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Abstract

Process-based models can be usefully employed for the assessment of field and regional-

scale impact of drought on crop yields. However, in many instances, especially when they

are used at the regional scale, it is necessary to identify the parameters and input variables

that most influence the outputs and to assess how their influence varies when climatic and

environmental conditions change. In this work, two different crop models, able to represent

yield response to water, Aquacrop and SAFYE, were compared, with the aim to quantify

their complexity and plasticity through Global Sensitivity Analysis (GSA), using Morris and

EFAST (Extended Fourier Amplitude Sensitivity Test) techniques, for moderate to strong

water limited climate scenarios. Although the rankings of the sensitivity indices was influ-

enced by the scenarios used, the correlation among the rankings, higher for SAFYE than for

Aquacrop, assessed by the top-down correlation coefficient (TDCC), revealed clear pat-

terns. Parameters and input variables related to phenology and to water stress physiological

processes were found to be the most influential for Aquacrop. For SAFYE, it was found that

the water stress could be inferred indirectly from the processes regulating leaf growth,

described in the original SAFY model. SAFYE has a lower complexity and plasticity than

Aquacrop, making it more suitable to less data demanding regional scale applications, in

case the only objective is the assessment of crop yield and no detailed information is sought

on the mechanisms of the stress factors affecting its limitations.
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Introduction

Drought is one of the phenomena which most influences agricultural production worldwide,

causing significant and occasionally dramatic harvest losses [1]. As recently reviewed by [2],

considerable efforts have been made to analyze the complex phenomenon of drought and

assess its severity and impact [3–5]. Available approaches, in this context, include the predic-

tion of yield losses in the presence of water shortages, both at the field and at the regional scale,

e.g. using remote sensing data [6] coupled to crop models [7]. First requirement herewith, is a

crop model suitable to study the impact of drought, i.e. one that can correctly simulate physio-

logical processes related to the soil water status, such as crop transpiration and yield responses

to water. Many models are available for this purpose, with varying degree of complexity and

predictive performance, such as WOFOST [5, 8], the CERES DSSAT models [9], STICS [10]

or CROPSYST [11], among the most widely used. Although these process-based crop models

were originally conceived for field scale applications, they are increasingly employed for spatia-

lized regional scale studies [12–13] and remote sensing data assimilation [13–16]. Crop models

are usually quite demanding in terms of data requirements and, when applied to large areas,

they can be affected by many sources of uncertainty, due to the poor quality of input data (e.g.

weather, soil), to the lack of information on management (e.g., sowing dates, fertilization prac-

tices, cultivars grown), which can be also variable in space and time, as well as to the model

structure [14, 17], to the experience of the model users [18] and to the uncertainty in the data

used for their calibration [19–20].

To address these issues, it is possible to follow two different strategies: 1) use a simple

model with a reduced number of parameters and inputs, or 2) fix the values of the parameters

and input variables which are less influential, in order to reduce as much as possible the num-

ber of factors to vary. In all circumstances, however, a preliminary identification of the factors

that most affect the targeted outputs of the model is required.

The use of a simple model, with a reduced number of parameters, was proposed, for

example, by Duchemin et al. [21], who developed the Simple Algorithm For Yield (SAFY), in

order to investigate the perspectives offered by coupling a simple vegetation growth model

and ground-based remotely-sensed data for the monitoring of wheat production. The model

simulates dynamically leaf area index (LAI) and dry above-ground biomass and crop yield.

Being quite simple, it is very attractive for operational applications at a regional scale. It was

employed by Chahbi et al. [22] to estimate the dynamics and yields of cereals in semi-arid, low

productivity regions in North Africa, confirming the ability of the model for yield prediction.

However, the model does not take into account the effects of water or nutrient limitations on

plant growth and it does not simulate physiological processes related to the soil water status,

such as crop transpiration and yield responses to water. The impact of water deficit is expected

to be accounted for by the variation of the effective light-use efficiency, with the idea that this

parameter can be calibrated from the time course of the LAI observed from remote sensing.

[21] highlight the limits of this assumption, since LAI is an indicator of all agro-environmental

stresses considered together, with no possibility to scrutinize the underlying causes for yield

reductions. For these reasons, Duchemin et al. [23] and Veloso [24] added a water balance and

evapotranspiration component to the model, thus renamed SAFYE.

Alternatively, more complex models can be used, such as Aquacrop [25], developed by the

Food and Agriculture Organization (FAO) of the United Nations specifically for the purpose

of assessing crop response to water and increasingly used by scientists and agronomists [26–

30]. Aquacrop is also very interesting in the context of remote sensing data assimilation,

because it employs canopy cover (CC) as a key state variable. CC is easier to retrieve from

remote sensing than e.g. LAI, which is difficult to estimate at high values, being subject to

Sensitivity analysis of Aquacrop and SAFYE

PLOS ONE | https://doi.org/10.1371/journal.pone.0187485 November 6, 2017 2 / 30

Academy of Science 2014-2016; Chinese National

Science and Technology Support Program grant

2012BAH29B00 to Guijun Yang; Chinese State Key

Basic Project grant 2013CB733404 to Hao Yang;

University of Tuscia funding to Paolo Cosmo

Silvestro. The funders had no role in study design,

data collection and analysis, decision to publish, or

preparation of the manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0187485


saturation of the reflectance signal [31]. In a comparison study of different wheat crop models

[32], Aquacrop was found to be the most sensitive to water stress and the simplest when com-

pared to other models, with comparable accuracy. Aquacrop was shown to simulate correctly

winter wheat yield under non-limiting [33] and water deficit [12, 29–30, 34] conditions, gener-

ally providing better results in wet or moderate water stress years than in very dry years [29],

thus requiring additional investigations before applying it to severe drought conditions. After

appropriate calibration, Aquacrop could achieve root mean square errors (RMSE) between

measured and estimated yields, in the order of 0.27 [34] to 1.29 [30] t ha-1, which is compara-

ble to other well established models such as CERES-Wheat, for which RMSE values of 0.17 to

1.2 t ha-1 were reported [9].

Regardless of the model used, the identification of parameters and input variables that most

affect its outputs is a fundamental problem for all the applications whenever large uncertainty

on their values is expected, such as at the regional scale, and when assimilation algorithms are

employed. In general, this is also important for model calibration studies, since accurate cali-

bration of a minimum number of parameters is a requirement for all crop models.

A suitable technique for such purpose is sensitivity analysis (SA). The aim of a sensitivity

analysis is to determine how sensitive the outputs of a crop model are, with respect to the ele-

ments of the model which are subject to uncertainty or variability, i.e. typically input variables

and parameters [14]. It is possible to distinguish two different strategies: local and global SA

[35]. An extensive overview of SA methods was done by Cariboni et al. [36], who show the

inadequacy of local methods for crop models, because of the complexity of the latter and the

necessity to know the interaction between parameters. For these reasons Global Sensitivity

Analysis (GSA) is considered more adequate in this context. GSA methods evaluate the effect

that the simultaneous change of several or all the input factors have on the output of the model

in wide ranges of variation [35]. The estimate of sensitivity of the model to each parameter is

obtained by varying at the same time many or all the input factors, measuring the combined

effect on model outputs. The inconvenience of this methods is the high computational cost

and, in case of an excessive number of factors, the difficulty of convergence of the algorithm.

Confalonieri et al. [37] performed a comparison of several SA techniques, applying them to

the rice crop model WARM and demonstrating the agreement between rankings of crop

parameters from the most to the last relevant. They evaluated the accuracy and the efficiency

of each SA method, concluding that resource intensive methods might not be needed to iden-

tify the most relevant parameters. In facts, the Morris method, the simplest amongst GSA

methods assessed, produced results comparable to those obtained by more computationally

expensive methods. If the model is described by a limited number of parameters or it is possi-

ble to exclude a priori some parameters, it becomes convenient to employ a variance-based

method. The most frequently used methods are Sobol and EFAST. The efficiency of these

methods is similar, in terms of computational time, but EFAST highlights better than Sobol

the influence of interactions between parameters on the variance model [38]. In the literature

both are used to analyze the sensitivity of a limited number of parameters [14, 38–39]. Confa-

lonieri [37] proposed a combination of Morris and Sobol methods, to exploit the computa-

tional advantages of Morris method to detect the non influential parameters and to reduce

the number of parameters when using Sobol. Vanuytrecht et al. [40] used the same strategy,

applying at first a screening technique using the Morris method and subsequentially EFAST

as variance-based method to examine sensitivity of the yield output of the Aquacrop model

for different crops and climates. They showed that the sensitivity to important parameters

depends strongly on environmental conditions and it was not possible to establish a ranking of

parameters valid for each climatic scenario. This signifies that it would be necessary to perform

a sensitivity analysis, possibly a simple screening method, for the scenarios in which the model
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will be used. Here, the plasticity of the model, i.e. the tendency to change its behavior and sen-

sitivity under different conditions, is thus determining the need for an extent of SA. From the

operational point of view, output sensitivity and plasticity of a crop model are essential infor-

mative characteristics when one wants to assimilate remote sensing data into crop models at

the regional scale.

In the present study, the sensitivity of two models, suitable for the assessment, by means of

remote sensing data assimilation, of wheat yield in water limited conditions in regional scale

studies, was assessed. These models are: Aquacrop [25], including a larger number of parame-

ters and input factors, but usually achieving accurate estimates of wheat yield [27–30], and

SAFY, having a reduced number of parameters, but generally providing less accurate yield esti-

mates [21–24].

The objective of the present work is to study the complexity and plasticity of these two

models in a comparative manner, more specifically focusing on the global sensitivity of the

winter wheat yield to model parameters and input variables, in a wide range of water limited

conditions occurring during the wheat growth season. A previous global sensitivity analysis

was carried out for Aquacrop by Vanuytrecht et al. [40], but no assessment of its plasticity has

been performed. This is a crucial aspect, relevant for all the users of the model in large scale

spatialized applications. For SAFY no previous global sensitivity analysis has been reported

yet.

Materials and methods

Crop models used

Aquacrop. Aquacrop is a widely used "water driven" productivity model that simulates

canopy cover (CC), biomass and yield of a crop mainly as a function of the water productiv-

ity, i.e. the biomass produced per unit of water transpired by the vegetation, normalized for

atmospheric evaporative demand and air CO2 concentration [25–30; 33–34]. Input variables

include weather data, consisting of daily maximum and minimum temperature, evapotrans-

piration and rainfall, as well as soil properties and agronomic management information,

including some related to the crop (e.g. sowing date). In the version of Aquacrop used in the

present work (version 4.0) there are 45 parameters (S1 Table), defining the crop physiologi-

cal and developmental responses to environmental factors and to soil water and salinity

stresses. Of all these parameters, 29 are considered as conservative, i.e. crop specific, but not

changing with cultivar, time, management practices, geographic location or climate [41].

These parameters are not supposed to require a local calibration for a well studied crop such

as wheat, but would need to be calibrated using data from multiple location for a species new

to Aquacrop.

Crop development is limited by upper and lower temperature thresholds and is determined

by a set of phenological parameters (e.g. eme, flo,mat, sen) which specify the length (in days or

in growing degree days) of each development phase, e.g. from sowing to emergence (eme),
flowering (flo), maturity (mat) or senscence (sen).

Canopy cover (CC) is the main state variable describing the growth of the foliage. Its

dynamics, in non limiting conditions, are regulated by parameters setting the initial canopy

cover, its growth rate coefficient (CGC), the maximum CC potentially achievable (CCx) and its

decline rate coefficient (CDC). Water stress, as well as soil salinity or limited fertility, limits or

delays the CC development through stress coefficients.

The amount of water transpired by the crop is a function of CC. Cumulative biomass pro-

duction is obtained as the sum of the daily ratio between crop transpiration and ET0 for each

day of the crop cycle. The proportional factor between biomass and transpiration ratio is the

Sensitivity analysis of Aquacrop and SAFYE
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normalized Water Productivity (pwp) (Eq 1):

Bn ¼ pwp �
Xn

i¼1

Tri
ET0i

� �

ð1Þ

where Bn is the cumulative aboveground biomass production at day n (g m-2); Tri is the daily

crop transpiration (mm day-1); ET0i is the daily reference evapotraspiration (mm day-1); i is

the day of crop cycle (from 1 to n) and pwp is the normalized crop water productivity.

The yield is calculated by multiplying the final biomass by a harvest index [41]. The influ-

ence of water stress on crop development is represented by a number of stress coefficients,

which describe the impact of water stress on canopy development, transpiration and harvest

index due to limited water availability. Additionally, temperature limitations on biomass pro-

duction and pollination are considered. A more detailed description of the Aquacrop model is

presented by Raes et al. [41].

SAFYE. The original Simple Algorithm For Yield (SAFY) proposed by [21] is based on

the Monteith concept [42], which links the production of total dry phytomass to the photosyn-

thetically active portion of solar radiation (PAR) absorbed by the crop. SAFY simulates, on a

daily time step, three main state variables from emergence of the crop to the end of its senes-

cence. These are: Dry Above-ground Mass (DAM), Leaf Area Index (LAI) and Grain Yield

(GY).

The daily production of dry above-ground phytomass (ΔDAM) depends on the incoming

global radiation (Rg) through three parameters: 1) climatic efficiency (Pgro_R2P) which is the

ratio of incoming photosynthetically active to global radiation; 2) light-interception efficiency

(Pgro_Kex), which affects the fraction of photosynthetically active radiation absorbed by the

canopy (APAR) and 3) effective light-use efficiency Pgro_Lue (g MJ-1), which is the ratio of

photosynthetically energy produced as DAM from APAR.

Furthermore, a temperature stress function FT(Ta) guarantees that the daily rate of biomass

production of vegetation (ΔDAM) increases as the air temperature is closer to the optimum

temperature (Ptfn_Topt), and goes to zero out of the range between minimum and maximum

critical temperatures. The final equation of ΔDAM is:

DDAM ¼ Rg � Pgro R2P � Pgro Kex � Pgro Lue � FTðTaÞ ¼ APAR � Pgro Lue � FTðTaÞ ð2Þ

The light-interception efficiency depends on the green leaf area index (GLAI) and a light

interception coefficient Pgro_Kex according to Beer’s law. The development of GLAI is split

into two phases. In the first phase GLAI increases, starting at crop emergence and ending at

the beginning of senescence. In the second phase, between the beginning and the end of senes-

cence, GLAI decreases with a rate defined by senescence parameters.

The third state variable simulated by SAFY is the grain yield. It is calculated from DAM by

means of a proportionality factor Pgro_P2G, corresponding to the harvest index. A detailed

description of SAFY was presented by Duchemin et al.[21].

In the present work, a modified version of SAFY, called SAFYE was used, introducing a

dependence of biomass yield on crop water stress, adopting the same modification as used by

[23] and [24]. These modifications were introduced since they allow an explicit assessment of

the crop response to water availability and the characterization of water stress, which was lack-

ing in the original model. The dry above-ground phytomass rate of change (ΔDAM) is multi-

plied by a water stress factor Ks, a dimensionless transpiration reduction factor dependent on

available soil water, ranging between 0 and 1 [43]. Ks is calculated from the total available soil

water in the root zone (TAW) and readily available soil water in the root zone (RAW), result-

ing from a simplified water balance driven by crop evapotranspiration, as described by the
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FAO irrigation and drainage paper n. 56 [43]. ΔDAM used in the modified version of SAFY is

computed as:

DDAM ¼ APAR � Pgro Lue � FTðTaÞKs ð3Þ

The version of SAFYE used in this work has 23 parameters in total, of which 10 were

added in the present modified version to the 13 of the original SAFY [21]. Of these 23 param-

eters, 13 can be considered as conservative, i.e. theoretically not needing a local calibration

[22], whereas 9 are cultivar specific and 1 depends on management factors, as listed in S2

Table. Additionally there are 8 input variables related to soil properties and management fac-

tors and 7 daily weather variables required: solar radiation, minimum and maximum air

temperature, minimum and maximum relative humidity, mean wind speed and reference

evapotranspiration.

SAFYE was tested with field data collected on winter wheat in Xiaotangshan (40.17˚N,

116.43˚E), near Beijing (China) during four years (2008–2011), within an experimental trial in

which different sowing dates were used, according to a randomized block design with three

replicates. In the first three years, three sowing dates were adopted: 28 September, 7 and 20

October in 2008–2009; 25 September, 5 and 15 October in 2009–2010; 25 September, 5 and 15

October in 2010–2011. The last year (2011–2012) only one sowing date was used: 25 Septem-

ber. The area of each plot was 100 m2 in 2008–2010 and 300 m2 in 2011. Weed control, pest

management and fertilizer application were performed according to the local standard prac-

tices. The biomass and the leaf area index (LAI) were sampled 5–6 times during each growing

season. The LAI-2000 Plant Canopy Analyzer (LI-COR Inc., Lincoln, NE, USA) was used for

the determination of LAI. Aboveground biomass was collected using random sampling of a

0.25-m2 area, with four replicates per plot. All samples were oven dried at 70˚C to a constant

weight. The grain yields of each plot with three replicates for each treatment were obtained by

randomly sampling a 1.5 m2 area. Further details on this experimental dataset are provided by

[30].

The performance of the model, previously validated by [23] and [24], was assessed by com-

paring simulated and measured data by computing the Root Mean Squared Error (RMSE) and

the relative RMSE, i.e. RRMSE the ratio between RMSE and the mean of the measured data.

Sensitivity analysis strategy

Following a widely used procedure [37, 40], the SA strategy used in this study was to apply pre-

liminarily a screening method in order to be able to exclude non-influential parameters of the

models. In the second step, a variance based method is applied, which requires a longer

computational time, but allows the assessment of interactions and higher order effects.

The screening method of Morris [44], followed by the variance based method Extended

Fourier Amplitude Sensitivity Test (EFAST) [35] were used in this work The latter method

complements the first, which does not allow to quantify non linear and second order effects.

Besides, although considered a GSA method, the experimental part of the Morris method is

composed of individually randomized one at a time (OAT) experiments and sensitivity mea-

sures are typically considered qualitative (i.e., ranking significant input factors), but not neces-

sarily quantitative in regard to the degree of significance [45].

Morris method. The Morris Method [44] is designed for the quantification of elementary

effects that the variation of input factors (parameters and input variables) produce on model

outputs. The method determines whether the effects are negligible, linear and additive, non-

linear or involving interactions with other factors [46].

Sensitivity analysis of Aquacrop and SAFYE
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The experimental design is structured in groups of points, called trajectories. In this study

the number of points was chosen as equal to the number of factors, i.e. model input variables

or parameters, so that k = p. In this case the number of trajectories (r) has been set to 20, as a

compromise between the minimum value suggested by Campolongo et al. [46], i.e. 10 and the

value used by [40], i.e. 25, in order to have limited computational cost. Morris [44] suggested

to use the mean (μ) and the standard deviation (σ) of the finite distribution of elementary

effects associated with the i-th input parameter as sensitivity indices. Empirical studies [46]

have shown that the absolute value of mean (μ�) can be considered as a “total sensitivity

index”. It is sufficient that μ� is below a threshold value to consider a parameter as negligible.

In this study, a parameter or input variable was considered as non influential when, in all the

scenario considered, μ� was below a threshold value of 0.1 t ha-1 of grain yield, which was the

only output variable examined in this study. This threshold value was chosen arbitrarily,

assuming to represent a yield error well below what has been reported to be the typical range

of error found when employing the models [23–24, 29–30, 33–34].

Extended Fourier Amplitude Sensitivity Test (EFAST). EFAST is an evolution of the

Fourier Amplitude Sensitivity Test (FAST), a SA method based on the decomposition of the

Sobol variance [35]. It calculates sensitivities indices using the total variance of the output of

the model and the conditional variances depending on the parameters. The interaction among

factors can be quantified by calculating a main sensitivity index (Si) and an index of total sensi-

tivity (STi), i.e. the sum of the main effect plus the interaction between the variation of parame-

ters terms to all orders. Si and STi range between 0 and 1, with higher values indicating more

important effects.

In the present study, EFAST has been used subsequently to the application of the Morris

method, analyzing only the parameters found to be non-negligible. Since there is not an

objective way of establishing a threshold value for considering a parameters as negligible or

influential, we decided to adopt a threshold of STi of 0.1 (i.e. 10% of the output variance), on

the basis of an analysis of the literature, since this was the most frequently used value [17, 36–

37, 45].

For this study a Matlab (Mathworks Inc., MA, USA) implementation of the EFAST and

Morris algorithms was used [47].

Range of variation of model parameters

The range within which the parameters and input variables were allowed to vary during the

GSA was defined in order to represent the uncertainty on their values in the context of a

regional scale model application. For both Aquacrop and SAFYE, the parameters considered

as conservative, i.e. not suppose to be varied for a given crop species, were allowed to vary

within a maximum range of ±33% of a mean nominal value obtained from the literature as

detailed in S1 and S2 Tables. In facts, the calibration results of different studies on wheat [29–

30, 33–34] suggest that even for these parameters a limited range of variation is needed. Thus

we adopted for these parameters a range resulting from the values used these studies, including

them in the SA, as also done by Vanuytrecht et al. [40]. The range of variation of the other

parameters and input variables was also defined, as specified in S1 and S2 Tables, according to

the literature [48–49] or expert knowledge on the variability of each factor likely to be faced

when applying the models in a regional scenario. It should be noted that this application con-

text is rather different from the typical field scale model application, in which knowledge of

many soil input variables (e.g. soil texture) or management factors (e.g. sowing date) is gener-

ally available. The GSA for Aquacrop was carried out for 9 input variables and 45 parameters,

of which 29 were considered as conservative, as presented in the S1 Table.
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For SAFYE, the range of variation of the parameters and input factor was set using the

same criteria used for Aquacrop, adopting whenever possible the same ranges for equivalent

parameters in the two models, as detailed in S2 Table. The GSA was carried out for 8 input var-

iables and 23 parameters, of which 13 were considered as conservative.

Assessment of model complexity and plasticity

The two models, Aquacrop and SAFYE, were compared in terms of two indicators derived

from the GSA results: complexity and plasticity. Complexity is the parsimony of the model in

representing the biophysical system, providing information about the amount and relevance

of model parameters and inputs [50]. Plasticity is defined as the aptitude of a model to change

the sensitivity to its parameters and inputs when the conditions of application change [51].

In this study we choose to represent the complexity through the parameter ratio (Rp) intro-

duced by Confalonieri et al. [52], i.e. the proportion of relevant (sensitive) factors over the

total number of factors tested in the SA. All the parameters and input variables for which the

STi was higher than 0.1 were considered as relevant in this study.

According to Confalonieri et al. [52], plasticity can be quantified using an index L:

L ¼ TDCC � esSAM� 1

ð4Þ

where TDCC is the top-down concordance coefficient presented by Iman and Conover [53]

and σSAM is the standard deviation of a normalized agrometeorological indicator (SAM) pro-

posed by Confalonieri et al [50]. TDCC, ranging between 0 and 1, is considered suitable for

comparing parameters rankings obtained from SA carried out under different conditions. It

has the capability of emphasizing the agreement among rankings assigned to relevant parame-

ters and of deemphasizing the disagreement among those of less important parameters [50].

The normalized synthetic agrometeorological indicator SAM [52], ranging between -1 (cor-

responding to maximum drought) and +1, is computed as:

SAM¼
Rain� ET0

RainþET0

ð5Þ

where Rain (mm) and ET0 (mm) represent respectively the cumulative rainfall and reference

evapotraspiration. Confaloneri et al. [52] showed that SAM is a very useful standardized indi-

cator for characterizing the conditions of applications of crop models. The plasticity index L

proposed by Confalonieri et al. [51] ranges from 0 to about 1.51, with the highest plasticity at

0. This indicator couples model response, represented by TDCC, with the variability of envi-

ronmental conditions, represented by the standard deviation of SAM.

Climatic scenarios

The meteorological data used in this study to drive the model simulations for the sensitivity

analysis were obtained from three sites representing contrasting environments, in terms of

temperature extremes and water availability during the winter wheat growth season (Table 1).

They were selected in order to encompass a large variability of water limitation patterns during

the winter wheat growth season, either in the early phase (autumn to beginning of winter) or

in the full wheat development phase (end of winter to spring).

The Xiaotanshan site (lat. 40.17˚N, long. 116.43˚E, alt. 57 m), near Beijing (China), is char-

acterized by a continental climate, with a cold dry winter and a hot wet summer, belonging to

the Koppen-Geiger [54] class Dwa (cold, dry winter, hot summer), i.e. monsoon-influenced,

hot-summer humid continental climate.

Sensitivity analysis of Aquacrop and SAFYE
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The Yangling site (lat. 34.27˚N, lon. 108.09˚E, alt. 460 m), in the Chinese Province of

Shaanxi, is located within a Monsoon-influenced humid subtropical area, falling within the

Cwa Koppen-Geiger class (temperate, dry winter, hot summer), characterized by high evapo-

transpirative deficit in spring.

Viterbo (lat. 42.72˚N, long. 12.12˚E, alt. 310 m), Central Italy, has a typical Mediterranean

climate with wet autumn and dry hot summer, falling into the Koppen-Geiger class Csa (tem-

perate, dry summer, hot summer).

The dataset consisted of daily rainfall, temperatures (mean, maxima and minima), relative

humidity and wind speed. Solar radiation was calculated from the temperature range using the

relationship proposed by Bristow and Campbell [55]. Reference evapotraspiration was calcu-

lated using the FAO Penman-Monteith method [43], using all the available variables (tempera-

ture, humidity, solar radiation and wind speed).

To quantify the degree of crop water stress in the three sites, we calculated the evapotran-

spirative deficit, i.e. the difference between rainfall and reference evapotranspiration (ETo)

and the normalized synthetic agrometeorological indicator (SAM) [52]. This index allows an

easy comparison among sites and years, though it is only a partial indicator of the seasonal

conditions impacting crop growth, since it does not take into account temperature extremes.

Based on such indicators, we selected, for each site, two winter wheat growth seasons

(Fig 1), spanning from the 1st of September to 31st of July, characterized respectively by rela-

tively dry or wet conditions. These were selected on the basis of the evapotranspiration deficit

and SAM occurring in the periods considered as most important for winter wheat growth

(Table 1), i.e. from October to December (autumn to beginning of winter) and from February

to June (end of winter to spring).

Results

Assessment of the SAFYE model

The version of the SAFYE model used in the present work was able to simulate quite accurately

the winter wheat grain yield of the Xiaotangshan dataset (Fig 2), with an overall RMSE of 0.25

Table 1. Summary of the climatic data sets used in this study. Cumulative rainfall and reference evapotranspiration (ETo), average maximum and mini-

mum temperature, evapotranspiration deficit (rain-ETo) and synthetic agrometeorological indicator (SAM) [52], in the most crucial periods of wheat growth, for

the years used in the sensitivity analysis study and for the long term climatic data (30 years).

Autumn-Winter (Oct-Dec) Winter-Spring (Feb-Jun)

Site Year Rain

(mm)

ETo

(mm)

Tmin

(˚C)

Tmax

(˚C)

Deficit

ET (mm)

SAM Year Rain

(mm)

ETo

(mm)

Tmin

(˚C)

Tmax

(˚C)

Deficit

ET (mm)

SAM

Yangling 1994 236.6 392.7 10.3 18.4 -156.1 -0.2 Wet 1995 189.5 817.1 9.9 22.0 -627.6 -0.6 Dry

1986 197.1 405.5 8.8 18.0 -208.4 -0.3 Dry 1987 442.3 726.6 8.7 19.9 -284.3 -0.2 Wet

long

term

mean

266.0 391.7 9.3 18.3 -125.8 -0.2 long

term

mean

306.6 761.9 9.1 20.3 -455.4 -0.4

Viterbo 2002 210.4 138.3 9.2 18.3 72.1 0.2 Dry 2003 106.2 538.1 8.1 22.7 -431.9 -0.7 Dry

2009 350.6 113.1 6.3 15.9 237.5 0.5 Wet 2010 508.2 422.1 7.2 18.3 86.1 0.1 Wet

long

term

mean

270.8 129.4 6.5 15.6 141.3 0.4 long

term

mean

276.9 460.8 7.1 18.8 -183.9 -0.2

Xiaotangshan 2010 139.8 122.8 5.3 15.0 17.0 0.1 Wet 2011 432.5 508.5 8.2 18.9 -76.0 -0.1 Wet

2011 116.8 250.2 5.9 14.9 -133.4 -0.4 Dry 2012 481.9 785.1 8.3 18.4 -303.2 -0.2 Dry

long

term

mean

37.59 128.7 0.5 10.9 -91.1 -0.5 long

term

mean

152.7 491.2 7.1 18.9 -338.5 -0.5

https://doi.org/10.1371/journal.pone.0187485.t001
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t ha-1 and a RRMSE of 5% for the final grain yield estimation across all years and sowing dates.

The time trends of simulated above ground biomass and LAI were in agreement with mea-

sured data for most of the sowing dates, although the time of simulated grain maturity was

slightly delayed as compared to the actual harvest dates (S1 Fig).

SAFYE lead to a small improvement in the estimation of grain yield as compared to the

original version of the SAFY model [21] for which the RMSE was 0.27 t ha-1, for this dataset.

Application of Morris methods

The results of the Morris method (both for Aquacrop and SAFYE) showed that the value of μ�

was strongly influenced by the climatic scenarios employed. In facts, values of μ� were rather

Fig 1. Meteorological datasets used in the sensitivity analysis study. Time trends of daily maximum and minimum air temperature (left), rainfall

and reference evapotranspiration (right) for the sites of Xiaotanshan (top), Yangling (centre) and Viterbo (bottom), for the two years considered in each

study site.

https://doi.org/10.1371/journal.pone.0187485.g001
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different not only between the sites, but they also varied significantly among the years analyzed

(Figs 3 and 4). However, there was a number of factors that were consistently non-influential,

i.e. with μ� values lower than 0.1 t ha-1, that could be identified for both models, which was the

main objective of the application of this screening method.

In general, higher values of μ� were observed for Aquacrop than for SAFYE. In particular,

very high values of μ� were found for Aquacrop in Viterbo, for which the highest sensitivity

was for the day of sowing (dos), and for the temperature sum (GDD) until sensecence (sen),

grain physiological maturity (mat) and until flowering (flo). The latter two parameters seemed

especially influential in the wetter year. Also for Yangling these parameters resulted quite

important and the influence of flo and sen was similarly higher in the wetter year, whereas they

resulted less influential but still not negligible in Xiaotangshan. For the Xiaotangshan site

though, the sensitivity of yield to these parameters was still noticeable, but less strong than that

of other factors such as soil field capacity (fc) and wilting point (pwp). The latter two input

Fig 2. Relationship between measured and simulated grain yield in winter wheat with the SAFYE model, across 4 years

at Xiaotanghan.

https://doi.org/10.1371/journal.pone.0187485.g002
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Fig 3. Values of Morris mean effect (μ*) for the Aquacrop model using climatic scenarios for Xiaotanshan (a), Yangling (b) and Viterbo (c)

for two crop growth seasons each. Bars in red identify drier years, bars in blue wetter years. Parameters abbreviations are given in S1 Table.

Parameters with mean μ*values lower than 0.1 t ha-1 have been omitted.

https://doi.org/10.1371/journal.pone.0187485.g003
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Fig 4. Values of Morris mean effect (μ*) for the SAFYE model using climatic scenarios for Xiaotanshan (a), Yangling (b) and Viterbo

(c) for two crop growth seasons each. Bars in red identify drier years, bars in blue wetter years. Parameters abbreviations are given in S2

Table. Parameters with μ*values lower than 0.1 t ha-1 have been omitted.

https://doi.org/10.1371/journal.pone.0187485.g004
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variables were also very influential for Yiangling and in both sites their μ� values were higher

in the relatively wetter years. It should be noted that these two sites had a remarkable evapo-

transpirative deficit also in the relatively wetter years (Table 1) and it could be expected that in

these conditions the influence of soil water holding characteristics, regulating rain water stor-

age in the root zone, is more important when there is sufficient rain during the growth season,

than when rainfall is reduced. A similar pattern, i.e. stronger influence in wetter years in these

two sites, appeared also for two other parameters linked to soil water stress: the soil water

depletion factor for canopy senescence (psen) and for stomatal control (psto).

Overall, the SA for Aquacrop shows that all the factors categorized by [40], as related to the

development of green canopy, as well as flowering, can be considered as influential. These

include both phenological parameters, such as the temperature sum to emergence (eme), to

crop maturity (mat) and the length of flowering (flolen), in addition to sen and flo already men-

tioned, as well as parameters describing the increase (cgc4gdd) or decline (cdc4gdd) of the can-

opy cover. Three parameters related to root development resulted non negligible (i.e. with μ�

higher than 0.1 t ha-1): most notably maximum rooting depth (rtx) and the growing degree

days (GDD) to reach maximum root depth (root), especially for the Xiaotangshan and Yan-

gling sites. All the parameters related to air temperature stress were non-negligible, with the

base temperature below which crop development stops (To_crop) and below which pollination

starts to fail (polmn), especially influential in Viterbo in 2002–03 where low temperatures

occurred in March (Fig 1). It is interesting to note that To_crop was not influential in Xiao-

tangshan in which temperatures were well below the range used for this parameter, whereas in

Viterbo the temperatures recorded in winter tended to be close to the range used for To_crop.

Also parameters linked to crop transpiration (kc and kcdcl), to crop water productivity (wp
and wp_yfp) and to the harvest index (hi and hilen) were found to be influential. The climate

scenarios (sites and years) influenced the rankings of the parameters on the basis of the μ�, as

measured by the top-down concordance correlation (TDCC) which overall had a value of 0.47

(in a range 0 to 1). The correlation between the results of the sensitivity analysis of the different

scenarios was slightly lower among the wet years (TDCC = 0.49) than among the dry years

(TDCC = 0.51), highlighting more differences among the previous. The correlation within

sites was higher for Xiaotangshan and Yangling, TDCC of 0.7 and 0.75, than for Viterbo

which had a correlation of 0.63 among the sensitivity analysis results of the dry and wet year.

Despite the differences of climate and sites, it is possible to distinguish a group of factors

which was constantly negligible, i.e. for which μ� was always less than the 0.1 t ha-1 threshold

(Table 2).

These include all the factors linked to soil salinity or fertility stress, as well as some parame-

ters related to the harvest index (exc, hipsveg, hingsto, hipsflo and hinc) and cpco2, i.e. crop per-

formance under elevated atmospheric CO2, which was obviously irrelevant since CO2 was

kept constant in the simulations. Some soil water stress factors were negligible, though others

of this category were influential as discussed above.

The SA for SAFYE highlighted a set of factors with μ� values higher than the threshold of

0.1 t ha-1 established for considering them as influential. This set was approximately the same

in all experimental sites, although the values of μ� were generally higher in Yangling and in

Xiaotanshan, as compared to Viterbo, for which the highest values were found in the driest

year. This was in contrast with the other two sites, for which higher μ� values were generally

found in the wetter years, especially in Yangling.

Similarly to what was found for Aquacrop, higher values of μ� for field capacity (FC) and

wilting point (WP) were found in the wetter years in Xiatangshan and Yangling, though in this

case they were comparatively less influential than other parameters. The emergence date

(Pfen_MrgD), which can be considered equivalent to the sowing date in Acquacrop, since that
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input is not used in SAFYE, was the most influential factor for the dry year in Viterbo, simi-

larly to what found for Aquacrop. In that year the drought and high temperatures occurring in

the late spring caused an earlier senesce and termination of the growth cycle, thus sowing date

would have been crucial, allowing a longer or shorter time period for photosynthetic assimila-

tion. Specific leaf area (Pgro_Sla), used in the model to convert biomass into leaf area, was

found to be very influential in all sites. The same was true for the other parameters related to

green canopy development, such as the two parameters appearing in the function regulating

the partitioning of biomass to leaves (Pfen_PrtA and Pfen_PrtB), as well as parameters regulat-

ing the senescence (Pfen_SenA and Pfen_SenB). The conversion factor of solar radiation into

Table 2. List of Aquacrop factors that were found to have a negligible influence on grain yield, i.e. with Morris total sensitivity index μ* <0.1 t ha-1,

in all the climatic scenarios of the present study.

Name of parameter or

input variable

Type Process affected

(from [41])

Description

polmx conservative

parameter

Air temperature stress Maximum air temperature above which pollination starts to fail

evardc conservative

parameter

Crop transpiration Effect of canopy cover in reducing soil evaporation in late season stage

cpco2 conservative

parameter

Crop water productivity Crop performance under elevated atmospheric CO2 concentration

rtmin management input Development of root

zone

Minimum effective rooting depth

rtexup cultivar specific

parameter

Development of root

zone

Maximum root water extraction in top quarter of root zone

rtxlw cultivar specific

parameter

Development of root

zone

Maximum root water extraction in bottom quarter of root zone

exc conservative

parameter

Harvest Index Excess of potential fruits

hipsveg conservative

parameter

Harvest Index Coefficient describing positive impact on HI (harvest index) of restricted

vegetative growth during yield formation

hingsto conservative

parameter

Harvest Index Coefficient describing negative impact on HI of stomatal closure during

yield formation

hipsflo conservative

parameter

Harvest Index Possible increase of HI due to water stress before flowering

hinc conservative

parameter

Harvest Index Allowable maximum increase of specified HI

Ssf management input Soil fertility stress Soil fertility/salinity stress coefficient

ecss conservative

parameter

Soil salinity stress Electrical Conductivity of soil saturation extract at which crop can no

longer grow

ecsss conservative

parameter

Soil salinity stress Electrical Conductivity of soil saturation extract at which crop starts to be

affected by soil salinity

fk management /

environment

Soil water stress Evaporation decline factor for stage II

Ksat management input Soil water stress Saturated hydraulic conductivity

psenshp conservative

parameter

Soil water stress Shape factor for water stress coefficient inducing early senescence

ppol conservative

parameter

Soil water stress Soil water depletion factor for pollination: upper threshold (fraction TAW)

rew management input Soil water stress Readily evaporable water from top layer

pexup conservative

parameter

Soil water stress Soil water depletion factor for canopy expansion: upper threshold,

fraction of total available water (TAW)

anaer cultivar specific /

environment

Soil water stress Anaerobic point below saturation limiting aeration

cn management input Soil water stress Soil Curve Number

https://doi.org/10.1371/journal.pone.0187485.t002
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PAR (Pgro_R2P) had a very strong influence on grain yield, especially at Xiaotangshan and

Yangling where more variability in irradiance levels were found than at Viterbo (data not

shown, but it can be inferred from ETo patterns in Fig 1). All the parameters related to air tem-

perature stress were also influential (Ptfn_Topt, Ptfn_TpSn, Ptfn_Tmin, Ptfn_Tmax). As

expected the two key parameters affecting PAR absorption by the canopy (Pgro_Kex) and its

conversion into biomass (Pgro_Lue) were very important, similarly to the parameter regulating

the partitioning of biomass to grain (Pgro_P2G).

The factors that were found to have a negligible impact, i.e. with μ� values lower than 0.1,

were all those introduced in SAFYE (with the exception of soil field capacity and wilting

point), i.e. factors linked to transpiration, root development and water stress (Table 3).

The correlation among the results obtained in the different scenarios was much higher with

SAFYE than for Aquacrop, with an overall TDCC of 0.92. Although values of TDCC were gen-

erally much higher, similarly to what was found for Aquacrop the results of the wet years had a

lower correlation (TDCC = 0.9) than those of dry years (TDCC = 0.95). Again, the dry and wet

scenarios at Viterbo (TDCC = 0.90) were more different than at Xiaotangshan (TDCC = 0.93)

and Yangling (TDCC = 0.98).

Application of EFAST method

Fig 5 shows the two EFAST Sensitivity indices, calculated for Aquacrop for the three locations,

for each crop season. The indices represent individual first-order effects, i.e. main sensitivity

index (Si), and first order plus interactions of higher order with other parameters, i.e. the total

sensitivity index (STi) on the variance of model output, i.e. grain yield. Some differences in the

degree of sensitivity to what was found using the Morris method are apparent. It should be

noted that the Morris sensitivity index μ� includes both first order effects and interactions, so

it should be compared to STi rather than to Si. TDCC was computed, to assess the correlation

(for common factors) among the rankings of μ� provided by Morris and those of EFAST based

Table 3. List of SAFYE factors that were found to have a negligible influence on grain yield, i.e. with Morris total sensitivity index μ* <0.1 t ha-1, in

all the climatic scenarios of the present study.

Name of parameter or input

variable

Type Process affected Description

Kc_tab_ini Conservative parameter Crop transpiration Crop transpiration coefficient at the initial development stage

Kc_tab_mid Conservative parameter Crop transpiration Crop coefficient at mid stage

h_max Non conservative

parameter

Crop transpiration Maximum crop height

Kc_tab_end Conservative parameter Crop transpiration Crop coefficient at final stage

SMT_sen Non conservative

parameter

Development of green canopy

cover

Temperature sum to complete senescence

Pfen_stel Non conservative

parameter

Development of green canopy

cover

Temperature sum at 10% canopy cover, i.e. stem elongation

Pfen_flw Non conservative

parameter

Flowering Temperature sum to flowering

Rd_tab_end Input variable Root development Root depth at end of growth

Rd_tab_ini Input variable Root development Root depth at emergence

p_tab_end Conservative parameter Soil water stress Fraction of readily available water at the final stage

p_tab_mid Conservative parameter Soil water stress Fraction of readily available water at the mid stage

De Input variable Soil water stress initial cumulative depth of evaporation

p_tab_ini Conservative parameter Soil water stress readily available water as fraction of totally available water at

the initial stage

Dr Input variable Soil water stress initial root zone depletion

https://doi.org/10.1371/journal.pone.0187485.t003
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on STi, revealing similarities between the results of the two methods. It was found that the cor-

relation between Morris and EFAST results was higher among the dry years for Yangling and

Viterbo (TDCC respectively of 0.86 and 0.91), whereas for Xiaotangshan it was higher in the

wet year (0.84) than in the dry year (0.56).

EFAST revealed that interactions and second order effects were overall very high for Aqua-

crop, as shown by the fact that few factors had strong first order effect, revealed by high Si (Fig

5). These included soil water holding properties (field capacity and wilting point, fc and pwp)

especially at Xiaotangshan and Yangling, in which much drier conditions prevailed as com-

pared to Viterbo. The length of the crop cycle (mat) and the maximum effective rooting depth

(rtx) had also a quite important first order effect. The temperature sum to senescence (sen) had

a relevant first order effect only for Viterbo. Considering the total sensitivity index (STi), three

parameters were found to be influential (STi >0.1) across all sites and years. These were the

day of sowing (dos) and the phenological parameters indicating the growing degree days

from sowing to maturity (mat) and to senescence (sen). Another important phenological

parameter, GDD to flowering (flo) was also very influential except for the dry year at Xiaotang-

shan. Soil field capacity (fc) and wilting point (pwp) were influential in all scenarios considered

except for the wetter year in Viterbo. The maximum effective rooting depth (rtx) contributed

markedly on the output variance for all sites and years except again for the wet year at Viterbo.

These results seem to confirm that even in the years selected as relatively wet for the other two

sites, conditions of crop water stress occurred.

Fig 5. EFAST results for Aquacrop. Main sensitivity index (Si) (left panels) and Total Sensitivity index (STi) (right panels), for the three sites,

Xiaotanshan (top), Yangling (centre) and Viterbo (bottom), for the two wheat growth seasons examined (wet years bars are blue and dry years red).

Abbreviations of parameters and input factors are reported in S1 Table.

https://doi.org/10.1371/journal.pone.0187485.g005
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Adopting the threshold of the total sensitivity index to identify influential factors (STi

>0.1), considering the maximum values found across all the scenarios, 4 input variables and

13 parameters, of which 5 were conservative, were selected (Table 4).

However it can be observed that additional parameters had a smaller, but still possibly non

negligible influence on yield (Fig 6). The correlation (TDCC) among the sensitivity analysis

results obtained in the different scenarios for Aquacrop was higher for EFAST, with a TDCC

of 0.71, than for Morris (0.47). Contrarily to what observed with the results of Morris, a higher

correlation was found among the results of the wet years (0.86) than of the dry years (0.65),

but also in this case it was found that Viterbo (TDCC = 0.68) was the site in which the two

years were the most different as compared to the other two sites (0.89 and 0.93).

The EFAST results for SAFYE (Fig 7) revealed that for this model, first order effects were

relatively more important than for Aquacrop. The similarity between the rankings obtained

from Morris and EFAST was higher for SAFYE as compared to Aquacrop. For SAFYE the

TDCC values between the results of the two methods ranged between 0.83 (Viterbo wet year)

to 0.96 (Yangling wet year). Factors showing noticeable EFAST main sensitivity index values

concerned especially the climatic conversion factor from solar radiation to PAR (Pgro_R2P)

and the specific leaf area (Pgro_Sla) already shown to be very influential from the Morris

method. A high total effect on the output variance, i.e. including also interactions and second

order effects, was shown by 4 parameters. In addition to Pgro_R2P and Pgro_Sla, these

included also the parameter regulating the partitioning of biomass to leaves (Pfen_PrtB) and

the temperature threshold to start senescence (Pfen_SenA). The light extinction coefficient in

Table 4. List of factor of the Aquacrop model resulting highly influential on the grain yield, according to the main sensitivity index (STi>0.1) from

the EFAST analysis, ranked from the most to the least influential.

Name of parameter or input

variable

Type Process affected Description

fc Input variable Soil water stress Soil Water Content at Field Capacity

dos Input variable all day of sowing

sen Non conservative

parameter

Development of green canopy

cover

GDD from sowing to start senescence

flo Non conservative

parameter

Flowering GDD from sowing to flowering

pwp Input variable Soil water stress Soil Water content at Wilting Point

mat Non conservative

parameter

Development of green canopy

cover

Length of the crop cycle

rtx Input variable Development of root zone Maximum effective rooting depth

hilen Non conservative

parameter

Harvest Index Period of Harvest Index build up during yield formation

starting at flowering

psen Conservative parameter Soil water stress Soil water depletion factor for canopy senescence: upper

threshold

Kex Non conservative

parameter

Soil water stress Soil evaporation coefficient for fully wet and non-shaded soil

surface

psto Conservative parameter Soil water stress Soil water depletion fraction for stomatal control: upper

threshold

wp Conservative parameter Crop water productivity Water productivity normalized for ETo and CO2

hi Non conservative

parameter

Harvest Index Reference Harvest Index

polmn Conservative parameter Air temperature stress Minimum air temperature below which pollination starts to

fail

cdc4ggd Conservative parameter Development of green canopy

cover

CDC for GGD: decrease in canopy cover

https://doi.org/10.1371/journal.pone.0187485.t004
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the canopy (Pgro_Kex) was also found to be generally influential, except for the dry year in

Viterbo and the wet year in Xiaotangshan. The emergence date (Pfen_MrgD) was only relevant

for the dry year in Xiaotangshan. These different results were nevertheless more correlated

among them than those of Aquacrop, yielding in this case a TDCC of 0.93. For SAFYE the cor-

relation among rankings of STi was roughly similar for wet and dry scenarios, with TDCC val-

ues of 0.94 and 0.93 respectively. Also in this case it was found that the results of Viterbo

Fig 6. First-order and total sensitivity indices estimated by the EFAST method for the Aquacrop model. The first part of the bars (dark grey)

corresponds to the average estimate of the first-order index (Si) over all the sites and scenarios, the full bars indicate average estimates of total index

(STi), while the lines indicate extreme estimates of total indices.

https://doi.org/10.1371/journal.pone.0187485.g006
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(TDCC = 0.81) were less similar among themselves than those of the two other sites (TDCC of

0.98 and 0.97).

When taking into account the threshold set for considering a factor as influential, applied

to the maximum STi across all climate and site scenarios, only 5 parameters and one input

variable were selected (Table 5). The influential factors were the same for both dry and wet sce-

narios, with the exception of Pfen_MrgD which had a strong effect on the output variance

(STi>0.1) only in the dry year in Xiaotangshan.

Other parameters also important were found to be in particular two parameters linked to

temperature stress (Ptfn_Topt and Ptfn_TpSn) and the light use efficency (Pgro_Lue) (Fig 8).

Complexity and plasticity of Aquacrop and SAFYE

The results of the EFAST sensitivity analysis allowed to quantify the complexity and the plas-

ticity of Aquacrop and SAFYE. The complexity of these two crop models was measured using

the parameter ratio (Rp). For Aquacrop Rp had a value of 0.28, indicating that 28% of the fac-

tors tested (15 out of 54), i.e. including both parameters and input variables, were found to be

influential. For SAFYE a lower complexity index Rp of 0.19, was found, since 6 factors out of

the 31 tested were found to be influential.

The plasticity of the models was calculated by the index L (Eq 4). The results are summa-

rized in Table 6, which shows that all the scenarios employed in this study were characterized

by an evapotranspiration deficit, as testified by the SAM values lower than zero. The largest

Fig 7. EFAST results for SAFYE. Main sensitivity index (Si) (left panels) and total sensitivity index (STi) (right panels), for the three sites, Xiaotanshan

(top), Yangling (centre) and Viterbo (bottom), for the two wheat growth seasons examined (wet years bars are blue and dry years red). Abbreviations of

parameters and input factors are reported in S2 Table.

https://doi.org/10.1371/journal.pone.0187485.g007
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variability in the climatic conditions between the dry and wet years occurred at Viterbo and

the lowest at Yangling. In general, the climatic variability across sites was higher among the

wet years than among the dry years.

The TDCC was always higher for SAFYE than for Aquacrop. This meant that a higher plas-

ticity, indicated by lower L values, was always found for the latter model. The largest differ-

ences between the two models in terms of TDCC values, and hence of L, were found between

the two years at Viterbo and among the three scenarios of the dry years, where the Aquacrop

model demonstrated a much higher plasticity than SAFYE.

Discussion

The results obtained in this study, performed using a contrasting range of water limited cli-

matic scenarios of winter wheat growing areas, allowed to obtain essential information on the

sensitivity and plasticity of two models, SAFYE and Aquacrop, especially required for their

increasing application within regional scale studies [7, 13, 22, 24, 56].

In these conditions, there is typically greater uncertainty on parameters and input factors,

as compared to field based application of crop models. Therefore it is important to know on

which factors data collection and calibration efforts should concentrate. Global sensitivity

analysis is considered as the state of the art technique for such purpose [35].

It is well known that the results of sensitivity analysis studies depend on to the "boundary

conditions" chosen [57]. In this specific case, these conditions are the climate dataset, actual

data from three different sites, and the range of variation of parameters and input variables.

The range of variation of these factors was chosen to be the same for all the tests of a given

model and, as much as possible, a similar (or the same) range of variation was adopted for

analogous factors of the two models. This was done in order to reduce the variability of the

boundary conditions of the SA and provide some possible element of comparison between the

models. The climatic conditions are therefore the only variables that differentiate the scenarios

between the sites. Thus it is possible to distinguish more simply if the parameters are always

influential or always negligible, with similar degrees of influence for any scenario, or if their

degree of influence varies with the climatic dataset. The climatic data using in this study were

chosen to be representative of situations of moderate to strong water deficit, since the main

interest was that of providing tools for the assessment of the impact of such conditions on

wheat yield, at the regional scale [7]. Thus the results of this study can apply to similar climatic

Table 5. List of factor of the SAFYE model resulting highly influential on the grain yield, according to the main sensitivity index (STi>0.1) from the

EFAST analysis, ranked from the most to the least influential.

Name of parameter or

input variable

Type Process affected Description

Pgro_Sla Conservative

parameter

Development of green

canopy cover

Specific Leaf Area (m2 g-1)

Pgro_R2P Conservative

parameter

Radiation environment Climatic efficiency: ratio of incoming photosynthetically active

radiation (PAR) to global radiation

Pfen_SenA Non conservative

parameter

Development of green

canopy cover

Temperature threshold to start senescence (˚C)

Pfen_PrtB Non conservative

parameter

Development of green

canopy cover

Partition to leaf function parameter 2 (PLb)

Pgro_Kex Non conservative

parameter

Development of green

canopy cover

Light extinction coefficient in canopy

Pfen_MrgD Input variable Development of green

canopy cover

Day of the year of emergence

https://doi.org/10.1371/journal.pone.0187485.t005
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scenarios, which characterize quite a large extent of the wheat growing areas worldwide. The

overall value of the σSAM, as reported in Table 6, indicates that the variability among the cli-

matic scenarios used in the present work was very high, being higher for instance than the

overall value of the dataset used by [51] which included locations all over Europe (e.g. from

Ukraine to Greece) for 10 years, i.e. conferring robustness to our results.

Fig 8. First-order and total sensitivity indices estimated by the EFAST method for the SAFYE model. The first part of the bars (dark grey)

corresponds to the average estimate of the first-order index (Si) over all the sites and scenarios, the full bars indicate average estimates of total indices

(STi), while the lines indicate extreme estimates of total indices.

https://doi.org/10.1371/journal.pone.0187485.g008
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The different climatic scenarios led to some differences in the ranking of the sensitivity of

the two models for both GSA techniques, Morris and EFAST. It is normal that the sensitivity

to some factors might differ among climatic scenarios, since for example, a parameter that

determines the effect of water stress will be important in situations where there is actually

water stress, but not where water is non-limiting. This aspect affect the results of all sensitivity

analysis studies [57]. Our results, though, revealed clear patterns, allowing to classify groups of

parameters as influential or negligible, even in highly contrasting climatic scenarios. We used

an objective measure, the top down correlation coefficient (TDCC) to assess the agreement

among the listing and ranking of factors assessed across different climates. It was found that

the correlations (TDCC values) were always statistically significant (P<0.01), using the meth-

odology to testing its significance reported by Confalonieri et al. [51]. The correlation of the

results of the two EFAST rankings of the wet and dry years in a given location ranged between

0.68, for Aquacrop in Viterbo, to 0.98, for SAFYE in Xiaotangshan (Table 6). The correlation

among rankings across sites ranged from 0.65 for Aquacrop in the dry years, to 0.94 for

SAFYE in the wet years. Overall, it emerged a clear picture, showing that SAFYE had a lower

plasticity than Aquacrop, for which the sensitivity analysis results were more affected by the

differences in the climatic scenarios.

The impact or the climate scenarios on the sensitivity analysis results, as quantified by the

TDCC values, was much higher for Morris than for EFAST, thus the latter was confirmed to

be a more robust method [36, 45], providing more stable listings and rankings of the sensitivity

index across scenarios. The overall TDCC (across all years and sites) was 0.47 for Aquacrop

with Morris and 0.71 for EFAST, for SAFYE it was 0.92 with Morris and 0.93 with EFAST.

The agreement between the rankings of the sensitivity indices obtained with the two methods,

respectively σ� and STi, for the same set of parameters (i.e. only those in both analyses), was

further assessed by using the TDCC across methods for each scenario. It emerged, as also illus-

trated by comparing Fig 3 with Fig 5 and Fig 4 with Fig 6, that there was an agreement between

the rankings of the Morris and EFAST methods. The TDCC varied between a minimum of

0.56 for the dry year at Xiaotangshan to a maximum of 0.96 for SAFYE in the wet year at the

Yangling site. On average the agreement between the rankings of the two methods was higher

for SAFYE, with a mean TDCC of 0.91, than for Aquacrop which had a mean TDCC of 0.74.

However, the rankings obtained by the Morris method are not always stable. As illustrated

by [40], a much higher number of trajectories, than the one used in this study (25), would be

required to have more stable results, possibly more than 400, making the computing exces-

sively time consuming. For these reasons, the Morris method, as reported by [40] and [45],

Table 6. Synthesis of the assessment of the plasticity of the SAFYE and Aquacrop models. The plasticity index L is calculated according to Eq 4 from

the normalized synthetic agrometeorological indicator (SAM) (Eq 5) and its standard deviation σSAM and the top-down concordance coefficient (TDCC) [53].

SAM σSAM TDCC L

SAFYE Aquacrop SAFYE Aquacrop

Site

Xiaotanshan -0.17 0.18 0.98 0.89 0.43 0.39

Yangling -0.34 0.15 0.97 0.93 0.41 0.40

Viterbo -0.02 0.26 0.81 0.68 0.38 0.32

Year

wet -0.04 0.20 0.94 0.86 0.42 0.39

dry -0.32 0.12 0.93 0.65 0.39 0.27

Total -0.18 0.21 0.93 0.71 0.42 0.32

https://doi.org/10.1371/journal.pone.0187485.t006
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can only be considered useful for screening out negligible factors, whereas its sensitivity rank-

ings can only be considered as qualitative and not quantitative.

For the Aquacrop model, the set of negligible parameters, identified in this study by the

Morris method, coincides almost completely with the one identified by Vanyutrecht et al. [40].

The most notable differences concern the soil curve number (CN) and the shape factor for

water stress coefficient inducing early senescence (psenshp), which were classified as negligible

in the present study, whereas they were found to be very influential by [40]. The CN is used by

Aquacrop for the estimation of the amount of rainfall lost by surface runoff [41], so it is under-

standable to have had a limited impact, in the water limited situations of the scenarios used in

the present study. In Aquacrop the shape of the water stress coefficient curve can be selected as

linear or concave by changing psenshp. As observed by [41], shape parameters are highly inter-

twined with the critical level parameters of the stress coefficients. However, the former have no

physical meaning, whereas the latter have physical sense and can more easily be calibrated. In

our case, the parameter regulating the specific stress coefficient, i.e. soil water depletion thresh-

old for triggering early canopy senescence (psen), was found to be very influential, similarly to

what found by [41].

The set of Aquacrop negligible parameters listed in Table 2, in all the scenarios tested in the

present study, have a limited impact on the variation of the output, so it is possible to exclude

them from calibration or assimilation methods, or sensitivity analysis for climatic scenarios

similar to those analyzed in this study.

For SAFYE, the results of the Morris method indicated very clearly that all the parameters

and input factors describing the water balance and related stress function, introduced into the

original SAFY model (to turn it into SAFYE), were negligible, except for soil moisture at field

capacity and wilting point (Table 3). The latter two parameters, however, were not in the top

ranking of the EFAST analysis (Fig 8). The implication of this finding are that, if the purpose

of the study is only the assessment of wheat yield, even in conditions of severe water stress the

original SAFY model is appropriate. Indeed it would even be a better choice than SAFYE,

since it relies on a more limited number of parameters and input factors. If, on the contrary,

information is sought on the incidence and patterns of water stress, separately from other

stress factors (e.g. nitrogen), SAFYE is to be preferred, though a simplification of its water

stress components is suggested.

In agreement with the literature [40, 57], the results of this study confirm that the applica-

tion of the Morris method is efficient for the identification of the negligible parameters, but

less so for the classification of the parameters’ sensitivity. Looking at the rankings of the

parameters with respect to the Morris μ� (Figs 3 and 4) it is possible to note that the weather

conditions had a more significant effect than for EFAST (Figs 5 and 6), as confirmed by the

higher TDCC of the former tests. The ranking of parameters sensitivity is expected to be more

reliable for EFAST, as previously mentioned, since the TDCC values across sites and years

were much higher than for Morris. For both models it was possible to establish a set of influen-

tial parameters for all considered scenarios (Tables 4 and 5). EFAST allowed also to discrimi-

nate the effect of first order effects of single factors from second order effects and interactions

on the output variance, revealing interesting difference among the models.

For Aquacrop it was found that very few factors had a strong first order effect, so that their

impact on the grain yield was mainly due to second order effects and interactions with other

parameters (Fig 6), revealing a rather complex model behavior. A higher predominance of first

order effects was found by [40], however with different crop species and with more diversified

climate scenarios from those we used, highlighting more clearly first order effects. For SAFYE

first order effects had a stronger impact on yield variance (Fig 8).
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The ranking of the total sensitivity index for Aquacrop (Fig 6) was different from the one

obtained by [40], since as mentioned earlier, this reflects the relative importance of specific fac-

tors addressing processes occurring in the different climatic scenarios. In our case, the factors

that had the highest impact on yield variance were mainly those related to water stress as well

as phenological parameters regulating the development of the green canopy cover.

For SAFYE, the most influential factors were those related to the development of leaf area

and leaf biomass. This confirms that, in this model, the impact of water stress on crop yield is

modeled indirectly from its impact on LAI, rather than explicitly through the water stress

parameters introduced into the original SAFY model.

For both models used, Aquacrop and SAFY, the parameters describing the phenological

cycle of the crop played a decisive influence on the estimation of crop yield, being influential

for both models. The coincidence between phenological stages and periods of the year with

certain temperature and rainfall is among the causes that most affect the variation in model

output, especially for Aquacrop.

From the literature [57] it is known that choices made on the ranges of parameters and

input variables influence the ranking of the sensitivity indices. For both Aquacrop and SAFYE

these ranges were chosen after a careful inspection of the literature (S1 and S2 Tables), within

physically plausible ranges, expected to be found when the models are applied to regional scale

studies. In this case, it is important to include also input variables in the SA, in addition to

model parameters, because it is interesting to know, especially in a regional scale model appli-

cation, what is their impact on the output. Many authors have made it clear that SA should not

be necessarily strictly limited to parameters, but can also include input variables (see e.g. Wal-

lach et al. [14] or Saltelli et al. [35]).

For Aquacrop we tested in the SA also conservative parameters [41], that are supposed to

be fixed for a given species, but in reality, the calibration results of different studies on wheat

[27–30, 33–34] suggest that even for these parameters a limited range of variation occurs. Thus

we adopted, for these parameters, ranges resulting from these calibration studies (with a maxi-

mum of ±33%), including them in the SA, as also done by Vanuytrecht et al. [40].

As expected, the SA carried out for Aquacrop was more complex than that done for

SAFYE. Aquacrop describes more accurately than SAFYE the crop growth processes, using a

higher number of equations and input variables. Therefore the SA performed for the former

model had a much higher computational cost than for the latter. Using a computer with a Intel

(R) Core(TM) i7-4770 CPU processor at 3.40 GHz, and 16 GB of RAM, the computation time

for applying EFAST to Aquacrop was in the order of hours, while for SAFYE in the order of

minutes. SA is a step required for any application of assimilation or calibration, thus the

computational cost could be a factor that affects the choice of the model to use.

Both complexity and plasticity were found to be higher for Aquacrop than for SAFYE

(Table 6). Confalonieri et al. [50], in a comparison of three crop models, found that the model

having the highest complexity (WOFOST) was the one with the highest plasticity, but also the

lowest robustness. They considered that a high value of plasticity was a positive aspect for a

crop model, seeming to reflect the phenotypic plasticity typical of crops. However, in the con-

text of data assimilation, or of applications of crop models at a regional scale, a high plasticity

would be a nuisance, since it might not allow to clearly identify for which parameters the effort

to reduce their uncertainty needs to be focused. As Ben Touhami et al. [58] have pointed out, a

high plasticity complicates the interpretation of the SA results and may require checking how

and to what extent the ranking of influential parameters changes with changing conditions. If

a high plasticity depends on the listing of parameters, rather than on their ranking, it would

limit the generalization capability of a crop model, strengthening the need for site-specific cali-

brations and sensitivity analyses. In the present work, the plasticity for Aquacrop (L = 0.32)
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was higher than that found by [50] for the model having the highest plasticity among those

tested, i.e. WOFOST (L = 0.37). The high plasticity was determined by differences in the list-

ings (and not only ranking) of the most influential factors for Aquacrop among the scenarios

tested. Instead, SAFYE had a lower plasticity, with an L of 0.42, i.e. intermediate between that

of the models Cropsyst (L = 0.40) and WARM (L = 0.44) and the listings were the same in all

scenarios, with the exception of parameter Pgro_Kex which was not influential in 2 scenarios

only.

Conclusions

The results reported in this study provide key elements to the knowledge on the behavior, in

water limited climatic scenarios, of two models, Aquacrop and SAFY, which have an increas-

ing user community and are extremely interesting in the context of regional scale studies, and

particularly for remote sensing data assimilation [7, 13, 22, 24, 56]. For these applications,

higher uncertainties exist on the values of parameters and input factors needed to run these

models, as compared to more usual field based applications of crop models. In the case of large

scale applications, it is very useful to know, not only the sensitivity of the targeted model out-

puts, grain yield in our case, to the parameters and input variables, but also model complexity

and plasticity. Sensitivity analysis results provides guidance on the data gathering and calibra-

tion efforts, but the knowledge of complexity and plasticity provides elements for the choice of

the most suitable model, based on the information available and on the processes that need to

be described.

In our case, it was apparent that Aquacrop, despite being simpler than most other crop

models, is more complex than SAFYE and it has also a higher plasticity. In a regional scale

application of Aquacrop, more attention needs to be paid to its calibration than for SAFYE,

which has a smaller number of influential factors. Furthermore, given the higher plasticity of

Aquacrop, it would be necessary, more than for SAFYE, to carry out a preliminary sensitivity

analysis, in case the scenario in which it would be used differs markedly from those of sensitiv-

ity studies already done, such as the present work or [40]. The present study employed a diver-

sified range of climatic scenarios, characterized by moderate to severe water stress, so the

results are valid for similar situations which are very frequent in wheat growing areas.

SAFYE is less complex and has a lower plasticity than Aquacrop. It was found that the

parameters that were added to the original SAFY model, to include water balance and crop

water stress processes, were mostly negligible, with the notable exception of soil moisture at

field capacity and wilting point. This suggests that a simplification of the description of these

processes in SAFYE should be made. The limited number of parameters and the lower plastic-

ity, makes this model more suitable than Aquacrop to large scale applications, whenever lim-

ited information on the input variables is available and an estimate of crop yield is the only

information sought. This model, though, lacks the ability of providing insight on the processes

that contributed to yield reduction, that would only be made clear by models incorporating

the description of influence of the different abiotic (or even biotic) stress factors on crop

growth.
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S1 Fig. Simulated and measured above ground biomass, grain yield and LAI for the Xiao-

tangshan winter wheat dataset [30] with different sowing dates in the years 2008–2011.

Lines are data simulated with the SAFYE model, points are field measurements.
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S1 Table. Parameters and input variables of the Aquacrop model considered in the sensi-

tivity analysis, with their minimum and maximum values and the range of variation

employed and the references used for setting these values. Conservative and non-conserva-

tive parameters and input variables are indicated.

(XLSX)

S2 Table. Parameters and input variables of the SAFYE model considered in the sensitivity

analysis, with their minimum and maximum values and the range of variation employed

and the references used for setting these values. Conservative and non-conservative parame-

ters and input variables are indicated.

(XLSX)
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