated with smoking 
and chronic inflammation (5).

The epidermal growth factor receptor (EGFR) is located on 
the cell surface and functions as a major contributor in signal 
transduction pathways that control cell proliferation, survival 
and differentation (6). Mutations in this tyrosine‑kinase 
receptor may induce an autophosphorylation process, 
leading to the continuous promotion of cellular proliferation, 
decreasing apoptosis and in the end, malignant transformation 
occurred (7,8). In East Asia, the EFGR mutation occurs 
in approximately 35% of patients with lung cancer (9). The 
mutation frequently occurs in exon 18‑21, which is the first 
exon that encodes the tyrosine‑kinase domain. The two 
most common mutations are a deletion in exon 19 and point 
mutation in exon 21 (10‑12). Determining the type of mutation 
is important, as it is used to determine patient treatment. A 
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previous study demonstrated that the presence of an EGFR 
mutation is associated with enhanced progression‑free 
survival and a high response rate to EGFR tyrosine kinase 
inhibitors (TKIs), when compared with standard first‑line 
chemotherapy in NSCLC (13). In addition, different mutations 
may be associated with different clinical characteristics. 
As determined by Fukuoka et al (13), NSCLCs in Chinese 
patients harboring mutations in exon 21 of EGFR exhibit a 
greater number of malignant features when compared with 
NSCLCs in patients harboring mutations in exon 19. Therefore, 
determining the type of mutation early during diagnosis is 
essential.

The detection of EGFR mutations is typically achieved 
using invasive cytologic or histologic techniques, followed 
by DNA‑sequencing (14‑16). However, a less invasive tech-
nique, such as the collection of blood samples, is important 
for aiding diagnosis, as cytologic or histologic detection is 
time‑consuming and unsafe (17). Biomarkers, which are 
measurable compounds present in biological fluids, may be 
used for diagnosis, assessing disease outcome and progres-
sion, and for predicting outcomes of treatment in clinical 
practice (18‑21).

In a previous study, the use of high‑resolution metabo-
lomics (HRM) generated promising results by identifying 
prospective biomarkers that effectively discriminated between 
healthy subjects and patients with lung cancer (20,22,23). In the 
present study, HRM was performed using a recently developed 
configuration involving liquid chromatography coupled with 
mass spectrometry (LC‑MS/MS). Quadrupole time‑of‑flight 
(Q‑TOF) MS was employed to investigate and identify signifi-
cant compounds as potential biomarkers in human plasma 
samples from South Korean patients with lung cancer. The 
aim of the present study was to identify biomarkers associated 
with mutations in exon 19 or 21 of EGFR, in order to facilitate 
the early detection and provide a minimally‑invasive diagnosis 
of NSCLC.

Materials and methods

Sample collection. A total of 15 plasma samples were 
obtained from patients with NSCLC lung cancer (age, 
55‑87; male/female, 7/8) admitted to Korea University Guro 
Hospital (Seoul, Republic of Korea) between January 2014 and 
September 2014. Of the 15 samples, 5 samples were derived 
from patients without EGFR mutations (termed NoEM), 4 
samples were derived from patients harboring EGFR muta-
tions in exon 19 and 6 samples were derived from patients 
harboring EGFR mutations in exon 21. Subjects with mutations 
in exons 19 or 21 were termed EMLC and were diagnosed 
based on PNA‑mediated real‑time polymerase chain reaction 
clamping using the PNAClamp™ EGFR Mutation Detection 
kit (Panagene, Inc., Daejeon, Republic of Korea). Details, such 
as sex and body mass index (BMI) are provided in Table I. 
The BMI values were analyzed using a Student's t‑test, which 
demonstrated no significant differences among the NoEM 
and EMLC groups. EMLC subjects received EGFR TKI 
treatments while NoEM subjects received supportive care. 
The present study was approved by the Institutional Review 
Board of Korea University (approval no. KUGH14273‑002), 
and written informed consent was obtained from all patients.

Sample preparation and LC‑MS measurements. Samples 
(50 µl) were treated with acetonitrile (1:2, v/v), and centri-
fuged at 14,000 x g for 5 min at 4˚C in order to separate 
proteins (24). Metabolites were separated using the Agilent 
1200 High Performance Liquid Chromatography (HPLC) 
System (Agilent Technologies, Inc., Santa Clara, CA, USA) 
with a Higgins Analytical Targa HPLC C18 100x2.1 mm 
column, 5 µm particle size (Higgins Analytical, Inc., 
Mountain View, CA, USA). Mobile phase A consisted of 
0.1% formic acid in water (HPLC grade, Tedia Company, 
Inc., Fairfield, Ohio, USA) and mobile phase B consisted 
of 0.1% formic acid in acetonitrile (HPLC grade, Tedia 
Company, Inc.). The HPLC gradient was programed as 
follows: 0‑7 min, 5% for B; 7‑15 min, gradient decrease to 
2% for B; 15‑20 min, hold 40% for B; 20‑24 min, 95% for 
B; 24‑25 min, gradient decrease to 2% for B. The injection 
volume was 5 µl, with a flow rate of 0.4 ml/min and a column 
temperature of 40˚C. Masses of metabolites ranging from 
50‑1000 m/z were detected using the Agilent 6530 Accurate 
Mass Q‑TOF‑LC/MS (Agilent Technologies, Inc.) in the posi-
tive ionization mode (25). This LC‑MS/MS is ideally suited 
for metabolic stability and profiling studies, as this system 
is highly sensitive for the detection of compounds at low 
concentrations (pg/ml), has a resolving power of 40 k, and is 
able to identify masses and isotopes for the accurate identifi-
cation of metabolites. This system was used to detect the m/z 
of ions from 50 to 1,000, with 20,000 resolution (arbitrary 
units) over 30 min, and LC operated with data extraction using 
the apLCMS software version 5.9.6 (http://clinicalmetabolo-
mics.org/welcome/default/software) (26), which provided a 
minimum of 3,000 reproducible features; a number of which 
displayed sufficient mass accuracy to allow prediction of 

Table I. Age, sex, weight and BMI of patients with lung cancer 
included in the present study.

Parameters No EGFR mutation EGFR mutation

Number of subjects 5 10 (4/6)
Age (years) 77.6±8.65 65.4±10.85
Sex (male/female) 3/2 4/6
Weight (kg) 60.17±10.38 52.26±9.40
BMI (kg/m2) 25.61±2.36 22.32±3.61
Stage of disease T2aN0M0; T2aN2M0;
 T1aN0M1b; T2aN2M1b;
 T2aN2M1b; T3N1M0;
 T2N3M1b; T2aN0M0;
 T2aN2M1a; T2N3M1b;
  T2aN0M0;
  T2N0M1b;
  T2N0M1b;
  T4N2M1a;
  No information
  for 1 subject

Values are expressed as mean±standard deviation. BMI, body mass 
index; EGFR, epidermal growth factor receptor.
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elemental composition. Ion intensity, m/z, and retention time 
was used to define an m/z feature.

Metabolic profiling with univariate and multivariate statis‑
tical analysis. apLCMS generated the total features from the 
samples for subsequent statistical analyses and bioinformatics. 
Features from triplicate LC‑MS analyses were averaged, log2 
transformed and normalized by z‑transformation. Univariate 
analysis and the false discovery rates (FDR) (27) were calcu-
lated to reduce the incidence of false positives, and Manhattan 
plots were constructed using the Limma R package (version, 
2.15; https://www.r‑project.org/) (28), in order to identify the 
significantly different metabolites between NoEM and EMLC 
groups. Using the same package, two‑way hierarchical cluster 
analysis (HCA) was used to separate the metabolic profiles 
of the two groups based on their metabolite profiles (29). The 
Limma package is used for the analysis of gene expression 
data generated from microarray or RNA‑Sequencing tech-
nologies. It provides the ability to compare a number of targets 
simultaneously (21,30). Receiver operating characteristic 
(ROC) curves (MedCalc Software bvba version 16.8, Ostend 
Belgium) were used to classify the samples based on signifi-
cant metabolite levels.

Data annotation and pathway analysis. Using the list of all m/z 
features detected (Lref) and the significant m/z features (Lsig), 
the significant metabolites were annotated using Mummichog 
software version 1.0.5 (http://clinicalmetabolomics.
org/welcome/default/software) to generate a potential metabolic 
network model (31). Mummichog software was used to iden-
tify potentially matched metabolites from the m/z features in 
Lsig, as well as establish a reference metabolic network for all 
modules that may be produced by these metabolites. Random 

lists of m/z features were generated from Lref a number of times 
to estimate the null distribution of module activities, in order to 
compute its statistical significance. A module may be within a 
known pathway or in between several pathways. The predicted 
metabolites listed in modules were colored according to fold 
change. This program has been successfully used to facilitate 
the identification of metabolite activity networks in immune 
responses to viruses (31), and for the metabolic profiling of 
fruit flies (32). Based on the results from Manhattan plot, FDR, 
HCA, and Mummichog pathway analysis, potential biomarkers 
were then selected and a histogram displaying differences in 
the relative concentration of different metabolites in NoEM and 
EMLC groups were generated using Microsoft Excel (Microsoft 
Corporation, Redmond, WA, USA).

Statistical analysis. Differences in the levels of endogenous 
compounds between NoEM and EMLC groups were analyzed 
using the Student's t‑test followed by FDR multiple testing 
correction. Statistical analysis was performed using the Limma 
R package version 2.15 version (https://www.r‑project.org/). 
P<0.05 was considered to indicate a statistically significant 
difference. To reduce the incidence of false positives, P‑values 
were adjusted by applying a multiple testing correction (the 
Benjamini and Hochberg procedure for adjusting the false 
discovery rate), thus producing optimum statistical significance.

Results

In the present study, metabolome‑wide association analysis 
was performed to determine metabolic alterations in NoEM 
and EMLC groups of patients with lung cancer. Statistical 
tests were performed using the Manhattan plot to identify 
significant features between the NoEM vs. EMLC groups. As 

Figure 1. Metabolome‑wide association study. (A) Manhattan plot and (B) two‑way hierarchical cluster analysis using significant FDR features separated into 
two groups. The red cluster represents the NoEM group and the green cluster represents the EMLC group. The dotted line in the Manhattan plot represents the 
FDR where q=0.05, and metabolites above this line depict the significant metabolites (n=112) between two groups. The metabolite clusters are shown on the 
the left side of HCA heatmap. FDR, false discovery rate; NoEM, group of patients with no EGFR mutation; EMLC, group of patients harboring a mutation in 
exon 19 or 21 of the EGFR gene.
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shown in Fig. 1A, the y‑axis represents the ‑log10 of the raw 
P‑values between the NoEM and EMLC groups, while the 
x‑axis represents the m/z values ranging from 50 to 1,000. The 
dashed‑line represents the significant FDR threshold (q=0.05), 
which distinguishes the significant features from insignificant 
m/z values. Therefore, metabolites were considered to be 
significantly different in the EMLC and NoEM groups if they 
were placed above this threshold.

The number of features that were significantly different 
between the EMLC and NoEM groups was 112 out of the 
3,939 total detected features (Fig. 1A). Two‑way HCA was 
performed to identify the correlation between samples and 
significant metabolites, with a clear separation of NoEM and 
EMLC groups expected. As demonstrated in Fig. 1B, the 
NoEM group (red panel), is grouped as one cluster while the 
EGFR group (green panel) is grouped as a different cluster. 
This apparent separation in the heatmaps suggests that the 
metabolites are highly differentiated in each group.

Mummichog analysis. Metabolite enrichment was achieved 
using the Mummichog program. This program is used to 
generate metabolite networks and associated particular path-
ways for display as interactive figures, with color‑identified 
nodules based on fold changes. Among the metabolites that 
were significantly different between the NoEM and EMLC 
groups, four groups of significant metabolites that demon-
strated a strong correlation to certain pathways were identified. 
The first group consisted of metabolites associated with 
fatty acid (FA) metabolism and the carnitine shuttle, which 
are pathways that are associated with energy production. As 
shown in Fig. 2A, linoleic acid and tetradecanoyl carnitine 
were observed to be the significant metabolites, as indicated 
by the different colored modules when compared with the 
other metabolites. The remaining groups correlated with 
the following signaling pathways: Urea cycle/amino group 
metabolism, amino acids and folate metabolism. As demon-
strated in Fig. 2B and C, 5‑methyltetrahydrofolate (5‑MTHF) 

Figure 2. Mummichog analysis was used to generate metabolic networks that were affected patients with lung cancer that harbored a mutation in exons 19 or 
21 of the epidermal growth factor receptor. The (A) carnitine shuttle, (B) folate and (C) amino acid metabolism pathways were identified. CoA, coenzyme A; 
FAD, flavin adenine dinucleotide; FADH2, 1,5‑dihyro‑FAD.

Table II. ROC curves for the significant metabolites identified.

    Positive predictive  Negative predictive 
Metabolite AUC Sensitivity (%) Specificity (%) value (%) value (%)

Linoleate 0.68 46.67 86.67 87.5 44.8
5‑MTHF 0.72 43.33 100.00 100.0 46.9
NSGS 0.65 46.67 86.67 87.5 44.8
Tetradecanoyl carnitine 0.69 63.33 73.33 82.6 50.0

ROC, receiver operating characteristic; AUC, area under curve; 5‑MTHF, 5‑methyltetrahydrofolate; NSGS, N‑succinyl‑L‑glutamate‑5 
semialdehyde.
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and N‑succinyl‑L‑glutamate‑5 semialdehyde (NSGS) were 
significantly different among the metabolites.

Identification and verification of potential biomarkers. 
Differences in the levels of endogenous compounds were 
identified between NoEM and EMLC groups. Linoleic acid 
[303.23 m/z, (M+Na)+], 5‑methyl tetrahydrofolate [231.10 m/z, 
(M+2H)+] and N‑succinyl‑L‑glutamate‑5 semialdehyde 
[254.06 m/z, (M+Na)+] were observed to be significantly elevated 
in patients harboring EGFR mutations, whereas tetradecanoyl 
carnitine [394.29 m/z, (M+Na)+] was observed to be signifi-
cantly reduced (Fig. 3). ROC analysis was then performed to 
assess the classification of samples based on the detected levels 
of significant compounds (Fig. 4). The area under the curve 
(AUC) for linoleate, 5‑MTHF, NSGS and tetradecanoyl carni-
tine, was 0.68, 0.72, 0.65, and 0.69, respectively (Table II). The 
AUC values of two compounds with the highest values were 
verified by detecting the transition of the specific precursor ion 
to the product ion: 394.29‑377.26 m/z for tetradecanoyl carnitine 
and 231.1‑170.7 m/z for 5‑MTHF (data not shown).

Discussion

The main objective of the present study was to identify low 
molecular‑weight metabolites that may be used as biomarkers 
for lung cancer mutation diagnostic tools. By comparing the 
metabolite profiles of plasma samples from patients with no 
EGFR mutations with patients harboring EGFR mutations, four 
compounds, including linoleic acid, tetradecanoyl carnitine, 
5‑MTHF, and NSGS, were identified as potential biomarkers.

Activating mutations in EGFR is a major factor that 
contributes to abnormal cell proliferation and malignant 
transformation (33). Gene mutations in cancer cells may lead 
to uncontrolled proliferation and disruption of signaling path-
ways, which activates the uptake and metabolism of nutrients. 
Therefore, mutations promote cell survival and increase cell 
growth (34,35).

Human cells generate energy by utilizing glucose and 
lipid metabolic pathways, which are affected by the irregu-
larities in cancer cells. First described by Warburg, glucose 
metabolism alterations in cancer cells have been investigated 
in a number of studies (36‑38). In addition, alterations in FA 
metabolism in cancer cells have recently garnered increasing 
attention (39‑41). FAs, such as linoleic acid, are metabolized 
via mitochondrial FA oxidation. FA is first activated via coen-
zyme A (CoA) esterification, and is subsequently transported 
to the mitochondria by the carnitine shuttle (42). This shuttle 
transfers long‑chain acyl‑CoAs as their corresponding carni-
tine ester, which are then converted to the FA‑acylCoA form 
prior to β‑oxidation for energy production. This transfiguration 
process demonstrates the importance of the carnitine shuttle in 
FA‑dependent energy formation.

Previous studies have suggested that peroxisome prolifer-
ator‑activated receptor (PPAR) serves a vital role as a regulator 
of FA oxidation and carnitine metabolism (43‑45). The PPARγ 
subtype contributes to the suppression of cell prolifera-
tion (45,46). According to Hou et al (46) dysregulated EGFR 
expression promotes cell proliferation by inhibiting PPARγ 
function. Hence, mutations in EGFR potentially disrupt the 
function of PPAR in regulating FA metabolism.

In the current study, the activity of the carnitine shuttle was 
highlighted as a putative deregulated pathway in patients with 
EGFR mutations. Based on the results of previous studies, it is 

Figure 3. Abundance of identified metabolites in NoEM and EMLC groups. 
The relative concentration of (A) linoleate, (B) tetradecanoyl carnitine, 
(C) 5‑MTHF, and (D) N‑succinyl‑L‑glutamate‑5 semialdehyde in NoEM and 
EMLC groups. Data are expressed as mean ± standard deviation. *P<0.05 
vs. NoEM group. NoEM, group of patients with no EGFR mutation; EMLC, 
group of patients harboring a mutation in exon 19 or 21 of the EGFR gene; 
EGFR, epidermal growth factor receptor; 5‑MTHF, 5‑methyltetrahydrofolate.

Figure 4. Classification of subjects according to the level of significant 
compounds identified. ROC curve analysis demonstrated that the level of lino-
leate, 5‑MTHF, NSGS, and tetradecanoyl carnitine was able to differentiate 
the EMLC group from the NoEM group. ROC, receiver operating character-
istic; 5‑MTHF, 5‑methyltetrahydrofolate; NSGS, N‑succinyl‑L‑glutamate‑5 
semialdehyde; EMLC, group of patients harboring a mutation in exon 19 or 
21 of the EGFR gene; NoEM, group of patients with no EGFR mutation.
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possible that EGFR mutations led to deregulation of the carnitine 
shuttle by terminating PPAR function. Four acyl carnitines were 
detected, notably tetradecanoyl carnitine, which was present at 
lower levels in EMLC patients, while linoleic acid, a long‑chain 
FA, was observed to be elevated. The levels of linoleic acid may 
have been elevated due to disruption of its transport mechanism 
to the mitochondria. In addition, regardless of its role in the 
cytosol, acyl carnitine is transported across cell membranes and 
can therefore be detected in plasma (47).

In the present study, the metabolism of amino acids and 
folate was identified as an affected pathway in patients with 
lung cancer harboring EGFR mutations. Previous studies have 
identified abnormalities in metabolic proteins in lung cancer 
patients by determining the difference in amino acid levels 
in blood plasma samples (48,49). The level of plasma amino 
acids may indicate the sum of various pathologic conditions 
affecting the total flux of amino acids in the body (50). In the 
present study, the detection of NSGS was significantly higher in 
the EMLC group of patients when compared with the NoEM 
group. This compound is an intermediate in the glutamate, 
aspartate and proline metabolic pathways. The elevated levels 
of 5‑MTHF observed in the EMLC group may have been 
associated with overexpression of folate receptor α (FRα) due 
to the EGFR mutation (51). FRα is a glycoprotein located in 
the cell membrane that binds folic acid with a high affinity 
(Kd<1 nM) and mediates its intracellular transport (52,53). In 
addition, FRα binds one‑carbon reduced folate derivatives, 
such as 5‑MTHF, with a lower affinity (Kd, 1‑10 nM) (53,54). 
Therefore, overexpression of FRα, and the subsequent binding 
of folic acid, may have been caused by the observed increase 
in extracellular 5‑MTHF. Notably, this study demonstrated 
extreme differences in the abundance of 5‑MTHF between 
NoEM and EMLC groups. In addition, the medication history 
of all patients was checked to remove bias. Three subjects, one 
of them from the NoEM group, received folic acid supplements; 
however, this did not influence the results, as zero abundance 
of 5‑MTHF was detected in the NoEM group. This may be 
useful for developing improved treatments for patients with 
NSCLC, as elevated 5‑MTHF levels may be associated with 
high levels of FRα expression, which may improve responses to 
antifolate chemotherapy (51). In addition, the results of a phase 
II clinical trial in China demonstrated that the efficacy of TKIs 
(erlotinib) combined with antifolate (capecitabine) treatment 
were significantly beneficial in patients with lung cancer with 
EGFR mutations who hadn't received cancer treatment prior to 
the study (55).

In conclusion, four potential biomarkers were identified in 
the plasma samples of patients with lung cancer that harbor 
EGFR mutations. Two of these biomarkers were associated 
with energy production signaling pathways, specifically FA 
metabolism. These results may provide opportunities for the 
development of novel diagnostic tools for EGFR mutation 
detection in lung cancer. Future studies with a larger popula-
tion of subjects are required to validate the results, and provide 
a rationale for the clinical practicality of this approach.
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