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Abstract Myocardial infarction (MI) promotes a range of systemic effects, many of which are

unknown. Here, we investigated the alterations associated with MI progression in heart and other

metabolically active tissues (liver, skeletal muscle, and adipose) in a mouse model of MI (induced by

ligating the left ascending coronary artery) and sham-operated mice. We performed a genome-

wide transcriptomic analysis on tissue samples obtained 6- and 24 hr post MI or sham operation. By

generating tissue-specific biological networks, we observed: (1) dysregulation in multiple biological

processes (including immune system, mitochondrial dysfunction, fatty-acid beta-oxidation, and RNA

and protein processing) across multiple tissues post MI and (2) tissue-specific dysregulation in

biological processes in liver and heart post MI. Finally, we validated our findings in two

independent MI cohorts. Overall, our integrative analysis highlighted both common and specific

biological responses to MI across a range of metabolically active tissues.

Introduction
Cardiovascular disease (CVD) is the leading cause of death worldwide, accounting for more than 17

million deaths globally in 2016 (WHO, 2019). Myocardial infarction (MI) is one of the most common

causes of CVD-related death and is the result of severe coronary artery disease that develops from

tapered arteries or chronic blockage of the arteries caused by accumulation of cholesterol or plaque

(atherosclerosis). Many behavioral risk factors (including unhealthy diet, physical inactivity, excessive

use of alcohol, and tobacco consumption), which are responsible for hypertension, obesity, diabetes,

and hyperlipidemia by significantly altering metabolism, are also implicated in MI. These abnormali-

ties are known as the high-risk factors of MI and CVDs in general.

Systems biology has been used in many studies to reveal the underlying molecular mechanisms of

complex human diseases and to answer important biological questions related to the progression,
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diagnosis, and treatment of the diseases. The use of systems biology has aided the discovery of new

therapeutic approaches in multiple diseases (Mardinoglu et al., 2017a; Mardinoglu and Nielsen,

2015; Nielsen, 2017) by identifying novel therapeutic agents and repositioning of existing drugs

(Turanli et al., 2019). Systems biology has also been employed in the identification of novel bio-

markers, characterization of patients, and stratification of heterogenous cancer patients

(Benfeitas et al., 2019; Bidkhori et al., 2018; Lee et al., 2016). Specifically, integrated networks

(INs) (Lee et al., 2016) and co-expression networks (CNs) (Lee et al., 2017) have been proven to be

robust methods for revealing the key driver of metabolic abnormalities, discovering new therapy

strategies, as well as gaining systematic understanding of diseases (Bakhtiarizadeh et al., 2018;

Mukund and Subramaniam, 2017).

Previously, multiple studies in individual tissues have been performed and provided new insights

into the underlying mechanisms of diseases (Pedrotty et al., 2012; Das et al., 2019; Ounzain et al.,

2015; Williams et al., 2018). However, the crosstalk between different tissues and their dysregula-

tion has not been examined in MI and other CVD-related complications (Priest and Tontonoz,

2019). Here, we performed an integrated analysis of heart and other metabolically active tissues

(liver, skeletal muscle and adipose tissue) using a mouse model of MI. We used several systems biol-

ogy approaches to obtain a systematic picture of the metabolic alterations that occur after an MI

(Figure 1A), and validated our findings in two independent datasets.

Results

Differential expression analysis shows a pronounced effect on gene
expression 24 hr post MI
To study global biological alterations and systemic whole-body effects associated with MI, we

obtained heart, liver, skeletal muscle, and white adipose tissue from mice 6 hr and 24 hr after either

an MI (induced by ligating the left ascending coronary artery) or a sham operation (as control). Total

of 20 mice were used in this study (five mice in each time and condition combination) (Figure 1A).

We generated transcriptomics data and identified differentially expressed genes (DEGs) 6 and 24 hr

post MI and sham operation in all tissues, with the most significant differences occurring after 24 hr

(Supplementary file 1, Figure 1B). Principal component analysis (PCA) showed a close clustering

between the control (for both time points) and MI (6 hr and 24 hr separately) samples for heart tissue

but clustering by extraction time points (6 hr and 24 hr clusters) for the other tissues (Figure 1—fig-

ure supplement 1). We present the transcriptional changes associated with MI in

eLife digest The human body is like a state-of-the-art car, where each part must work together

with all the others. When a car breaks down, most of the time the problem is not isolated to only

one part, as it is an interconnected system. Diseases in the human body can also have systemic

effects, so it is important to study their implications throughout the body. Most studies of heart

attacks focus on the direct impact on the heart and the cardiovascular system. Learning more about

how heart attacks affect rest of the body may help scientists identify heart attacks early or create

improved treatments.

Arif and Klevstig et al. show that heart attacks affect the metabolism throughout the body. In the

experiments, mice underwent a procedure that mimics either a heart attack or a fake procedure.

Then, Arif and Klevstig et al. compared the activity of genes in the heart, muscle, liver and fat tissue

of the two groups of mice 6- and 24-hours after the operations. This revealed disruptions in the

immune system, metabolism and the production of proteins. The experiments also showed that

changes in the activity of four important genes are key to these changes. This suggests that this

pattern of changes could be used as a way to identify heart attacks.

The experiments show that heart attacks have important effects throughout the body, especially

on metabolism. These discoveries may help scientists learn more about the underlying biological

processes and develop new treatments that prevent the harmful systemic effects of heart attacks

and boost recovery.
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Supplementary file 1 and the DEGs (FDR < 5%) using an UpSet plot (Lex et al., 2014) in

Figure 1C.

All tissues showed a more pronounced effect in terms of the number of DEGs 24 hr post MI

(Figure 1C). As expected, the most affected tissue was the heart (393 DEGs at 6 hr, 3318 DEGs at

24 hr, and 318 DEGs were the same at both time points). By contrast, 136, 641, and 374 genes were

significantly changed in liver, skeletal muscle and adipose tissues 24 hr post MI compared to control,

respectively. More than 33% of the DEGs that significantly changed in the other tissues also changed

in the heart (Figure 1C). Interestingly, more than 97% of the shared DEGs between heart and skele-

tal muscle changed in the same direction, with corresponding numbers of 88% and 64% in adipose

and liver, respectively.
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 (A) Overview of this study (B) Number of differentially expressed genes for each tissue at each time point. Effect of MI shown to be more 

Figure 1. Study overview and transcriptional changes 24 hours after MI. (A) Overview of this study (B) Number of differentially expressed genes for each

tissue at each time point. Effect of MI shown to be more pronounced after 24 hr. (C) UpSet plot to show intersection between differentially expressed

genes (FDR < 5%) in different tissues. The plot showed that each tissue has its specific set of genes that were affected by MI. (D) KEGG pathway

analysis (FDR < 0.05 in at least three tissues) for 24 hours post MI compared to its control for each tissue. We observed that 141 (5 upregulated) and

125 (14 upregulated) pathways are significantly altered in heart 6 and 24 hr after infarction, respectively. For other tissues, we found that 24 (9

upregulated), 61 (54 upregulated), and 48 (15 upregulated) pathways are altered in liver, muscle, and adipose, respectively.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Data exploration of the samples.

Figure supplement 2. KEGG pathway analysis results for Heart 6- and 24 hr post MI.

Figure supplement 3. KEGG pathway analysis results for each tissue liver, muscle, and adipose tissue 24 hr post MI.

Figure supplement 4. KEGG pathways related to cardiac problems show activation after an MI.
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Functional analysis reveals widespread alterations of mitochondrial,
fatty acid, immune, and protein and RNA-related biological processes
post MI with liver shows contrasting trend
We performed gene-set enrichment analysis (GSEA) with KEGG pathways (Supplementary file 2,

Figure 1D) and gene ontology (GO) biological processes (BPs) (Supplementary file 3, Figure 2A) to

identify altered biological functions and pathways 24 hr after an MI. Mitochondrial functions (specifi-

cally, mitochondrial translation, respiratory chain and oxidative phosphorylation) were significantly

downregulated in the heart, muscle and adipose tissues but not in the liver. Processes related to oxi-

dative stress were upregulated in the heart and skeletal muscle. Fatty acid beta-oxidation was down-

regulated in the heart and adipose but upregulated in the liver. Processes and pathways related to

immune systems were significantly upregulated in the heart and skeletal muscle but significantly

downregulated in liver. Processes associated with protein and RNA processing, ribosome biogenesis
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Figure 2. Gene ontology and reporter metabolites analysis results. (A) Functional analysis with GO (FDR < 0.05% in at least three tissues) revealed that

944 (919 upregulated) and 1019 (970 upregulation) BPs are significantly altered in heart 6 and 24 hr after infarction, respectively. The results also showed

38 (16 upregulated), 376 (357 upregulated), and 193 (116 upregulated) BPs are significantly altered 24 hr after infarction in liver, muscle and adipose,

respectively. Most tissues show significant alterations in multiple biological processes, including mitochondrial functions, RNA processes, cell adhesion,

ribosome, and immune systems. The results of this analysis showed alterations concordant with those observed for KEGG pathways. (B) Reporter

metabolites analysis shows significant alteration in important metabolites. Our analysis revealed that 169, 324, 118, and 51 reporter metabolites are

significantly altered in heart, liver, skeletal muscle and adipose tissues, respectively, at 24 hr post-infarction (Table S4).
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and protein targeting endoplasmic reticulum were upregulated in all tissues except liver, whereas

protein processing in endoplasmic reticulum and RNA transport pathways were upregulated in all

tissues.

We also observed that liver was showing opposite trends compared to the other tissues in other

important functions, such as fatty acid metabolism and immune response. By checking regulation at

the gene level, we observed that only 16 DEGs in liver showed opposite regulation compared to the

other tissues, whereas 97 out of the 136 DEGs in liver were not DEGs in any other tissues

(Supplementary file 4). Therefore, the differences we observed in liver were mainly due to different

DEGs rather than opposite regulation compared to other tissues.

Tissue-specific altered biological functions point to specificity of
metabolic and signaling responses to MI
The functional analysis also indicated that several metabolic pathways (including cholesterol, ascor-

bate and aldarate, linoleic acid, and sphingolipid metabolism pathways) and signaling pathways

(including GnRH, FoxO, cAMP and prolactin signaling pathways) were significantly upregulated in

heart 6 hr after an MI (Supplementary file 2, Figure 1—figure supplement 2). We also observed

significant down regulation of tryptophan metabolism and upregulation of glycosaminoglycan bio-

synthesis in heart 24 hr after an MI (Supplementary file 2, Figure 1—figure supplement 2). Pro-

cesses related to retinol metabolism were upregulated in heart at both timepoints. Pathways that

were previously associated with cardiac hypertrophy and cardiac remodeling (e.g. JAK-STAT, MAPK,

estrogen, and TNF signaling pathways, and ECM-receptor interaction) were significantly upregulated

in heart 6 and 24 hr after an MI (Figure 1—figure supplement 4).

Our analysis also indicated significant metabolic differences in adipose tissue 24 hr after an MI

(Figure 1—figure supplement 3). Fructose and mannose metabolism, glyoxylate and dicarboxylate

metabolism, glycolysis/gluconeogenesis, and pentose phosphate pathways, glycine, serine and thre-

onine metabolism and pyrimidine metabolism, as well as endocrine systems (e.g. insulin signaling

pathway and regulation of lipolysis in adipocytes) were downregulated in adipose tissue.

We observed that the PPAR signaling pathway was upregulated, whereas glutathione was down-

regulated in liver 24 hr post-infarction (Figure 1—figure supplement 3). We found that sphingolipid

metabolism and immune-related pathways were upregulated in skeletal muscle 24 hr post-infarction

(Figure 1—figure supplement 3).

Reporter metabolite analyses show significant alterations in fatty acid,
amino acid, retinol, and estrogen metabolism post MI
To predict the effect of the transcriptional changes on metabolism, we performed reporter metabo-

lite analyses (Supplementary file 5) using the gene-to-metabolites mapping from the Mouse Meta-

bolic Reaction database (Mardinoglu, 2015); results in each tissue 24 hr after MI are shown in

Figure 2B. In agreement with our analyses above, reporter metabolites related to oxidative phos-

phorylation, such as ubiquinol, ubiquinone, NADH and NAD+, were downregulated in all tissues

except liver. Moreover, linolenoyl-CoA, acetyl CoA, and several other fatty acyl-CoA-related metab-

olites were downregulated in heart and adipose tissue but upregulated in liver. We also found that

several 5-S-glutathionyl metabolite forms, known to be related to phenylalanine, tyrosine and trypto-

phan biosynthesis, were downregulated in heart, liver, and skeletal muscle. The same pattern of

downregulation was also observed for metabolites related to estrogen metabolism, specifically

metabolites related to oestrone and its glutathione conjugate derivative. Moreover, 12-keto-LTB4

and 12-oxo-c-LTB3, related to leukotriene metabolism, and hepoxilin A3, an arachidonic acid, were

also found to be downregulated in heart, liver, and skeletal muscle.

The liver showed the highest alteration in reporter metabolites, which is attributed to its role as

one of the most metabolically active tissues. We found that several reporter metabolites related to

retinol metabolism, namely retinal, retinol, retinoate, and all-trans-18-hydroxyretinoic acid, were sig-

nificantly downregulated only in liver tissue. Retinol metabolism has been previously associated with

MI (Lima et al., 2018; Palace et al., 1999).
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Network analyses unveil universal and tissue-specific clusters and
mechanisms post MI
The use of co-expression network (CN) analyses can assist in elucidating the functional relationships

between genes in a specific cell and tissue (Lee et al., 2017). Here, we performed CN analysis to

reveal the functional relationship between the DEGs by generating tissue-specific CNs and selected

highly connected genes (the top 5% positively correlated genes that fulfilled FDR < 0.05) (Table 1).

To better define the structure of the networks, we used the Leiden clustering algorithm

(Traag et al., 2019) by maximizing the modularity scores (Figure 3A–D) and selected the clusters

that include more than 30 genes. Next, we superimposed DEGs 24 hr post-infarction onto the net-

work (Supplementary file 1) and identified the components of the clusters that were affected by an

MI. We also used functional analysis with GO BP and KEGG pathways to understand the specific

functions associated with each cluster by using the Enrichr algorithm (FDR < 0.05) (Chen et al.,

2013; Kuleshov et al., 2016). We summarized the GO BP terms with Revigo (Supplementary file 6;

Supek et al., 2011) and checked the average clustering coefficient to define the centrality of each

cluster (Supplementary file 6; Lee et al., 2017). Among the clusters, we identified the key clusters

as those with the highest average clustering coefficient, allowing us to identify sets of genes whose

time-dependent coordinated changes showed the strongest relationships.

Interestingly, key clusters contained genes with similar functionalities including RNA processing,

transports, and RNA metabolic processes in all tissue-specific CNs (Supplementary file 6). In addi-

tion, we found that the majority of the DEGs associated with those clusters were significantly upre-

gulated. These observations strengthen the findings of the functional analysis above (Figure 2A) and

further highlight how embryonically distinct tissues display similar functional responses to MI, with

the most highly connected groups of genes preserved between different tissues

(Supplementary file 6, Figure 3E).

Community detection reveals tissue-specific clusters post MI
We investigated the tissue specificity of each cluster by performing enrichment analysis with data

from the Mouse Gene Atlas (Su et al., 2004), which involved counting the number of tissue-specific

genes.

The heart network showed the highest number of tissue-specific genes in cluster Heart-3 (302

genes). Based on DEG analysis, we found that 522 genes were downregulated and 192 genes were

upregulated in the cluster. The enriched GO BP terms in the cluster were mitochondrial transport,

protein processing and respiratory chain, cardiac muscle cell action potential, response to muscle

stretch, and heart contraction (Figure 3F). We observed that the results of the KEGG pathway

enrichment analysis were consistent with those obtained from GO BP analysis (Supplementary file

6).

In the liver network, cluster Liver-2 showed the highest tissue specificity (479 genes). In this clus-

ter, we found that 15 genes were significantly downregulated and 17 genes were significantly upre-

gulated. Based on GO BP enrichment analysis, the genes in this cluster were associated with

cholesterol metabolism and homeostasis, lipid transport, glutathione metabolism, lipoprotein

metabolism, and glucose 6-phosphate metabolism (Supplementary file 6). KEGG enrichment analy-

sis also showed that the genes in the cluster were related to retinol, carbohydrate, lipid, and

amino acid metabolism (Supplementary file 6).

The muscle network had two clusters with high tissue specificity: cluster Muscle-4 (276 genes) and

Muscle-5 (143 genes). Muscle-4 showed association with GO BP terms such as mitochondrial trans-

port, protein processing and respiratory chain, response to muscle stretch, and muscle contraction

Table 1. Properties of the co-expression network.

Tissue # of Genes # of Edges # of Clusters Modularity scores

Heart 8793 1570898 7 0.540

Liver 7760 1103589 6 0.577

Muscle 8834 1660603 7 0.521

Adipose 10790 2636378 8 0.495
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(Supplementary file 6). In contrast, the KEGG pathway in this cluster showed relation to glycolysis/

glucogenesis, propanoate metabolism, glyoxylate and dicarboxylate metabolism, and several signal-

ing pathways (e.g. oxytocin, glucagon, cGMP-PKG, and HIF-1) (Supplementary file 6). Muscle-5 was

enriched in GO BP terms associated with protein dephosphorylation, muscle contraction and intra-

cellular protein transport (Supplementary file 6). We also found that insulin, MAPK and Wnt signal-

ing pathways were associated to Muscle-5 from the KEGG enrichment analysis (Supplementary file

6).

The adipose tissue network showed tissue specificity in cluster Adipose-2 (33 genes), which is

associated with GO BP processes including mRNA processing, regulation of mitotic cell cycle phase,

ribosome biogenesis, and viral processes (Supplementary file 6). We observed that the results of

the KEGG pathway enrichment analysis were consistent with those obtained from GO BP analysis,

with additional associations with multiple signaling and regulatory pathways (Supplementary file 6).

Tissue-specific clusters show important tissue-specific changes post MI
To understand the specific behavior of each tissue, we further studied the tissue-specific clusters in

the CNs (Figure 4A). Heart specific cluster, Heart-3, was driven by several central genes including
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Figure 3. Tissue-specific gene co-expression network analyses. (A) Heart co-expression network clusters with superimposed DEGs 24 h post-infarction

(Blue = downregulated, Red = upregulated) marked with the cluster numbers. The edges between the clusters were aggregation of the inter-cluster

edges (B) Liver. (C) Muscle. (D) Adipose. (E) Intersection of the most central clusters in all tissues shows that the central architecture of the network was

conserved in all tissues. We found four sub-clusters within the network intersection. Top 10 most connected genes are marked in black. (F) Enriched GO

BP in heart-specific cluster generated by Revigo.
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Figure 4. Functional analysis of network clusters and hypothesized metabolites flow. (A) Similarity of functions in the most central cluster and specific

functions of each tissue-specific cluster. (B) Functional analysis for each tissue and hypothesized flow of metabolites.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure 4 continued on next page
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Pln, Pde4b, and Atp2a2 (related to regulation of cardiac muscle contraction) and Pdha1 and Vdac1

(related to mitochondrial functions). These genes were also found to be significantly differentially

expressed in heart 24 hr post MI (Supplementary file 1). Genes in the heart-specific cluster were

related to multiple other processes/pathways, for example oxytocin signaling pathway, and several

metabolic pathways (glycogen, inositol phosphate, and purine) (Supplementary file 6).

Mitochondrial dysfunction in the heart leads to disturbance of energy (ATP) production

(Kiyuna et al., 2018; Palaniyandi et al., 2010) and, in the presence of oxygen, to accumulation of

reactive oxygen species (ROS), which can cause oxidative stress. Vdac1, a key gene for regulation of

mitochondria function and one of the central genes in the heart-specific cluster (see above), is signifi-

cantly downregulated in MI (Camara et al., 2017). Vdac1 is located in the outer mitochondrial mem-

brane and is involved directly in cardioprotection (Schwertz et al., 2007) within the cGMP/PKG

pathway (Figure 4—figure supplement 1). In the same pathway, we also observed down-regulation

of the reporter metabolite hydrogen peroxide (Supplementary file 5), a ROS that is related to cardi-

oprotection (Schwertz et al., 2007; Yada et al., 2006). We also observed downregulation of Pdha1,

which is known to have a substantial role in both the HIF-1 signaling pathway and the pyruvate

metabolism pathway that converts pyruvate to acetyl-CoA in the mitochondria (Figure 4—figure

supplement 2). Acetyl-CoA is used in the TCA cycle to produce NADH and FADH2, which are both

needed for ATP production and were downregulated in our reporter metabolite analysis of the

heart. Our findings are thus consistent with dysfunctional mitochondria and ATP production in the

heart in response to an MI. Pdha1 has been also been linked to the heart sensitivity during to ische-

mic stress, where its deficiency can compromise AMP-activated protein kinase activation (Sun et al.,

2016).

In skeletal muscle and adipose tissue, we found that central genes in their respective tissue-spe-

cific clusters related to fatty acid metabolism and lipid metabolism were significantly altered

(Supplementary file 6, Figure 5). In liver-specific cluster, we found that their central genes were

related to fatty-acid beta oxidation (Cyp4a31, Cyp4a32) and glutathione metabolism (Gstm3)

(Supplementary file 6, Figure 5A). Alterations of fatty acid beta-oxidation and glutathione metabo-

lism have previously been reported in non-alcoholic fatty liver disease, a known risk factor of CVD

(Mardinoglu et al., 2017b; Alexander et al., 2019). Moreover, in liver, we also found that retinol

metabolism was uniquely related to genes in the liver-specific cluster, mainly driven by four signifi-

cantly differentially expressed central genes of the clusters, that is Cyp26a1, Cyp4a31, Cyp4a32, and

Hsd17b6 (Supplementary file 6). A previous study showed that mortality from CVD in older individ-

uals was accompanied by impaired liver ability to store retinol (Lima et al., 2018).

Multi-tissue modeling reveals key metabolic pathways affected post MI
To investigate the metabolic responses to MI in and across tissues in the mice, we constructed a

multi-tissue genome-scale metabolic model. The model consisted of five tissue-specific genome

scale metabolic models, namely heart, liver, skeletal muscle, adipose, and small intestine. The small

intestine model (for which we do not have transcriptomic data) was added to include ingestion and

conversion of dietary nutrients into chylomicrons, which are directly secreted into blood and trans-

port lipids to other tissues (Mardinoglu, 2015). The final mouse multi-tissue model included 19,859

reactions, 13,284 metabolites, 7116 genes, and 41 compartments. We predicted the metabolic

fluxes in mice 24 hr after an MI or sham operation by integrating the dietary input, tissue-specific

resting energy expenditure and transcriptomics data.

The modeling showed that oxygen uptake, carbon dioxide production and the oxidative phos-

phorylation pathway in heart, adipose and skeletal muscle were decreased in MI mice, in agreement

with the downregulation of oxidative phosphorylation we observed in these tissues

(Supplementary file 7). By contrast, liver showed slightly increased oxygen uptake, which might be

due to the slightly (not statistically significant) upregulated oxidative phosphorylation

(Supplementary file 7). These findings indicate that the changes in oxygen and carbon dioxide

Figure 4 continued

Figure supplement 1. cGMP-PKG with overlay data from differential expression and reporter metabolites analysis.

Figure supplement 2. HIF-1 signaling pathway with overlay data from differential expression and reporter metabolites analysis.
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Figure 5. Central DEGs in fatty acid and lipid metabolism. (A) Significantly differentially expressed central genes of each tissue-specific cluster to fatty

acid metabolism, as one of the most affected metabolic process. (B) Lipid metabolism. Red = upregulated, blue = downregulated.

Arif, Klevstig, et al. eLife 2021;10:e66921. DOI: https://doi.org/10.7554/eLife.66921 10 of 21

Research article Computational and Systems Biology Medicine

https://doi.org/10.7554/eLife.66921


fluxes and the oxidative phosphorylation pathway could serve as a positive control for predicting the

changes due to MI in the fluxes.

Next, we investigated the tissue-specific metabolic flux changes in the same model

(Supplementary file 7). We found that the pentose phosphate pathway was upregulated in heart 24

hr post MI, consistent with upregulated glucose metabolism after an MI. Elevated glycolysis could

allow the heart to rapidly generate energy under stress conditions, and the enhanced pentose phos-

phate pathway could increase the NADPH level, which could help maintain the level of reduced glu-

tathione in heart (Tran and Wang, 2019). In addition, we observed an increase uptake of alpha-

ketoglutarate (AKG) of heart 24 hr after MI. It has been reported that supplementation of AKG could

prevent heart from ischaemic injury (Kjellman et al., 1995), and the increased uptake of AKG we

observed after MI might be a natural protective metabolic response to MI. Moreover, we found

there is a net lactate metabolic flux coming from liver to heart in the MI group. The influx of lactate

has been reported to be positively correlated with the fraction of regional ejection of heart

(Hattori et al., 1985) and this net flux not only agrees well with the previous report but also addi-

tionally suggested the source of the lactate. We also found that adipose tissue secreted more

ketone bodies, including acetoacetate and butyrate, into plasma; the plasma level of ketone bodies

has been reported as a stress marker in acute MI (Miyamoto et al., 1999). Notably, relatively small

metabolic changes were found in liver and skeletal muscle, which is probably due to the small num-

ber of transcriptomic changes in metabolic pathways in these tissues.

Validating our findings with publicly available datasets
We validated our observations in heart tissue in two independent cohorts of bulk RNA-seq data

from mouse heart (Supplementary file 8). We filtered both validation cohorts to get and analyzed

only 24 hr post-MI data. We found that there were 2169 DEGs from our heart 24 hr post MI data

were validated in at least one of the independent cohorts (959 DEGs validated in both) (Figure 6A).

We also found that 109 out of the 123 most connected genes in our heart-specific cluster were also

significantly differentially expressed in at least one of the independent cohorts (81 in both). By per-

forming functional analysis of the validation cohorts, we found that ~61% of GO BP and 84% of

KEGG pathways identified in our analysis of the heart were also present in at least one of the valida-

tion cohorts 24 hr after infarction (Figure 6B–C). In both cohorts, we observed downregulation of

mitochondrial functions and fatty acid metabolism processes. We also observed upregulation of pro-

cesses and pathways related to retinol metabolism and inflammatory response in both validation

cohorts.

Identification of driver genes in MI
We observed that Flnc, Lgals3, Prkaca, and Pprc1 showed important role to MI. These genes were 4

of 16 genes that were DEGs in at least three tissues and validated in both validation cohorts
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Figure 6. Comparison of our analysis results with the independent validation cohorts. (A) DEGs intersection of our data and validation cohort (B) and

(C) intersection of functional analysis results (GO BP and KEGG Pathways) of our data and validation cohort.
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(Supplementary file 9). Flnc, Lgals3, and Pprc1 were upregulated in heart, skeletal muscle, and adi-

pose, whereas Prkaca was downregulated in these three tissues. We further retrieved their neighbors

at each tissue specific CNs, showed their regulations from differential expression results, and per-

formed functional analysis in Supplementary file 9.

Flnc, which encodes filamin-C, was part of heart and skeletal muscle-specific CN cluster (Figure

S4). Its neighbor genes were found to be significantly (FDR < 0.05) associated to several functions,

including TCA cycle, pyruvate metabolism, glycolysis pathway, and involved in mitochondrial func-

tions. Specifically, they were related to heart-specific processes in heart, VEGF signaling pathway in

muscle, carbohydrate metabolism in adipose, and to MAPK signaling pathway and muscle contrac-

tion in heart and muscle.

Lgals3 (encodes galectin-3) and Prkaca were among the most central genes in central clusters

(Supplementary file 6). The neighbors of Lgals3 were significantly related to cell cycle and protein

digestion and absorption pathway in all tissues, and to RNA and mRNA related-processes in muscle

and adipose tissue. The neighbors of Prkaca were related to insulin signaling pathway in heart and

adipose, and several mitochondrial functions in adipose. Pprc1 was part of most central clusters in

heart and adipose tissue CN, and its neighbors were related to ribosomal RNA processing and ribo-

some biogenesis.

Discussion
CVD has a complex etiology and is responsible for a range of systemic effects, hindering our under-

standing of its consequences on different tissues. Here, we took advantage of the technological

advances in high-throughput RNA-seq and applied integrative network analyses to comprehensively

explore the underlying biological effects of MI. Specifically, we generated RNA-seq data from heart,

liver, skeletal muscle, and adipose tissue obtained from mice 6 and 24 hr after an MI or sham opera-

tion. We used transcriptomics data analyses (differential expression, functional analysis, and reporter

metabolites analysis) to determine the systemic effects of the MI across multiple tissues. Moreover,

we performed CN analyses to pinpoint important key and tissue-specific clusters in each tissue, and

identified the key genes in each cluster. Finally, we used a whole-body modeling approach to iden-

tify the crosstalk between tissues and reveal the global metabolic alterations, before finally validating

our findings with publicly available independent MI cohorts.

Based on our analyses, we observed downregulation of heart-specific functions and upregulation

of lipid metabolism and inflammatory response in heart, muscle, and adipose tissue after an MI

(Figure 4B). Liver showed a distinct response with respect to the other three tissues, including

downregulation of inflammatory response. We observed that fatty acid metabolism was downregu-

lated in heart and adipose tissue, whereas fatty acid beta-oxidation was upregulated and glutathione

metabolism was downregulated in liver. We also observed upregulation of oxidative stress in heart

and skeletal muscle. We also observed downregulation of mitochondrial functions in heart, muscle,

and adipose tissue. Furthermore, we found upregulation of retinol metabolism in heart and downre-

gulation of retinol metabolites in liver (Figure 4B).

We hypothesized that downregulation of fatty acid metabolism from adipose tissue was due to

exchange of fatty acids with other tissues (liver and muscle) (Figure 4B). We also observed the flow

of retinol from liver to heart during MI, consistent with previous reports (Palace et al., 1999). These

MI-associated alterations lead to dysfunctional mitochondria and decreased energy production,

especially in heart and skeletal muscle.

We also validated our results with publicly available MI datasets generated in separate indepen-

dent studies. The validation results strengthened our findings on the altered functions/pathways and

the important heart-specific genes after an MI.

Importantly, our analyses of gene clusters highlighted multiple key genes in the response to MI in

different tissues. Specifically, we observed that Flnc, Prkaca, Lgals3, and Pprc1 showed important

responses in heart, skeletal muscle, and adipose tissue. Flnc is involved in actin cytoskeleton organi-

zation in heart and skeletal muscle, and previous studies have shown that this gene has critical role

in CVD (Zhou et al., 2020; Hall et al., 2020). Similarly, Prkaca, an important metabolic gene, has

also been shown to play an important function during CVD (Diviani et al., 2011; Turnham and

Scott, 2016; Bers, 2008). Lgals3, related to acute inflammation response, has been studied inten-

sively in recent years as a key gene in CVD, and as a potential CVD therapy target (Zhong et al.,
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2019; Suthahar et al., 2018). Lastly, Pprc1, as important regulator of mitochondrial biogenesis, has

not been explored for its direct relationship with CVD; however, mitochondrial biogenesis appears

to be an important response to CVD (Ren et al., 2010; Siasos et al., 2018; Piantadosi and Suliman,

2012).

We recognized several limitations to be noted on this research. First, only transcriptomic data

was analyzed in this research, hence the sensitivity might be limited especially for short timepoint,

for example 6 hr after MI. Second, we focused our analysis in this research only on protein-coding

genes. Third, to explore more about the shift in metabolism due to MI, longer timepoints needs to

be explored. This opens new opportunities for future research, including analyzing the non-protein-

coding gene signatures and longer timepoints.

In summary, we systematically unveiled the deregulation of biological processes and pathways

that resulted from MI in heart, liver, muscle, and adipose tissue by integrating transcriptomic data

and the use of biological networks. We also identified the key clusters and central genes using gen-

erated tissue-specific CNs. In this study, we demonstrated a strategy to utilize multi-tissue transcrip-

tomic data to identify alteration of biological processes and pathways to systemically explore the

effect of a disease.

Materials and methods

Key resources table

Reagent type
(species) or resource Designation Source or reference Identifiers Additional information

Commercial
assay or kit

RNeasy Fibrous
Tissue Mini Kit

Qiagen Heart and Skeletal
Muscle Tissue

Commercial
assay or kit

RNeasy Mini Kit Qiagen Liver Tissue

Commercial
assay or kit

RNeasy Lipid
Tissue Mini Kit

Qiagen Adipose Tissue

Commercial
assay or kit

cDNA Reverse
Transcription Kit

Applied Biosystems

Commercial
assay or kit

TaqMan real-time PCR in
a ViiA seven system

Applied Biosystems

Commercial
assay or kit

NovaSeq6000 Illumina

Software, algorithm NovaSeq Control
Software 1.6.0/RNA v3.4.4

Illumina

Software, algorithm CASAVA Software Suite Illumina

Software, algorithm Kallisto RRID:SCR_016582

Software, algorithm Python 3.7 Python
Programming Language

RRID:SCR_008394

Software, algorithm sklearn Python Package RRID:SCR_019053

Software, algorithm R R Project for
Statistical Computing

RRID:SCR_001905

Software, algorithm Rpy2 Python Package https://rpy2.github.io/

Software, algorithm DESeq2 R Package RRID:SCR_015687

Software, algorithm PIANO R Package RRID:SCR_003200

Software, algorithm SciPy Python Package RRID:SCR_008058

Software, algorithm Statsmodel Python Package RRID:SCR_016074

Software, algorithm iGraph Python Package RRID:SCR_019225

Software, algorithm Leiden Clustering Python Package https://github.com/
vtraag/leidenalg

Software, algorithm Matlab Mathworks RRID:SCR_001622
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Induction of MI
Ten-week-old male C57Bl/6N mice were fasted for 4 hr before induction of myocardial infarction.

The mice were then anesthetized with isoflurane, orally intubated, and connected to a small-animal

ventilator (SAR-830, Geneq, Montreal, Canada) distributing a mixture of oxygen, air and 2–3% iso-

flurane. ECG electrodes were placed on the extremities, and cardiac rhythm was monitored during

surgery. An incision was made between the 4th and 5th ribs to reveal the upper part of the anterior

left ventricle (LV) wall and the lower part of the left atrium. Myocardial infarction was induced by

ligating the left anterior descending (LAD) coronary artery immediately after the bifurcation of the

left coronary artery 1. The efficacy of the procedure was immediately verified by characteristic ECG

changes, and akinesis of the LV anterior wall. After verification of the infarction, the lungs were

hyperinflated, positive end-expiratory pressure was applied, and the chest was closed. Sham mice

were handled identically (fasted, anesthetized, intubated, and connected to ventilator, and subse-

quently incised between 4th and 5th ribs), but no ligation of the LAD coronary artery was performed

(and thus, no ischemia was induced in these mice). The mice received an intraperitoneal injection of

0.1 ml buprenorphine to relieve postoperative pain and were allowed to recover spontaneously after

stopping isoflurane administration. Mice were killed with an overdose of isoflurane 6 hr or 24 hr after

occlusion or sham operation. We collected the left ventricle (the whole left ventricle containing

mainly infarcted tissue) of the heart, whereas white adipose tissue (WAT) was collected from the

abdomen and musculus soleus was taken as the muscle tissue. Mouse hearts and biopsies from the

liver, muscle and WAT were snap-frozen in liquid nitrogen and stored at �80˚C until analysis. All

mice studies were approved by the local animal ethics committee and conform to the guidelines

from Directive 2010/63/EU of the European Parliament on the protection of animals used for scien-

tific purposes.

Echocardiography in mice
Echocardiographic examination, using VisualSonics VEVO 2100 system (VisualSonics Inc, Ontario,

Canada), which includes an integrated rail system for consistent positioning of the ultrasound probe

was performed 6 and 24 hr after an MI to determine the size of the MI. We calculated infarct size

based on wall motion score index (WMSI) 24 hr after myocardial infarction by a 16-segments model

on three short axis images, as 0 for normal, ½ for reduced wall thickening and excursion in a seg-

ment and one for no wall thickening and excursion in a segment. WMSI was calculated as the sum of

scores divided by the total number of segments. Hair removal gel was applied to isofluorane-anes-

thetized (1.2%) mice chest to minimize resistance to ultrasonic beam transmission. The mice were

then placed on a heating pad and extremities were connected to an ECG. A 55 MHz linear trans-

ducer (MS550D) was used for imaging. An optimal parasternal long axis (LAX) cine loop of >1000

frames/s was acquired using the ECG-gated kilohertz visualization technique. Parasternal short axis

cine-loops were acquired at 1, 3, and 5 mm below the mitral annulus. Infarct size was calculated

based on wall motion score index 6 and 24 hr after myocardial infarction by a 16-segments model

on LAX and three short axis images view, as 0 for normal, ½ for reduced wall thickening and excur-

sion in a segment and one for no wall thickening and excursion in a segment. The data were evalu-

ated using VevoStrain software system (VisualSonics Inc, Ontario, Canada).

RNA extraction and sequencing
Total RNA was isolated from snap-frozen tissues using RNeasy Fibrous Tissue Mini Kit (Qiagen) for

heart and skeletal muscle, RNeasy Mini Kit (Qiagen) for liver, or RNeasy Lipid Tissue Mini Kit (Qia-

gen) for adipose tissue. cDNA was synthesized with the high-capacity cDNA Reverse Transcription

Kit (Applied Biosystems) and random primers. mRNA expression of genes of interest was analyzed

with TaqMan real-time PCR in a ViiA seven system (Applied Biosystems). RNA sequencing library

were prepared with Illumina RNA-Seq with Poly-A selections. Subsequently, the libraries were

sequenced on NovaSeq6000 (NovaSeq Control Software 1.6.0/RNA v3.4.4) with a 2 � 51 setup

using ‘NovaSeqXp’ workflow in ‘S1’ mode flow cell. The Bcl was converted to FastQ by

bcl2fastq_v2.19.1.403 from CASAVA software suite (Sanger/phred33/Illumina 1.8 + quality scale).
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RNA-sequencing data analysis
The raw RNA-sequencing results were processed using Kallisto (Bray et al., 2016) with index file

generated from the Ensembl mouse reference genome (Release-96) (Zerbino et al., 2018). The out-

put from Kallisto, both estimated count and TPM (Trancript per kilobase million), were subsequently

mapped to gene using the mapping file retrieved from Ensembl BioMart website, by filtering only

protein coding genes and transcripts. Genes with mean expression less than 1 TPM in each condition

were filtered. For data exploration, we used PCA from sklearn package (Pedregosa, 2011) in Python

3.7 and used TPM values as the input.

Subsequently, we performed differential gene expression analysis using DESeq2 (Love et al.,

2014) package in R. We utilized the capabilities from DESeq2 to normalize the rounded estimated

count data and to correct for confounding factors (such as time). To define a gene as differentially

expressed (DEGs), a gene has to fulfill a criterion of FDR < 5%. The results of differential expression

analysis were then used for functional analysis.

We checked the tissue specificity of the DEGs in each tissue with the data from Mouse Gene Atlas

(Su et al., 2004). For all the tissue-specific genes, we also checked their human-homolog genes in

the human secretome database (Uhlén et al., 2019).

Functional analysis
We performed functional analysis using the R package PIANO (Väremo et al., 2013). As the input,

we used the fold changes and p-values from the DESeq2, and also GO BP and KEGG pathways

gene-set collections from Enrichr (Chen et al., 2013; Kuleshov et al., 2016), and metabolites from

Mouse Metabolic Reaction database (Mardinoglu, 2015). To define a process or pathway as signifi-

cant, we used a cut off of FDR < 5% for the distinct direction of PIANO (both up and down).

Co-expression network generation
We generated the co-expression network by generating gene-gene Spearman correlation ranks

within a tissue type, using spearmanr function from SciPy (Jones et al., 2001) in Python 3.7. Using

the same environment, we performed multiple hypothesis testing using Benjamini-Hochberg method

from statsmodels (Perktold et al., 2017). Correlation data were filtered with criterion of adjusted

p-value<5%.

The top 5% of filtered correlation results were then loaded into iGraph module (Csardi and

Nepusz, 2006) in Python 3.7 as an unweighted network. To find the subnetworks, we employed the

Leiden clustering algorithm (Traag et al., 2019) with ModularityVertexPartition method. Each cluster

was analyzed by using Enrichr (Chen et al., 2013; Kuleshov et al., 2016) to get the enriched GO BP

and KEGG pathways. Criterion FDR < 0.05 were used to find the significantly enriched terms. Clus-

ters with less than 30 genes were discarded, to be able to get significant functional analysis results.

Since GO BP was relatively sparse, we used Revigo (Supek et al., 2011) to summarize the GO BP

into a higher level. Revigo was further employed to build a GO BP network. Clustering coefficient

was calculated based on the average local clustering coefficient function within iGraph.

Multi-tissue metabolic modeling
We combined tissue-specific models (of heart, liver, muscle, adipose and small intestine) constructed

previously (Mardinoglu, 2015) in a multi-tissue model by adding an additional compartment repre-

senting the plasma, which allows the exchange of metabolites among different tissues. Blocked reac-

tions that could not carry fluxes (and the unused metabolites and genes linked to these reactions)

were removed from the models. In addition, the dietary input reactions and constraints were added

to the small intestine model to simulate the food intake (Supplementary file 7). Specifically, we

assumed that the mice weighed 30 g and consumed 4.5 g chow diet per day (15 g/100 g body

weight) based on a previous study (Kummitha et al., 2014). We also calculated the tissue-specific

resting energy expenditures and set them as mandatory metabolic constraints based on previous

studies and resting energy expenditure for other tissues was incorporated by including a mandatory

glucose secretion flux out from the system with the lower bound calculated based on ATP

(Supplementary file 7; Kummitha et al., 2014).

To simulate the metabolic flux distribution in the sham-operated mice, we set the lipid droplet

accumulation reaction in adipose tissue (m3_Adipose_LD_pool) as the objective function as we
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assume the energy additional to the resting energy expenditure will be mostly stored as fat rather

than used by the muscle for physical activities because mice raised in the cages might have very little

exercise. Then, we used parsimonious FBA to calculate the flux distribution. To simulate the flux dis-

tribution after an MI, we calculated an expected flux fold change of each reaction based on the FDR

and expression fold changes of all genes associated with the reaction, and obtains a flux distribution

that is closest to this expected flux distribution while satisfying the stoichiometric balance and flux

constraints of the model. The mathematical formulation of the method is described as below,

minimizeZ ¼
i

X

vi� v
exp
i

�

�

�

�

s:t:S � v¼ 0

lb� v� ub

where S, v, lb, ub represent the stoichiometric matrix, flux distribution, lower bound and upper

bound of all reactions, respectively. The v
exp
i represents the expected flux of ith reaction which is cal-

culated as follows,

v
exp
i ¼ v

ref
i �

ffiffi

½
p

m�
Y

m

j¼1

FCj

where n is the number of gene sets that could independently catalyze the corresponding reaction,

and FCj represents the expected expression changes of jth gene set which is calculated below,

FCj ¼ 1�P1ð Þ � fc1 þP1 1�P2ð Þ � fc2 þ� � �þ
Y

m�1

k¼1

Pk 1�Pnð Þ � fcn

where m is the number of genes in the ith gene sets, and Pj and fcj respectively represents the FDR

and fold change of gene expression with jth smallest fold change in this gene set. In this way, genes

with lowest fold change will have a dominating effect within a gene set encoding a protein complex,

while the geometric mean of expected fold changes of gene sets encoding different isozymes of this

reaction will be used as the final expected flux fold change of this reaction.

Validation of the results
We validated our findings by performing similar steps of RNA sequencing and functional analysis for

the publicly available mouse MI datasets GSE104187 and GSE52313 (Ounzain et al., 2015;

Williams et al., 2018).

Data and code availability
All raw RNA-sequencing data generated from this study can be accessed through accession number

GSE153485. Codes used during the analysis are available on https://github.com/sysmedicine/ArifE-

tAll_2020_MultiTissueMI (copy archeived at swh:1:rev:e79df3ef069674c1344c096ef6-

b011e771cf506b; Arif, 2021).
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