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Abstract
SARS-CoV-2 is responsible for the coronavirus disease 2019 (COVID-19) and the current health crisis. Despite intensive 
research efforts, the genes and pathways that contribute to COVID-19 remain poorly understood. We, therefore, used an 
integrative genomics (IG) approach to identify candidate genes responsible for COVID-19 and its severity. We used Bayes-
ian colocalization (COLOC) and summary-based Mendelian randomization to combine gene expression quantitative trait 
loci (eQTLs) from the Lung eQTL (n = 1,038) and eQTLGen (n = 31,784) studies with published COVID-19 genome-wide 
association study (GWAS) data from the COVID-19 Host Genetics Initiative. Additionally, we used COLOC to integrate 
plasma protein quantitative trait loci (pQTL) from the INTERVAL study (n = 3,301) with COVID-19 loci. Finally, we 
determined any causal associations between plasma proteins and COVID-19 using multi-variable two-sample Mendelian 
randomization (MR). The expression of 18 genes in lung and/or blood co-localized with COVID-19 loci. Of these, 12 genes 
were in suggestive loci (PGWAS < 5 × 10–05). LZTFL1, SLC6A20, ABO, IL10RB and IFNAR2 and OAS1 had been previously 
associated with a heightened risk of COVID-19 (PGWAS < 5 × 10–08). We identified a causal association between OAS1 and 
COVID-19 GWAS. Plasma ABO protein, which is associated with blood type in humans, demonstrated a significant causal 
relationship with COVID-19 in the MR analysis; increased plasma levels were associated with an increased risk of COVID-
19 and, in particular, severe COVID-19. In summary, our study identified genes associated with COVID-19 that may be 
prioritized for future investigations. Importantly, this is the first study to demonstrate a causal association between plasma 
ABO protein and COVID-19.

Introduction

The severe acute respiratory syndrome coronavirus 2 
(SARS-CoV-2) is responsible for the coronavirus dis-
ease 2019 (COVID-19) and the current world pandemic. 

The SARS-CoV-2 was first identified in Wuhan, Hubei 
province, China in late 2019 and since then, it has spread 
across the world, affecting more than 180 countries (Zhu 
et  al. 2020). To date, the COVID-19 health crisis has 
resulted in the loss of more than a million human lives 
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(Dong et al. 2020). While the disease has mild effects 
in most individuals, severe COVID-19 is more likely in 
the elderly population and individuals with comorbidi-
ties such as cardiovascular diseases and diabetes (Zhou 
et al. 2020a). Why these populations are at a higher risk 
of adverse COVID-19 outcomes is still unclear.

Genetic variations in the host may explain some of the 
heterogeneity in COVID-19 outcomes. Understanding the 
role of genetic variants may also provide critical insights 
into COVID-19 pathogenesis. However, the genes and 
pathways that contribute to SARS-CoV-2 infection are 
poorly understood. Recently, a pooled genome-wide asso-
ciation study (GWAS) revealed novel susceptibility loci, 
including 3p21.31 and 9q34.2, for severe COVID-19 lead-
ing to respiratory failure (Ellinghaus et al. 2020). These 
loci encompassed several genes, but which (if any) of the 
individual genes are causally associated with COVID-19 
was not explored.

GWAS leverages genetic variants to determine asso-
ciations between regions of the genome and a particular 
trait (e.g. disease). However, traditional GWAS has several 
limitations that may prevent true gene–trait associations 
from being identified. For example, due to correction for 
multiple comparisons, GWAS results necessarily have a 
stringent threshold for statistical significance and relevant 
associations below this threshold may be missed. Second, 
disease-associated loci are typically thousands of base 
pairs wide and thus contain multiple genes, which may 
obscure the causal gene contributing to the disease trait. 
One emerging approach to identify genes within suscep-
tibility loci is integrative genomics (IG). By combining 
genomic information with transcriptomic, proteomic and/
or methylation data, IG is able to fine-map genetic sus-
ceptibility loci and identify genes and proteins most likely 
to have a causal association with disease. This method 
has previously elucidated specific protein coding genes 
and mechanisms that contribute to complex traits (Cano-
Gamez and Trynka 2020). In the present study, we har-
nessed the power of IG to identify several susceptibility 
genes for COVID-19 and investigate the causal relation-
ship between the plasma protein levels of candidate genes 
and COVID-19. Notably, here, we demonstrate a causal 
association of the ABO protein (this protein is responsible 
for the ABO blood groups) with both the risk for COVID-
19 and its severity.

Methods

Study pipeline

The COVID-19 Host Genetic Initiative (COVID-19 HG) 
GWAS identified four genetic loci within three chromosomes 

(chromosome 3, 9 and 21), which were associated with sus-
ceptibility to COVID-19 (defined as a positive COVID-19 
diagnosis versus the general population) and seven genetic 
loci (chromosome 3, 6, 7, 9, 12, 19 and 21), which were 
associated with severe COVID-19 (defined as hospitali-
zation for COVID-19 versus the general population) at a 
genome-wide significant threshold of PGWAS < 5 × 10–08 
(The COVID-19 Host Genetics Initiative 2020). In addition 
to these loci, we also explored regions below this stringent 
threshold, particularly those with GWAS PGWAS < 5 × 10–05. 
We integrated these GWAS results with gene expression data 
from both lung tissue (Lung eQTL study) (Hao et al. 2012) 
and blood (eQTLGen) (Võsa et al. 2018) using two statisti-
cal methodologies (Fig. 1). Bayesian colocalization (Coloc) 
assessed whether two genetic association signals are con-
sistent with a shared causal variant (Giambartolomei et al. 
2014). We defined colocalization as the posterior probabil-
ity of this hypothesis (PPH4) being > 0.80. Summary Based 
Mendelian Randomization (SMR) integrates summary data 
from GWAS and eQTLs in order to identify genes whose 
expression levels are associated with a trait due to the effects 
of a common genetic variant (either by direct causal or pleio-
tropic effects) rather than due to a genetic linkage (Zhu et al. 
2016). Significance of SMR estimate was set at PSMR < 0.001 
with no significant heterogeneity (PHEIDI > 0.05).

Study cohorts

COVID‑19 host genetics initiative (COVID‑19 HG)

For our study, we obtained publicly available summary sta-
tistics from the COVID-19 HG GWAS meta-analysis V4 
(https ://www.covid 19hg.org/) (The COVID-19 Host Genet-
ics Initiative 2020). We obtained the summary statistics for 
two case–control analyses: (1) “susceptibility to COVID-
19” [where cases were all individuals with a diagnosis of 
COVID-19 (n = 17,965), and controls were all individuals 
without a COVID-19 diagnosis (n = 1,370,547)]; and (2) 
“Severe COVID-19” [where cases were individuals with a 
COVID-19 diagnosis and who were hospitalized (n = 7,885), 
and controls were all individuals without a COVID-19 
diagnosis and no hospitalization (n = 961,804)]. In brief, 
the COVID-19 HG is an ongoing initiative that aims to 
facilitate COVID-19 genetic host research through inter-
national collaboration. Contributing investigators submit 
individual level data or summary results from GWASs per-
formed according to pre-specified methodological standards 
to ensure quality and consistency of the data. For imputa-
tion, each individual study used their own reference panel 
or existing imputation panel; the association analyses were 
adjusted for age, sex and population structure. The COVID-
19 HG combines this data in an inverse variance weighted 
meta-analysis using variants with a minor allele frequency 

https://www.covid19hg.org/
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(MAF) > 0.001 and imputation quality (r2) > 0.6. Note that 
the summary statistics used for our analysis did not include 
the 23andMe cohort due to data privacy issues. Further 
details are provided by the COVID-19 HG (The COVID-19 
Host Genetics Initiative 2020).

Lung eQTL study

For our study, we obtained lung expression quantitative 
loci (eQTL) from the Lung eQTL study (Hao et al. 2012). 
In summary, the Lung eQTL study consisted of 1038 par-
ticipants from three institutions, the University of Brit-
ish Columbia (UBC), Laval University and University of 
Groningen. At UBC and Laval University, the studies were 
approved by the ethics committees within each institution. 
For University of Groningen, the lung specimens were pro-
vided by the local tissue bank of the Department of Pathol-
ogy; the study protocol that was used in this study was 
consistent with the Research Code of the University Medi-
cal Center Groningen and Dutch national ethical and pro-
fessional guidelines (“Code of conduct; Dutch federation 
of biomedical scientific societies”, http://www.feder a.org). 
The Lung eQTL study determined the gene expression of 
non-tumour lung tissue samples using 43,466 non-control 
probe sets (see GEO platform GPL10379). The partici-
pants were also genotyped using the Illumina Human 1 M 
Duo BeadChip, and after imputation a total of 7,640,142 
single nucleotide polymorphisms (SNPs) for Laval, 

7,610,179 for UBC, and 7,741,505 for Groningen were 
kept for an eQTL analysis. Data for each site were evalu-
ated, separately, using a robust linear regression model 
adjusted for age, sex and smoking status, which assumed 
an additive genotype effect. No population structure 
adjustment was applied to the individual analyses because 
of the homogeneity of the cohort within each site (white 
European ancestry) and the small sample size (Hao et al. 
2012). Site-specific results were then combined by a meta-
analysis using a fixed effects model with inverse variance 
weighting to account for any heterogeneity between sites. 
Significant eQTLs were defined at a false discovery rate 
(FDR) < 0.10; cis expression quantitative trait loci (cis-
eQTLs) were defined by a 2 Mb window (± 1 Mb probe to 
SNP distance). Full details of the cohort and genotyping 
quality control, and eQTL analysis are provided by Hao 
and colleagues (Hao et al. 2012).

eQTLGen

We obtained blood cis-eQTL summary statistics from 
eQTLGen. The eQTLGen cohort consisted of 31,684 whole 
blood (85%) and peripheral blood mononuclear cell (15%) 
samples from 37 datasets. Gene expression profiles and 
genotypes were obtained for the eQTLGen cohort. The full 
details on the participants, gene expression measurements 
and genotyping for each dataset are described by the eQTL-
Gen consortium (Võsa et al. 2018). Based on the first two 

Fig. 1  Study overview. The diagram summarizes the genomics data-
sets and analytic pipeline of the study. First, publicly available omics 
datasets were obtained, which were later processed using integrative 
genomics (IG) methods (Bayesian Colocalization and Summary-
based Mendelian Randomization) to identify potential candidate 

genes for COVID-19 phenotypes. Lastly, using a Bayesian Colo-
calization and Mendelian Randomization approaches, we explored 
the causal association between the plasma protein levels of the most 
promising candidate gene and the risk of COVID-19

http://www.federa.org
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principal components of gene expression, the outliers were 
removed from the eQTLGen analysis. To account for popu-
lation structure, the eQTLGen study regressed the first four 
multidimensional scaling (MDS) components of the expres-
sion matrix. The cis-eQTL analysis was performed in each 
separate dataset and were estimated within a 2 Mb window 
(± 1 Mb probe to SNP distance) as previously described by 
Westra and colleagues (Westra et al. 2013); later, the results 
were combine by a meta-analysis using a weighted Z-score 
method (Westra et al. 2013; Võsa et al. 2018). Significant 
eQTLs were defined at a false discovery rate (FDR) < 0.05.

INTERVAL study

We used plasma protein quantitative trait loci (pQTL) 
obtained from the INTERVAL study (Sun et  al. 2018). 
In brief, the INTERVAL study was a randomized trial of 
approximately 50,000 participants across 25 static donor 
centres of the NHS Blood and Transplant (NHSBT) Network 
(Di Angelantonio et al. 2017; Sun et al. 2018). Blood was 
collected from the participants using standard venepunc-
ture. The Affymetrix Axiom UK Biobank array was used 
for the genotyping of 830,000 SNPs and genotypes were 
later imputed using the 1000 Genome phase 3 UK10K ref-
erence panel. After quality control, 10,572,788 SNPs were 
retained. A randomly selected subset of 3,301 participants 
were used for the plasma pQTL analyses of 3,622 proteins 
(Sun et al. 2018). Plasma protein levels were measured using 
an expanded version of an aptamer-based multiplex protein 
assay (SOMAscan), which was previously described by Sun 
and colleagues (2018). The protein levels were adjusted for 
confounding variables (age, sex, waiting period between 
blood collection and processing and the first three genetic 
principal components) and the residuals were extracted and 
rank-inverse normalized; pQTL analysis involved testing 
the association between plasma protein levels and genetic 
variants with a linear regression using an additive genetic 
model. The results from each donor centers were com-
bined using a fixed-effect inverse-variance meta-analysis. 
Significant pQTLs were identified at a meta-analysis P 
value < 1.5 × 10−11 (Sun et al. 2018). Further details on the 
study cohort, genotyping protocol and quality control are 
described by Sun and colleagues (Sun et al. 2018).

Integrative‑omics methods

Bayesian colocalization test (Coloc)

We first conducted Coloc tests to determine the probability 
that SNPs associated with COVID-19 phenotypes and gene 
expression (eQTLs) were shared genetic causal variants 
(colocalization). This IG method estimates the ‘posterior 
probabilities’ (PP) of five hypotheses: (1) a genetic locus has 

no associations with either of the two traits (i.e. gene expres-
sion and a complex trait) investigated  (H0); (2) the locus is 
associated only with gene expression  (H1); (3) the locus is 
associated only with the complex trait  (H2); (4) the locus is 
associated with both traits via independent SNPs  (H3); and 
(5) the locus is associated with both traits through shared 
SNPs  (H4) (i.e.: a SNP is associated with COVID-19 and is 
also a cis-eQTL). Colocalization is, therefore, indicated by 
a high PP of  H4 being true. For these analyses, we used the 
coloc package (Giambartolomei et al. 2014) implemented 
in R. We tested only cis-eQTL regions (± 1 Mb probe to 
SNP distance). As required by the method and recommended 
by Giambartolomei and colleagues (Giambartolomei et al. 
2014), we set the ‘prior probability’ of the various configu-
rations  (H1,  H2, and  H4). For the eQTL dataset, we used 
1 × 10–04 prior probability for a cis-eQTL  (H1). We also used 
1 × 10–04 prior probability for COVID-19 associations  (H2). 
Finally, we set a prior probability that a single variant affects 
both traits  (H4) at 1 × 10–06. We set significant colocalization 
(posterior probability) at PPH4 > 0.80, in addition we further 
prioritized colocalized genes based on the PGWAS < 5 × 10–05. 
We executed coloc between the loci associated with COVID-
19 (susceptibility and disease severity) and cis-eQTLs that 
were associated with gene expression in both lung and blood 
tissues, retaining genes whose expression colocalized with 
COVID-19 in both compartments as ‘candidate genes’. The 
number of the SNPs included in the Coloc analysis was 
determined based on the cis-QTLs width as defined by Hao 
and colleagues (Hao et al. 2012). If the corresponding pro-
teins of the candidate genes were present in the plasma pro-
tein dataset (INTERVAL study), we executed Coloc analysis 
for the plasma protein levels and COVID-19 phenotypes; 
the number of the SNPs included in this Coloc analysis 
was determined based on a 1 Mb window (pQTL SNP bp 
position ± 500,000 bp).

Summary‑based mendelian randomization (SMR)

The SMR method was specifically built to test the asso-
ciation between gene expression and a complex trait using 
a SNP as the instrument (Zhu et al. 2016). SMR is based 
on the standard Mendelian Randomization (MR) analysis, 
where the effect of genetic variants is linked to the trait of 
interest via an exposure (gene expression) (Swerdlow et al. 
2016). Therefore, we employed an SMR method to identify 
genes whose effect on COVID-19 was mediated by their 
expression in lung and blood. For the SMR, the lung and 
blood cis-eQTLs and COVID-19 HG GWAS meta-analysis 
summary statistics were used. We selected the 1000G phase 
3 EUR (1000 Genomes Project Consortium et al. 2015) as 
the reference panel for linkage disequilibrium (LD) estima-
tion. Significant SMR was defined at PSMR < 0.001. The sig-
nificant SMR by itself does not necessarily indicate that the 
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same variants are associated with the gene expression and 
the phenotype; the association could be a consequence of the 
LD between independent causal variants, rather than plei-
otropy of a single causal variant or causality. To determine 
whether the associations were related to LD we used the het-
erogeneity in dependent instruments test (HEIDI) test (Zhu 
et al. 2016), the null hypothesis of which is that the effect 
of a variant is shared in gene expression and the phenotype; 
rejecting the null hypothesis based on the P value (PHEIDI) 
is interpreted as evidence of heterogeneity (linkage) (Zhu 
et al. 2016). We reported the significant SMR associations 
that also showed PHEIDI ≥ 0.05.

Mendelian randomization: ABO and OAS1 plasma proteins 
and COVID‑19

To test causality of the ABO plasma protein, we conducted 
MR tests of the plasma protein on COVID-19 phenotypes. 
MR is based on the unidirectional flow of genetic informa-
tion, which assumes that genetic variants will have an effect 
on downstream phenotypes (gene → protein → phenotype). 
MR uses SNPs as instrumental variables (IVs) to link a risk 
factor (‘exposure’) to a health trait (‘outcome’). The MR 
assumptions are as follow: IVs are associated with the expo-
sure, and only affect an outcome via the exposure, and are 
independent of confounders.

A pQTL on chromosome 9q34.2 was identified for ABO 
plasma protein (Sun et al. 2018). We performed stepwise 
conditional analysis, using GCTA 1.92.0beta3 (Yang et al. 
2011), within each 2 Mb region on chromosome 9 to iden-
tify independently associated SNPs. UK Biobank genotypes 
(Bycroft et al. 2018) were used as the reference sample, 
and excluded SNPs with MAF < 0.01. We later extracted 
the effect size (beta) and standard error (SE) for each inde-
pendent variant. Likewise, we obtained the beta and SE for 
each of these SNPs on the two COVID-19 phenotypes in the 
COVID-19 HG meta-analysis. We used stepwise removal 
to identify the variants with homogeneous effects to fulfil 
the MR assumption of homogeneity of the IVs. We then 
performed an inverse variance weighted (IVW) MR (IVW-
MR) (implemented in ‘MendelianRandomization’ R pack-
age (Staley 2020)) to link the allelic effects on the expo-
sure (plasma protein levels) to their effects on the outcome 
(severe COVID-19 and COVID-19 diagnosis). We adjusted 
for possible correlations between SNPs by incorporating 
the estimated LD on 1000G phase 3 EUR using PLINK 
1.9 (Chang et al. 2015) into the MR input. The IVW-MR 
assumes no directional pleiotropy (i.e. genetic variant asso-
ciated with multiple unrelated phenotypes) (Bowden et al. 
2015). Significance of the MR estimate was set at P < 0.05. 
To assess the presence of pleiotropy, we then executed 
MR-Egger analysis (Bowden et al. 2015) which, unlike 
IVW-MR, allows the estimation of directional pleiotropy. 

The presence of pleiotropy is suggested by a significant 
(PEgger Intercept < 0.05), non-zero, intercept term.

We assessed heterogeneity of the IVs using the Cochran’s 
Q test obtained from the IVW-MR output (Staley 2020); sig-
nificant heterogeneity (P < 0.05) suggests that the variability 
of the IVs estimates is greater than would be expected by 
chance alone, which may indicate bias due to invalid IVs. 
Although a MR with multiple IVs has greater power com-
pared to a single IV MR, it is possible that the average causal 
effect may be mainly driven by the SNP with the strongest 
association with the outcome. To evaluate the reliance of 
the multi-variable MR on individual SNPs we performed 
a sensitivity analysis by excluding each SNP at a time and 
re-calculating the IVW-MR estimate. If removing a SNP 
significantly changes the MR estimate, it indicates that the 
multi-variable MR relied mostly on the removed SNP.

To test causality of the OAS1 plasma protein, we also 
conducted an IVW-MR of the plasma protein on COVID-19 
phenotypes as described before. First, we identified pQTLs 
for the protein and found two signals [trans (chromosome 
19) and cis (chromosome 12)]. No additional independent 
variants were identified within the two pQTLs; therefore, 
only two variants were used for the initial MR. The initial 
MR result was significant (P < 0.05); however, the two IVs 
showed heterogeneity (P < 0.05). Thus, we only used the 
cis-pQTL for a single IVW-MR.

Additional analyses

We followed the pipeline described in Fig. 1 and repeated 
the IG analyses using the COVID-19 test positive versus test 
negative phenotype (The COVID-19 Host Genetics Initia-
tive 2020). The results corresponding to these analyses are 
shown in Supplementary Fig. S4.

Results

Lung gene expression

The expression of ten unique genes in lung tissue co-local-
ized (PPH4 being > 0.80) with severe COVID-19-associated 
loci (Fig. 2a) and 8 with the COVID-19 trait associated loci 
(PGWAS < 5 × 10–05) (Supplementary Table S1). Six unique 
gene associations identified in lung tissue were novel (i.e. 
not been identified by GWAS) (The COVID-19 Host Genet-
ics Initiative 2020), (FOXP4-AS1, CNN3, DLX3, SLC22A5, 
CDH15 and SEPW1) and met the suggestive statistical sig-
nificance (PGWAS < 5 × 10–05) rather than the genome-wide 
significance  (PGWAS < 5 × 10–08) (Supplementary Table S1). 
For example: SLC22A5 is a novel association for COVID-
19 that is located in a suggestive locus (Fig. 2c) on chro-
mosome 5 [sentinel SNP rs13168774, PGWAS = 8.6 × 10–06 
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(COVID-19 hospitalization vs population)]; this gene has 
been associated with asthma (Moffatt et al. 2010), IgG gly-
cosylation (Lauc et al. 2013), and systemic carnitine defi-
ciency (Mutlu-Albayrak et al. 2015). Furthermore, based on 
the SMR analysis, we determined that SLC22A5 expression 
in lung tissue is associated to a decreased risk of COVID-
19 (Fig. 2b). SMR also showed that CNN3 gene expres-
sion in the lung decreases the risk of severe COVID-19, 
while DLX3 increases the risk. In addition to these novel 
gene associations, we identified three co-localized genes 
(LZTFL1, SLC6A20 and ABO) that were within loci, which 

had been previously associated with severe COVID-19 by 
GWAS (Ellinghaus et al. 2020) (Fig. 2a and Supplementary 
Table S1). ABO gene expression co-localized with suscep-
tibility and severe COVID-19 Fig. 2c.

Other candidates that have been associated with COVID-
19 included IL10RB and IFNAR2 (Fig. 2a) (Ma et al. 2020, 
p. 19; Pairo-Castineira et al. 2020), our study expands on 
these by associating lung gene expression with COVID-19 
risk and providing the direction of the effect for IFNAR2 on 
COVID-19. IL10RB and IFNAR2 are interferon (IFN) recep-
tor genes that co-localized with COVID-19 (PPH4 > 0.80); 

Fig. 2  COVID-19 genomics and gene expression integration. a 
Colocalization of COVID-19 (hospitalization vs population) with 
gene expression in lung and blood tissues, respectively. The circles 
represent the probability (y axis) that a gene colocalizes (PPH4) with 
COVID-19 plotted against its chromosomal position (x axis). The 
red dashed horizontal line represents the threshold of significance 
(PPH4 > 0.80). Red and green circles highlight the genes within 
previously identified COVID-19 loci, and those within suggestive 
COVID-19 loci (PGWAS < 5 × 10–05), respectively. b Results from the 
Summary Based Mendelian Randomization are displayed in this mir-
ror Manhattan plot. The circles represent the association between 
susceptibility to COVID-19 (diagnosis vs population) and the gene 
expression (lung and blood) multiplied by the direction of the effect 
(y axis) plotted against the genes chromosomal position (x axis). The 

dotted horizontal lines (red) represent the threshold of significance 
(P < 0.001). SMR plot only shows the results that passed the heter-
ogeneity test (see methods). Labels represent those genes that were 
also co-localized. c Regional plots for severe COVID-19 (COVID-19 
hospitalization vs population) and lung tissue cis-eQTL at the ABO 
(left panel) and SLC22A5 (right panel) loci. Severe GWAS signals 
(top of the panel c) colocalize with the cis-QTL region (bottom of the 
panel c) at ABO (chromosome 9) and SLC22A5 (chromosome 5). The 
circles represent the −log10 association P values (y axis) of SNPs 
plotted against their chromosomal position (x axis). The co-localized 
SNP is shown inside each plot and  PPH4 is at the left top corner of the 
lung eQTL regional plots. Pairwise linkage disequilibrium (r2, calcu-
lated from the 1000 Genomes European population) in each region is 
colored with respect to the lead GWAS SNP within each region
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these genes were located in the same locus on chromo-
some 21 [sentinel SNP rs13050728, PGWAS = 1.9 × 10–11 
(COVID-19 hospitalization vs population) (The COVID-19 
Host Genetics Initiative 2020)]. In addition, results from the 
SMR showed that the increased expression of IFNAR2 in 
lung tissue was associated with decreased risk for COVID-
19 (Supplementary Table S2) (PSMR < 0.001). We also iden-
tified colocalization of COVID-19 risk and severity with 
the OAS1 gene locus (Fig. 2 and Supplementary Table S1), 
OAS1 is an interferon stimulated gene involved in the cel-
lular response to viral infection.

Blood gene expression

In blood, the expression levels of 8 genes co-localized 
with COVID-19 severity (Fig. 2a); whereas only two genes 
co-localized to the risk of COVID-19 (PGWAS < 5 × 10–05) 
(Supplementary Table S1). The expression of ABO in blood 
co-localized with the risk for COVID-19 (PPH4 = 0.86) as 
well as that for severe COVID-19 (PPH4 = 0.94) associated 
loci (Sentinel SNP 9:136,146,597, PGWAS = 7.3 × 10–08). 
Based on the Coloc test, OAS1 was also highlighted as a 
candidate in blood for COVID-19 severity (PPH4 = 0.83) and 
susceptibility (PPH4 = 0.95). Other first-time associations 
within COVID-19 GWAS suggestive loci included KEAP1, 
AP000295.7, TYK2, ERCC6L2, NAPSA and HMM. SMR 
results showed that the expression of ERCC6L2 and NAPSA 
in blood was associated with decreased risk of severe 
COVID-19. The full list of SMR results and its details are 
presented in Supplementary Table S2.

ABO plasma protein level is a risk factor 
for COVID‑19

The functional effects of genes are generally imparted 
through their translation into proteins. To strengthen the 
mechanistic association between the identified genes and 
COVID-19, we determined which of these genes were 
associated with both blood protein levels and COVID-19 
phenotypes. We integrated the COVID-19 HG GWAS and 
blood protein GWAS from the INTERVAL study (which 
includes genome-wide associations between genetic vari-
ants and 2,995 blood proteins) using Coloc. Additionally, 
we applied MR to determined causal associations between 
protein and COVID-19.

The expression of two protein-coding candidate genes 
(ABO and OAS1) co-localized with COVID-19 phenotypes 
in both tissues (PGWAS < 5 × 10–05 and PPH4 > 0.80). Both 
genes were present in the INTERVAL study. We found that 
ABO plasma protein levels co-localized with susceptibility 
(PPH4 = 0.99) to COVID-19 and its severity (PPH4 = 0.99) 
(Fig. 3a). Likewise, OAS1 plasma protein levels co-localized 

with the COVID-19 phenotypes (Supplementary Table S3), 
although at a lower probability than ABO [susceptibility 
(PPH4 = 0.88), severity (PPH4 = 0.81)].

An IVW-MR test was conducted using three independ-
ent variants as instrumental variables (IVs) to investigate 
the causal relationship between ABO plasma protein and 
COVID-19. Based on the Cochran’s Q and MR-Egger 
intercept p values the IV’s average effect on COVID-19 
phenotypes did not demonstrate significant heterogeneity 
or horizontal pleiotropy amongst the IVs (Supplementary 
Table S4). The results indicated a significant causal asso-
ciation between ABO plasma protein levels and COVID-19 
phenotypes (P < 0.05) (Fig. 3b and Supplementary Figure 
S1). ABO-increasing allele increased the odds of COVID-
19 by 0.06 and the odds of severe COVID-19 by 0.10. In 
addition, we performed a sensitivity analysis to assess if the 
MR results were driven by a single SNP. Supplementary 
Figures S2 and S3 show that the exclusion of any of the 
IVs used for the MR did not significantly change the overall 
IVW-MR estimate.

A single variant (rs4767027) IVW-MR (see "Methods") 
also showed that OAS1 plasma protein level is causally asso-
ciated with susceptibility to COVID-19 (PMR = 4.00 × 10–05, 
MR estimate = − 0.21) and its severity (PMR = 7.08 × 10–07, 
MR estimate = − 0.42). The MR effect direction shows that 
plasma OAS1-increasing allele (rs4767027) decreases the 
odds of COVID-19.

Additional analyses

We analysed an additional phenotype (COVID-19 test posi-
tive versus test negative) to check for the consistency of 
the different COVID-19 phenotypes. Five genes (DNPH1, 
FCER1G, ABO, SLC6A20 and SEPW1) identify with this 
COVID-19 test positive versus test negative GWAS coin-
cided with our findings on COVID-19 susceptibility and 
severity (Supplementary Figure S4).

Discussion

Recent GWAS have revealed genetic loci that are signifi-
cantly associated with COVID-19 (The COVID-19 Host 
Genetics Initiative 2020; Ellinghaus et al. 2020); however, 
since these loci often harbor multiple genes, the underly-
ing genes or pathways responsible for COVID-19 remain 
unknown. To address this crucial gap in knowledge, we used 
integrative genomic methods, which unveiled several novel 
findings. First, we identified gene associations whose physi-
ology plausibly relates to COVID-19. Second, we associated 
the effect of genetic variants to the gene expression levels 
of previously identified COVID-19-related-genes. Third, 
we showed that genetically-determined plasma ABO and 
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OAS1 proteins levels are causally associated with the risk 
of COVID-19 and its severity.

Although the chromosome 3p21 region has been previ-
ously associated with severe COVID-19, this locus encom-
passes six genes, making it hard to identify the precise gene 
responsible for the association with COVID-19 (Ellinghaus 
et al. 2020). We found that two genes within this locus 
(SLC6A20 and LZTFL1) co-localized with COVID-19 phe-
notypes. The SLC6A20 protein product (sodium- and chlo-
ride-dependent transporter XTRP3) is involved in amino 
acid transport, with a role in the regulation of thymocyte 
selection (Simeoni et al. 2005) and negative regulation of 
T-cell activation (Arndt et al. 2011). This protein may also 
interact with angiotensin converting enzyme 2 (ACE2), 
which is the putative SARS-CoV-2 receptor (Vuille-dit-
Bille et al. 2015; Zhou et al. 2020b). Interestingly, both 

ACE2 and SLC6A20 gene and protein expression levels 
increase with age (Meier et al. 2018; Bunyavanich et al. 
2020; Vuille-dit-Bille et al. 2020) with the lowest concen-
trations noted in children (small intestinal and nasal epi-
theliums). Although children can develop SARS-CoV-2 
infections, they appear to be at very low risk of developing 
severe COVID-19 (Jordan et al. 2020). Consistent with these 
findings, another recent study has shown that a risk variant 
(rs11385942) for SLC6A20 expression in human lung cells 
conferred increased risk for severe COVID-19 (Ellinghaus 
et al. 2020, p. 19). LZTFL1 encodes leucine zipper transcrip-
tion factor-like protein 1, a protein involved in intracellular 
cargo trafficking that is linked to congenital ciliopathies; the 
mechanism of its association with COVID-19 is unclear.

Of the described gene associations with susceptibility to 
COVID-19 and its severity, IL10RB, IFNAR2 and OAS1 are 

Fig. 3  Bayesian Colocalization 
(a) and Mendelian Randomiza-
tion (MR) (b) of ABO plasma 
protein and COVID-19. a 
Regional plot describing severe 
COVID-19 GWAS (COVID-19 
hospitalization vs population) 
(top of a) and plasma protein 
pQTL (bottom of a) at the ABO 
locus. The circles represent the 
−log10 association P values (y 
axis) of SNPs plotted against 
their chromosomal position (x 
axis). The co-localized SNP is 
shown inside each plot and  PPH4 
is at the left top corner of the 
plasma protein pQTL regional 
plot. Pairwise linkage disequi-
librium (r2, calculated from 
the 1000 Genomes European 
population) in each region is 
colored with respect to the lead 
GWAS SNP within each region. 
b Inverse variance weight-
ing (IVW) MR (IVW-MR) of 
ABO plasma proteins on risk of 
severe COVID-19 (COVID-19 
hospitalization vs population). 
The x axis represents the SNP 
effect on the plasma protein 
levels, and the y axis the SNP 
effect on severe COVID-19. 
The variants used for the MR 
are shown inside the plot with 
error bars that represent the 
95% confidence intervals. The 
slope of the solid red line is the 
instrumental variables regres-
sion estimate of the effect of the 
protein on severe COVID-19, 
with dashed red lines represent-
ing the 95% confident interval. 
IVW-MR P value and estimate 
are shown in the top left corner
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notable given their role in the IFN pathways. Variants within 
the vicinity of these genes, particularly within IFNAR2 and 
OAS1 have been associated with COVID-19 phenotypes (Ma 
et al. 2020, p. 19; Pairo-Castineira et al. 2020). In the case 
of OAS1, previous research has failed to provide a potential 
mechanistic link. Our analyses suggest that genetic vari-
ants within IL10RB, IFNAR2 and OAS1 exert their effect 
on COVID-19 through lung and blood gene expression; in 
addition, this is the first time that OAS1 plasma protein lev-
els have been associated to COVID-19 susceptibility and 
its severity. The protein products of IFNAR2 and IL10RB 
are components of the receptor complexes for type I and 
III IFNs, respectively, which are critical in the early host 
responses to a viral infection. The protein product of OAS1 
(2′-5′-oligoadenylate synthase 1), which is induced by IFNs, 
indirectly promotes viral RNA degradation and inhibition of 
viral replication. Our findings suggest that increased OAS1 
gene expression decreases the susceptibility to COVID-
19 and, in particular, severe COVID-19. This is consistent 
with the concept of IFN dysregulation in severe COVID-
19, in which patients mount a delayed and often blunted 
IFN responses to the virus (Acharya et al. 2020; Made et al. 
2020). Our findings support the results of a recent clinical 
trial showing that inhaled IFN-beta decreased the risk of 
severe COVID-19 (Balfour 2020).

Our results also show that a COVID-19 locus was asso-
ciated with ABO gene expression in lung and blood tissues 
and plasma protein levels in blood. The ABO gene encodes 
for a protein responsible for the ABO blood groups. While 
the A and B allele carriers express glycosyltransferase 
activities that convert H antigen into A or B antigen, the 
O group protein lacks this enzymatic activity [due to a 
deletion in the gene (frameshift)]. Previous studies have 
shown that blood type O individuals demonstrated a lower 
susceptibility to COVID-19 (Zhao et al. 2020; Zietz and 
Tatonetti 2020; Ellinghaus et al. 2020), and variants in the 
ABO have been associated with increased risk of severe 
COVID-19 (Ellinghaus et  al. 2020). Recent findings 
reported that the rhesus negative (Rh−) blood group may 
also be protective for SARS-CoV-2 infection and severity, 
particularly in the O-negative blood group, again showing 
a potential link between the blood groups and COVID-19 
(Ray et al. 2020). While others have previously reported 
an association between COVID-19 and ABO, here, we 
showed for the first time that the ABO plasma protein level 
is likely a causal risk factor for susceptibility to COVID-
19 and its severity. The mechanism by which ABO protein 
modifies COVID-19 risk is unclear. The protein-decreas-
ing allele (T) of the top SNP (rs505922) used in the IVW-
MR tests is in high LD (r ~ 1) with the O blood group SNP 
genotype (rs8176719) (Melzer et al. 2008; Paré et al. 2008; 
Wolpin et al. 2010; Groot Hilde E. et al. 2020). This raises 
the possibility that the apparent protective effect of blood 

group O is a consequence of lower ABO protein level. Our 
results cannot distinguish between these mechanisms, and 
it is unknown whether individuals with blood group O 
actually have lower plasma ABO levels. Regardless, how 
and why lower ABO protein levels would be protective 
against COVID-19 is a matter for speculation. In SARS-
CoV, a naturally occurring anti-A antibodies can inhibit 
spike protein-mediated cellular entry via the ACE2 recep-
tor (Guillon et al. 2008) (this is also the putative entry 
mechanism for SARS-CoV-2). It has been speculated that 
this effect may also be found in SARS-CoV-2 (Zhao et al. 
2020). Another possible explanation is that the A blood 
type is associated with increased risk of cardiovascular 
disease (Wu et al. 2008), which is a known risk factor 
for severe COVID-19, while those with the O blood type 
are less likely to develop cardiovascular diseases. Fur-
thermore, a previous report found an incidence of venous 
thromboembolism (VTE) of 27% in critically ill COVID-
19 patients (Klok et al. 2020, p. 19). ABO blood type has 
been previously associated with increased risk of VTE 
(Wang et al. 2017); interestingly, the protein-increasing 
allele (C) of the top SNP (rs505922) used in the MR tests 
is also a risk variant for VTE (Trégouët et al. 2009). Fur-
ther investigation is needed to understand the physiologi-
cal role of ABO in the pathophysiology of COVID-19.

Our study had several limitations. First, our analyses were 
limited by the number of genetic variants that overlapped 
between the COVID-19 HG meta-analysis and the datasets 
that were used for this study. Thus, we could not test some 
genes that may be of importance. Second, replication of our 
result in an independent dataset was not possible due to the 
lack of COVID-19 GWAS data available at the present time; 
first-time associations identified by our analyses should be 
considered with caution. Third, although between (meta-
analysis) and within cohort differences were taken into con-
sideration on the COVID-19 GWAS analyses, the controls 
represented the general population and no exposure status 
was reported; therefore, it is possible that some GWAS asso-
ciations that were used in our study may reflect factors asso-
ciated with exposure, rather than a response to the SARS-
CoV-2. Lastly, the lung and blood -omics data that were used 
reflect transcriptomic and proteomic profiles under normal 
conditions; it is likely that that these associations change 
under stimulation by viral infection or acute inflammation.

Conclusions

We used a multi-omics approach to identify several can-
didate genes that may be involved in the pathogenesis of 
COVID-19. The analyses presented here associated COVID-
19 genomics to gene expression in lung and blood tissues. 
This approach revealed specific genes within previously 
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reported COVID-19 loci, and also identified new genes 
whose biology is consistent with COVID-19. Importantly, 
our analysis suggests that the ABO protein is a causal risk 
factor for severe COVID-19 and COVID-19 susceptibility.

Supplementary Information The online version contains supplemen-
tary material available at https ://doi.org/10.1007/s0043 9-021-02264 -5.
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