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Abstract
The sense of smell arises from the perception of odors from chemicals. However, the rela-

tionship between the impression of odor and the numerous physicochemical parameters

has yet to be understood owing to its complexity. As such, there is no established general

method for predicting the impression of odor of a chemical only from its physicochemical

properties. In this study, we designed a novel predictive model based on an artificial neural

network with a deep structure for predicting odor impression utilizing the mass spectra of

chemicals, and we conducted a series of computational analyses to evaluate its perfor-

mance. Feature vectors extracted from the original high-dimensional space using two auto-

encoders equipped with both input and output layers in the model are used to build a

mapping function from the feature space of mass spectra to the feature space of sensory

data. The results of predictions obtained by the proposed new method have notable accu-

racy (Rffi0.76) in comparison with a conventional method (Rffi0.61).

Introduction
Olfaction, one of the chemical senses of human beings, enables us to understand the surround-
ing environment by perceiving airborne chemicals. Previous studies have suggested that per-
ceived chemical stimuli are associated with the complex organizational structure of the
biological olfactory system [1–2], whose input corresponds to a set of olfactory receptors
responding to physicochemical properties of airborne chemicals and whose output corre-
sponds to recognition in the cerebrum.

Human beings generally use the following ways to describe an impression of a perceived
odor: (1) the name of a chemical, (2) the name of a representative instance, and (3) verbal
descriptors. When we describe the impression of a certain chemical, if the chemical is sufficiently
familiar, the first way is used. For example, we say ‘sulfur’, ‘ammonia’, etc. However, if the name
of the chemical is unknown to the person, concrete examples such as ‘smells like apples’ or
‘smells like rotten eggs’ are often used. The third way may include the prior two methods. That
is, when no suitable concrete example can be used to describe the odor, a combination of verbal
descriptors of common everyday words, such as ‘floral’, ‘sweet’, and so on, is instead used. In the
simplest case, verbal descriptors could just be ‘pleasant’ or ‘unpleasant’ [3–4].
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Sensory evaluation tests for odor have been widely adopted to obtain objective impressions
quantified by verbal descriptors. The extraction of odor impression is essential not only in the
food and cosmetic industries but also in other industries for consumer product evaluation [5].
Since a human cannot continue a sensory test without cessation owing to adaption, conducting
sensory evaluation tests to cover a large number of chemicals requires a significant amount of
time and resources, and is impractical. In addition, since a large number of physicochemical
parameters are associated with chemicals, this prevents us from obtaining a better understand-
ing of the relationship between odor and chemicals. Thus, the aim of this study is to generate a
mathematical model from a limited number of samples to predict the impression of a perceived
odor.

The Mass spectrum is one of the representative physicochemical properties of chemical sub-
stances. Motivated by earlier studies, which clarified the relationship between the scent of a
chemical and its chemical structure [6–8], the properties can be utilized in a predictive model.
Although it was also shown that odor perception is affected by context [9–10], this fact is less
important in our study since the sensory evaluation tests were performed in a standardized
environment.

A huge amount of mass spectrum data are available to construct a model to describe odor
impression. Several studies have reported on relationships between the odor characteristic of a
chemical and its physicochemical parameters by linear modeling approaches such as principal
component analysis (PCA) and non-negative matrix factorization (NMF) [11–14]. These stud-
ies showed that some fundamental parameters indeed affect our perception of odor. Although
PCA and NMF are well-known methods for predictive modeling, they are not suitable for non-
linear data structures [15]. Therefore, since the biological olfactory system is essentially nonlin-
ear, it is difficult to conclude that these linear modeling techniques are wholly compatible with
the system. Artificial neural network modeling, one of the definitive methods of nonlinear
modeling, is generally used in a broad range of applications. However, few studies have focused
on its use in the field of olfaction. Thus, we propose the use of a nonlinear modeling method
for odor characteristic prediction that uses an artificial neural network with a deep structure.

Experiment
For the purpose of predicting the odor characteristic of a chemical from its mass spectrum, we
designed a predictive model with a nine-layer feed forward neural network. A schematic dia-
gram of the model is shown in Fig 1. Every unit in the layers, except those in the input layer,
has a sigmoid function as the activation function.

In general, training a large multilayer neural network has been believed to be difficult for a
long time, but studies have shown that such difficulties may be overcome by certain techniques
such as feature extraction and weight regularization [16–17]. Accordingly, we trained our
model using the following procedure.

First, we calculated the feature vectors separately for mass spectrum data and sensory data.
This procedure, called dimensionality reduction, is necessary to avoid the curse of dimensional-
ity, the well-known problem which arises when dealing with data having a large number of
dimensions [18]. We used an autoencoder with three hidden layers for dimensionality reduc-
tion [19]. However, the autoencoders also have a deep structure, making training problematic.
We will describe our optimization method in a later section.

Then, the multilayer perceptron located in the middle of the nine-layer predictive model is
trained by the feature vectors obtained by the autoencoders mentioned earlier. In other words,
this trained multilayer perceptron is a mapping function from the feature space of mass spectra
to the feature space of sensory data. After that, we connect the first 3 layers of the autoencoder
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Fig 1. Schematic diagram of the predictive model. The character or number in each box gives the name of the layer or the number of units
(dimensionality), respectively.

doi:10.1371/journal.pone.0157030.g001
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(which encodes the mass spectrum vector of the original length into the feature vector of the
mass spectrum) to the multilayer perceptron for mapping, and the last 3 layers of the autoenco-
der (which decodes the feature vector of sensory data to the sensory vector of the original
length) are also connected to the multilayer perceptron for mapping. Fine-tuning is the final
procedure in the modeling [20]. Through this training procedure, the predictive model is able
to convert original mass spectrum data into sensory data.

Data preparation
Two types of dataset are needed to realize the predictive model: the results of a sensory evalua-
tion on monomolecular chemicals and the mass spectra of these chemicals.

The former dataset as above refers to the results of the sensory test previously carried out by
Dravnieks, in which 160 odorants were evaluated for each of 146 verbal descriptors on a scale
of 0 to 5. The applicability in the test was calculated as the geometric mean of raw scores for
~150 panelists [21]. We used 144 descriptors out of the original 146 (S1 Table). Then for the
latter dataset, the mass spectra of chemicals in which the electron ionization method with an
energy of 70 [eV] was applied, were obtained from the Chemistry WebBook provided by
National Institute of Standards and Technology (http://webbook.nist.gov/chemistry/cas-ser.
html). After taking the chemicals common to these two datasets, we obtained 121 chemical
samples for the subsequent experiments. Accordingly, the sensory data matrix is expressed as
rows for the 121 samples and columns for the 144 descriptors. S2 Table shows a list of the
chemicals we used. Intensities with mass-to-charge ratio below 50 might primarily originate
from odorless molecules such as oxygen, nitrogen, and carbon dioxide, and intensities with
high mass-to-charge ratio originate from molecules with low volatility and have less effect on
the odor characteristic. Therefore, we extracted intensities with 51–262 m/z from the original
data [22]. Accordingly, the data matrix is expressed by rows for the 121 samples and columns
corresponding to 212 intensities. The elements in both matrices were then normalized by
dividing by the maximum value in each dataset to obtain a value between 0 and 1.

Training algorithms
Each sample has hundreds of dimensions, while there are only 100 samples available for the
training. When we have a limited number of samples, the predictive capability of the model
reduces as the dimensionality increases. Dimensionality reduction, i.e., feature extraction, is a
common technique often applied to neural networks to accomplish an effective projection
function while avoiding the problems arising from the higher dimensionality.

An autoencoder can be regarded as a special family of artificial neural networks, the pur-
pose of which is to learn a compressed representation from a set of data. Fig 2 shows a sche-
matic diagram of an autoencoder. Each autoencoder used in the following experiments
consists of an input layer, three hidden layers, and an output layer with the same number of
neurons in the input layer. Since fewer neurons are set in the middle hidden layer, a low-
dimensional representation can be obtained. A projection function to a low-dimensional
representation is acquired through an iterative optimization method known as stochastic
gradient descent.

During the optimization process, a training set of N vectors {x1,x2,. . .xN}, which are samples
from an original dataset, were used as input vectors. An autoencoder then computes the output
yn(xn;w) and updates the parameters to reduce the error function En(W),

EnðWÞ ¼
XM
m¼1

ðynm � xnmÞ2 þ LnðWÞ ð1Þ
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where Ln(W) is the L1-Norm regularization known as the Lasso [23], which penalizes weights
on the basis of the size of the L1 norm of the coefficients,

LnðWÞ ¼ l
X
‘;m;n

jwð‘Þ
nmj ð2Þ

where λ is a positive constant. Accordingly, for any weight ðtÞwnmð‘Þ in the ‘th layer in the net-
work including the biases, the update rule is given by

ðtþ1Þwð‘Þ
nm ¼ ðtÞwð‘Þ

nm
� Z

@

@wð‘Þ
nm

En Wð Þ þ a ðtÞwð‘Þ
nm

� ðt�1Þwð‘Þ
nm

� �
þ noise ð3Þ

where η is the learning rate, which decays with increasing number of iterations, t is the number of
epochs, and α is the momentum parameter [24–25]. Noise with a normal distribution was added to
avoid trapping at a local minimum. A set of weight matricesWwas initialized with random values
drawn uniformly from the interval [-0.03, 0.03]. The weights were iteratively updated 200 times for
each sample in the training set to reduce the target error function. k-fold cross-validation was applied
to prevent overfitting by the predictive model. Both data matrices, the sensory evaluation data and
the mass spectra data, were randomly separated into 6 subsets, 5 of which (100 samples) were used
for training the whole model and the hold-out set (21 samples) is used for evaluation of the generali-
zation error. We repeat this k-fold cross validation 10 times for different random splittings.

The generalization error is given as the sum of En(w) calculated for 21 samples in the testing
set. It is known that optimizing the parameters and weights in a neural network with multiple
hidden layers by the backpropagation algorithm is difficult owing to the vanishing gradient
problem [26]. Thus, we adopted a pretraining procedure so that the autoencoders give weights
that are close to a good solution [27]. Fig 3 shows the procedure. The same update rule and
procedure are also applied to the 9-layer predictive model. Then the fine-tuning procedure was
performed about 5 times to adjust the entire model to the data.

Fig 2. Schematic diagram of an autoencoder. xni corresponds to the ith element of the nth sample. b(j) is the bias in the jth layer. yn(xn;W) = f(W(4)f(W(3)f
(W(2)f(W(1)xn + b(0)) + b(1)) + b(2)) + b(3)) is the output of an autoencoder for a given xn, whereW = {W(4),W(3),W(2),W(1),b(0),b(1),b(2),b(3)}. f is a p-dimensional
sigmoid function, f(a) = [1/(1 + exp(−a1)),. . . 1/(1 + exp(−ap))].

doi:10.1371/journal.pone.0157030.g002
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Model evaluation
The hold-out set in the 6-fold cross validation, which was excluded from all the training stages
was used to evaluate the generalization ability of the models.

Models were repeatedly constructed and evaluated 60 times (6-fold cross validation x 10
times) to obtain the average performance. The number of neurons set in each hidden layer should
be optimized by comparison of the sum of reconstruction errors R(W), where each reconstruction
error is calculated by the subtraction of an output vector yn(xn;W) from an input vector xn:

RðWÞ ¼
XM
m¼1

XN
n¼1

jxnm � ynmj ð4Þ

The prediction capability was evaluated by comparison with the output yn(xn;w) and the
original value in the database xn.

We evaluated the performance of the autoencoders along with that of PCA, commonly used
in dimensionality reduction techniques, by comparing reconstruction errors. In addition, the
predictive performance of the nine-layer model was compared with that of partial least-squares
regression (PLS) [28]. In PLS modeling, the complexity is mainly determined by the number of
latent variables used in the model. The same cross-validation rule and evaluation criteria were
applied in the selection of the parameter of the model.

Note that neural networks do not always converge, or they are sometimes trapped at a local
minimum, providing an anomalous value. Thus, the median of the reconstruction error was
used in the evaluation.

Results

Performance of autoencoder
To find the optimal number of dimensions for each autoencoder, we iteratively conducted a
series of experiments and evaluated the reconstruction error for each model.

Fig 3. Pretraining procedure for autoencoder. The weights of a 5-layer autoencoder (right) are copied from two 3-layer autoencoders (left and middle).

doi:10.1371/journal.pone.0157030.g003
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Fig 4. Mean reconstruction errors in cross validation. A, error of autoencoder for sensory data with respect to the
number of units KS B, error for mass spectra with respect to the number of units KM.

doi:10.1371/journal.pone.0157030.g004
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The number of neurons used in the autoencoder and the number of principal components
used in PCA represent the compression efficiency of dimensionality reduction for each model.
Figs 4 and 5 show the mean reconstruction errors in 10 repetitions of 6-fold cross validation
with respect to the number of neurons in the hidden layers of the autoencoder and the number
of principal components of PCA, respectively. The results obtained are summarized in Tables 1
and 2. While each autoencoder has relatively small reconstruction errors, PCA has a larger
error at each dimension.

As shown in the Fig 5, the reconstruction errors remained about the same above a certain
number of dimensions. To give the predictive model a sufficient margin, 30 dimensions were
applied for the autoencoder for the sensory data(DS) and 45 dimensions were applied for the
autoencoder for the mass spectrum data (DM). The reconstruction errors of the autoencoder
were much smaller than those of PCA.

Performance of predictive model
On the basis of the optimal parameters obtained earlier, we combined 2 autoencoders with a
multilayer perceptron and constructed a nine-layer predictive model based on Fig 1. The
model was tuned with the same training set used to train the autoencoders.

The correlation between predicted values and true values in 10 experiments was then calcu-
lated to evaluate the prediction capability of the model in cross-validation. Fig 6 shows exam-
ples of the results of prediction by each model. As shown in the figure, the odor character
predictions generated by the nine-layer neural model were correlated with human sensory eval-
uation scores with Rffi 0.76 in the cross-validation, while the odor character predictions gener-
ated by the PLS method using a randomly chosen subset of the dataset resulted in a correlation
coefficient about 0.61.

The number of latent variables in the PLS method giving the smallest reconstruction error
was found to be 45 for the testing set of 21 samples. Note that PLS is a linear modeling method

Fig 5. Mean reconstruction errors in cross-validation.Optimal KS (or KM), giving the minimum error for each
DS (or DM) with reference to Fig 4. Error bars indicate standard deviations of testing sample sets. A, error of
autoencoder for sensory data with respect to the number of neurons in the hidden layer and error of PCA for
sensory data with respect to the number of principal components. B, error for mass spectra with respect to the
number of neurons in the hidden layer (in autoencoder) and error with respect to the number of principal
components (in PCA).

doi:10.1371/journal.pone.0157030.g005

Table 1. Number of neurons employed in 9-layer predictivemodel.

Layer number

input KM DM Kp1 Kp2 Kp3 DS KS output

unit 212 85 45 50 55 50 30 65 144

doi:10.1371/journal.pone.0157030.t001

Table 2. Constant coefficients used in updating rule.

Constant Coefficient Value

η 0.4 × 0.99(iteration)

λ 4 × 10−7

α 0.025

Noise (normal random) 0.5 × sqrt(2η)

doi:10.1371/journal.pone.0157030.t002
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Fig 6. Experimental Result. Examples of predictions by two models, which give a value close to the
correlation coefficient for each method. 3024 (= 144 descriptors × 21 samples) data points are plotted in each
Fig A, result for the 9-layer predictive model (Rffi 0.76), B, result for the PLSmodel (Rffi 0.61).

doi:10.1371/journal.pone.0157030.g006

Fig 7. Mean prediction errors of 121 chemical samples. The six most significant six samples (the top 5%) are indicated with the sample
number.

doi:10.1371/journal.pone.0157030.g007

Fig 8. Mean prediction error of dimethylpyrazine (No. 47). The maximum error in the sample was found to have a sensory
normalized value of about 0.3.

doi:10.1371/journal.pone.0157030.g008
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Fig 9. Scatter plots of the result of PCA applied to the original sensory evaluation data. A, first and
second principal components.B, first and third principal components.

doi:10.1371/journal.pone.0157030.g009
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and does not include any probabilistic factors. Thus, the differences among the 60 PLS models
are caused by the sample set used in cross-validation.

Analysis of the prediction result
Analysis of the errors observed in prediction is important to understand the behavior of our
model. The mean prediction error of each sample was calculated to obtain the average errors
observed in repeatedly performed prediction experiments. Fig 7 shows a bar graph of the mean
prediction error for each sample. Dimethylpyrazine (sample number 47) was found to be the
sample with the largest error. Fig 8 shows the prediction error of the samples expanded to all
144 descriptors. The maximum error in the sample was found to have a sensory normalized
value of about 0.30.

To further investigate the errors, we chose the most significant six samples (the top 5%)
from Fig 7 to find the reason for the large prediction error. On the hypothesis that a particular
feature of these six samples prevents them from being predicted precisely, we performed PCA
analysis to investigate the distances between the samples in the sensory spaces formed by the
first and second principal components and by the first and third principal components. Fig 9
shows the scatter diagrams obtained by applying PCA to the original sensory data. As shown in
the figure, the labeled samples are away from the center of the data points in the dependent-
variable space and there are few points from which the projection can be learned. It is well
known that predicting such data away from the central area with a machine learning method is
a very difficult problem. Considering these PCA analyses and the results of comparing two val-
ues, the residual of the nonlinear dimensionality reduction and that of the linear dimensional-
ity reduction, we found that the olfactory perceptual space has a nonlinear structure, which
was difficult to be captured by a linear modeling method.

Discussion and Conclusion
In this paper, we proposed a novel method of predicting how humans feel when they smell a
chemical by an approach based on machine learning. As a result of our analysis, we obtained
the correlation coefficient Rffi 0.76 in cross validation. The results of this study showed that
the odor character of a chemical can be partially predicted from its mass spectrum. Although
odor perception is strongly influenced by a posteriori experience, our results support the idea
of the dependence of the odor of a chemical on its chemical structure. Although only informa-
tion from the mass spectrum was used as explanatory variables in our model, accuracy can be
improved by utilizing other information on the chemical structure (e.g., molecular weight,
functional group).

We also showed the suitability of applying a nonlinear approach towards sensory data on
olfaction. By comparing results obtained with predictive models based on linear and nonlinear
approaches, we experimentally showed that the relationship between physicochemical proper-
ties and olfactory perception is nonlinear. Since a large amount of analysis on sensory data has
been carried out using traditional linear methods, new findings can be expected by using non-
linear methods.

Supporting Information
S1 Table. The list of descriptors.
(DOCX)
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