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Cooperation in spatial public good 
games depends on the locality 
effects of game, adaptation, 
and punishment
Isamu Okada  1,2*, Hitoshi Yamamoto  3, Eizo Akiyama  4 & Fujio Toriumi  5 

Despite intensive studies on the evolution of cooperation in spatial public goods games, there have 
been few investigations into locality effects in interaction games, adaptation, and punishment. Here 
we analyze locality effects using an agent-based model of a regular graph. Our simulation shows that a 
situation containing a local game, local punishment, and global adaptation leads to the most robustly 
cooperative regime. Further, we show an interesting feature in local punishment. Previous studies 
showed that a local game and global adaptation are likely to generate cooperation. However, they 
did not consider punishment. We show that if local punishment is introduced in spatial public goods 
games, a situation satisfying either local game or local adaptation is likely to generate cooperation. 
We thus propose two principles. One is if interactions in games can be restricted locally, it is likely to 
generate cooperation independent of the interaction situations on punishment and adaptation. The 
other is if the games must be played globally, a cooperative regime requires both local punishment 
and local adaptation.

Even before it was selected as one of twenty-five big questions facing science in 20051, numerous studies had 
tackled the fundamental puzzle of how cooperative behavior evolved. As a result of these academic efforts, several 
rationally understandable mechanisms have been proposed including kin-selection2, reciprocity3, structures4, 
and incentives5. However, many questions remain unanswered about the evolution of cooperation. Here, we 
focus on the combination problem between structures and incentives.

A public goods game (PGG)6,7 is a challenging social dilemma to resolve due to free riding issues, and thus 
has been dealt with in many theoretical studies. In this game, many players choose how many of their private 
tokens to put into a public pot, and all players equally receive the benefit (public good) made up of the tokens, 
irrespective of how many tokens they each put in. This game is regarded as an excellent analogy for numerous 
real-world issues including environmental protection, blood donation, and resource acquisition. Theory says 
that rationality in a situation without any specific conditions supports free-riding, and thus intensive studies 
have been exploring many types of conditions for generating and maintaining cooperation.

Although many analyses assume PGGs with well-mixed infinite populations because they are easy to 
analyze8,9, such homogeneity may not reflect real-world situations. Therefore, there have been many studies 
on special PGGs considering such a locality. In a review of spatial PGGs4, the results depended on not only the 
static structure but also group selection10, temporal network11–13, and population size14. When spatial structures 
are introduced into PGGs, players are more likely to cooperate, which is known as network reciprocity15. Many 
papers suggest that a heterogeneous network brings about cooperation in PGGs16,17 while a few papers show 
negative results18–21.

Although many studies have analyzed spatial PGGs, they almost all consider interactions of the players 
playing the games, and thus few papers have considered the locality of adaptive processes. For example, the 
players correspond their learning objects to their game partners. In another case, they learn from all players 
despite playing a spatial PGG. Some papers analyze this point14,22, but none has shown a case maintaining high 
cooperation in spatial PGGs.
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Punishment is regarded as an excellent incentive for maintaining cooperation in PGGs, and thus it has 
been tested in not only theoretical analysis using evolutionary games23–25 but also empirical studies in social 
psychology12,19,26,27. A punishment system can be introduced into PGGs in several ways. The typical punish-
ment system is peer-punishment, in which non-contributors in a PGG are punished by the other players5,28,29. 
Peer-punishment itself is also a kind of public good, and thus a theoretical analysis has shown that such a peer-
punishment system is evolutionary unstable5,30. To overcome this instability, a pool punishment system was 
proposed30, in which punishment costs for maintaining an institutional punishment system (a police officer) 
must be paid before playing the game, and two types of players (non-cooperators in the PGG and free-riders for 
punishment costs) are punished by the system. However, several studies have found that the pool-punishment 
system is inefficient because players must pay the cost even if the non-cooperators are eliminated31–33. The conflict 
between peer punishment and pool punishment continues because of a trade-off between stability and efficiency.

While theoretical studies on punishment introduced in spatial PGGs reveal that it is likely to lead to 
cooperation34, almost all previous studies assume that peer-punishment is allowed among game partners35–38. 
Therefore, few studies have analyzed cases in which the punishment scope is independent of the interaction 
scope of the game.

Since there has been no systematic analysis of whether the scope of the interaction is global or local, it is 
not unnatural that the interaction scope of the game does not match that of the learning target or the scope of 
peer-punishment. Here, we analyze the locality effects of interactions in games, adaptation, and punishment in 
spatial PGGs. To do so, we analyze a model of players located on a regular network using agent-based simula-
tions. Our model focuses on the locality effects using expected payoffs rather than actual payoffs. In general, 
the impact of randomness should be carefully considered when adopting an agent-based model. Including the 
adaptation process in an agent-based model often requires two time scales: play time and adaptation time. One 
period of adaptation often consists of millions of game plays, as players need to accumulate payoffs by playing 
multiple times to minimize the negative effects of randomness. Since the purpose of this study is to clarify the 
effect of locality, we believe that maximally eliminating the effect of randomness will clearly show the simula-
tion results using the expected payoff. Our model uses randomness only when selecting the target player in the 
adaptation process.

Methods
First, we define four types of players in the model: cooperative punisher (CP), cooperative non-punisher (CN), 
non-cooperative punisher (DP), and non-cooperative non-punisher (DN). A cooperator always contributes 
when playing a PGG while a non-cooperator never does. We do not consider any type of error in this version. A 
punisher always punishes non-cooperators when the punisher sees them while a non-punisher never does. We 
do not consider anti-social punishment12,39 in this version.

To simply express the three types of locality, N players are located on a one-dimensional regular graph of 
degree 2. To consider the locality of each player, one’s neighbors are defined as players within n/2 hops excluding 
oneself. Note that n should be an even number. For example, if n = 4 , every player recognizes one’s neighbors 
as (1) two players directly connected to oneself and (2) two more players directly connected to those directly 
connected to oneself. Compared with a scale-free network or a small-world network, all players in our model 
maintain the network’s homogeneity.

We explain how to introduce three types of locality with respect to interactions in the game, adaptation, and 
punishment. In the interaction in the game, first, we introduce a parameter, g ∈ [0, 1] . We assume this param-
eter to be the degree of social (im)mobility. All players play a PGG with n+ 1 players including oneself. The 
other members are randomly chosen from the two pools of players: a pool consisting of one’s n neighbors and 
a pool consisting of all N − 1 players. The ratio of the quantity (we allow non-integer numbers) chosen from 
each pool is g : 1− g . Second, we introduce a parameter, p ∈ [0, 1] for dealing with a locality of punishment. 
With a probability, p, a player (if one is a punisher) looks at n players that are randomly chosen among all N − 1 
players excluding oneself and punishes non-cooperators among those n players. Otherwise, the player looks 
at n neighbors and punishes non-cooperators among them. Finally, we introduce a parameter, a ∈ [0, 1] . With 
a probability, a, a player chooses a target player for one’s learning among all N − 1 players excluding oneself. 
Otherwise, the player chooses a target player among one’s n neighbors.

When playing a PGG, if a player gives a token to a public pod, one must pay a cost, c. Otherwise, no cost is 
paid. A benefit of a token is set to b, and thus if the number of contributors in a game is nc while the number of 
all players of the game is na , then each player is given bnc/na as one’s benefit. After playing a PGG, all punishers 
are given an opportunity to punish. If player X punishes player Y, Y loses f as a fine while X pays s as a sanction 
for the punishment.

Following the law of large numbers, each player’s payoff per game playing over a sufficiently long time cor-
responds to the expected value, and thus we use one’s expected payoff. Therefore, player i’s payoff of each type 
is defined as

(1)�CP
i = πCi − πPi

(2)�CN
i = πCi

(3)�DP
i = πDi − πPi − πFi
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where

and N−i
C  , niC , N−i

P  , and niP are respectively the ratio of cooperators among all N − 1 players excluding oneself (i), 
the ratio of cooperators among player i’s neighbors, the ratio of punishers among all N − 1 players excluding 
oneself (i), and the ratio of punishers among player i’s neighbors.

Every player has a chance to update one’s type through an adaptation process. In the process, every player (X) 
chooses another player (Y) using the selection rule explained in the part of the definition of a. We assume that 
all players simultaneously have an opportunity to revise their types, and we refer to the period until the end of 
this adaptation as a generation. Player X changes one’s strategy to Y’s if and only if Y’s payoff is greater than X’s. 
Moreover, we introduce a mutation rate, µ , to keep the diversity of player types. With a probability, µ , an agent 
uses one of four types randomly in each adaptive process.

In each simulation, the parameters on locality (g, p, a) are given as constants. In an initial setting of a simula-
tion, all players on a regular graph are set to one of the four types randomly. Then each player’s expected payoff 
is calculated and their types are updated in the adaptation process. This procedure is repeated and the perfor-
mances are observed.

Results
Our simulation shows the locality effects on cooperation. In Fig. 1, it is clear that the more local the game, the 
more cooperative the regime. Among three elements, this effect matters. This is because when g = 0 , all cases 
maintain cooperative regimes regardless of the values of the other two parameters (p, a). Moreover, when g = 0.5 
or more, all cases except for p = 0 collapse the cooperative regimes. Second, considering the values of p, the 
regime changes drastically depending on whether p is almost zero or not (see Fig. S1 in Supplementary Informa-
tion). When p = 0 , it is possible to maintain cooperation even if g is large. Otherwise, the cooperative regime 
requires g to be small. Finally, we consider the parameter a. We must split it into two cases: g is almost zero or 
not (see Fig. S2 in Supplementary Information). If g = 0 , the greater the value of a, the more cooperative the 
regime. On the other hand, if at least g ≥ 0.25 , the greater the value of a, the less cooperative the regime. This 
result suggests a needs to be analyzed in more detail.

(4)�DN
i = πDi − πFi

(5)πCi = b[n{gN−i
C + (1− g)niC} + 1]/(n+ 1)− c

(6)πDi = bn{gN−i
C + (1− g)niC}/(n+ 1)

(7)πPi = s{p(1− N−i
C )+ (1− p)(1− niC)}

(8)πFi = f {pN−i
P + (1− p)niP}

Figure 1.   Average cooperation rates in 100 trails after 100 generations. From the left, each panel is a case of 
p = 0, 0.25, 0.5, 0.75, 1 , respectively. In each panel, the horizontal and vertical axes represent the values of a and 
g, respectively. The panel is a heat map, and the values shown are the average cooperation rates. Parameters are 
(N , n) = (100, 4) , (b, c, f , s) = (2, 1, 6, 3) , and µ = 1% . This image is made by using Python 3.7.2 (www.​python.​
org).

http://www.python.org
http://www.python.org
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Figure 2 shows transitions on players’ strategies in specific cases. First is panel (a). The CP players assigned 
randomly in the initial state are soon eliminated by the CN players, as taught in standard game theory (punish-
ing itself is regarded as a public good). However, the CN players who dominate the population temporally are 
also beaten out by the perfect free riders (DN) within most 30 generations. This result is consistent with many 
previous papers showing that neither punishment nor cooperation works in a well-mixed population without 
an interaction structure40. Panel (b) shows a different case but corresponds to panel (a) qualitatively while its 
transition speed is slower. Even if the locality of adaptation is completely executed, it is not likely to generate 
cooperation when the locality of the game and punishment is insufficient. This result indicates that two local 
interaction structures in game and punishment are necessary to maintain cooperative regimes.

Panels (c) and (d) are the cases of (g , p) = (0, 0) , which means there is a strong locality for both the game and 
the punishment. Both panels have a vertically-striped pattern of CP and CN that reflects the trait of locality. Due 
to this trait, the alliance between CPs is possible, and thus the presence of CPs prevents defectors (both DP and 
DN) from invading. We consider the reason a DN cannot spread in a population of CNs to be that interaction 
partners of the two neighbor players do not completely correspond. Let us consider the case of “C C C C D D D” 
where n = 4 . The third player is CN and one’s neighbors are CCCD, and thus the expected payoff is 4b/5− c . 
The fifth player is DN and one’s neighbors are CCDD, and thus the expected payoff is 2b/5. The payoff of the third 
player is greater than that of the fifth if 2b > 5c . This is why if the fifth player chooses the third in an adaptation 
process, it is possible to change from D to C.

Comparing these two cases, panel (d) is more robust than panel (c) because DN mutants more easily spread 
in (c) than in (d). This mechanism is related to an interaction scope with respect to learning. If the learning 
scope is narrow ((c) a = 0 ), free riding by a DN player attracts the attention of its neighbors and thus it helps 
DN spreading. Otherwise ((d) a = 1 ), free riding by a DN player decreases its neighbor’s payoffs, and thus a far 
player surrounded by cooperators attracts attention. Therefore, a global adaptation process is effective if a regime 
is cooperative. This reasoning is consistent with Fig. 1.

When we look at panel (e), it is easy to understand that the locality of game size is essential to keep coopera-
tive regimes. Comparing it with panel (c), the group size of DN can easily become big. This is because a free 
rider barely affects its neighbor’s payoffs, and thus its local adaptation process chooses such a free rider. How-
ever, such free riders may go extinct sooner or later because the local punishment ( p = 0 ) works. If a CP player 
and a DN player are placed adjacently, the DN player is directly punished by the CP player while the defection 
barely affects the CP player, and thus CP can invade the population of DN players. Comparing it with the case 
of (g , p, a) = (1, 1, 0) in Fig. 1, such a local punishment is necessary to maintain cooperative regimes.

Next, we consider the effect of the locality of punishment using panel (f). When there is no locality with 
respect to punishment ( p = 1 ), punishers make much effort to punish all defectors of the population. That is 
why the population of punishers tends to diminish except for the mutation process. Such a cooperative regime 
is very fragile. In the case of (g , p, a) = (0, 1, 0) in Fig. 1 and Fig. S3 in Supplementary Information, 8% of the 
players are defectors on average. However, if a regime is cooperative, a global adaptation works for maintaining 
the regime. Suppressing defectors decreases the opportunity to destroy a cooperative regime.

Finally, we analyze the effect of the adaptation process when g > 0 using panel (g). Comparing it with panel 
(c), the colony size of DN tends to grow due to the weak locality in the game, as previously discussed in the 
case of panel (e). This tendency and the global adaptation process help to imitate defectors because defectors 
gain greater payoffs than cooperators generally. As a result, cooperative regimes can collapse or be maintained 
due to randomness. If a player chooses a neighbor, the cooperative regime can be maintained. In contrast, if a 
player selects a distant player and the distant player adopts a DN strategy, the regime collapses. See Fig. S4 in SI 
for more information. This result suggests an interesting feature in the adaptation process. When the coopera-
tive regime is basically maintained, the global adaptation process spreads the well-behaved CP in the regime. 
On the other hand, if the cooperative regimes are fragile, the global adaptation process helps the selfish DNs to 
expand in the regime.

To sum up the results, the case most likely to generate cooperation is (g , p, a) = (0, 0, 1) (panel (d) in Fig. 2). 
Defectors are likely to invade if the locality of the game loosens (panel (e)), while punishers become rare if the 
locality of the punishment loosens (panel (f)). If those two localities can maintain cooperative regimes, the 
globality of adaptation can increase their robustness.

Discussion
We conducted agent-based simulations to analyze the effects of the degree of locality on interactions of the game, 
punishment, and adaptive process in the evolution of cooperation in spatial PGGs. Our exhaustive analysis 
clarifies what features of those three locality effects are likely to generate cooperation. Roughly speaking, if an 
interaction of games can be restricted locally, it is likely to generate cooperation independent of the interaction 
situations in punishment and adaptation. If the games are played globally, a cooperative regime requires both 
local punishment and local adaptation.

Our simulation shows an interesting feature in local punishment. Previous studies showed that local game and 
global adaptation are likely to generate cooperation14,22. However, they did not consider punishment. We show 
that if the local punishment is introduced, a situation satisfying either local game or local adaptation is likely to 
generate cooperation. Cooperative behavior in PGGs and punishing behavior in punishment systems are both 
tools for maintaining cooperation. If both fail, cooperation will collapse. Cooperation can be maintained more 
robustly with two tools than with only one.

In general, punishment systems are effective for maintaining cooperation in PGGs. However, according to 
our analysis, the local interactions in game and punishment are likely to generate cooperation. This reaffirms 
that punishment as well as games has the nature of a public good. Moreover, punishment is a more naive public 
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Figure 2.   Transition diagram of strategy in 100 generation. From the top, each row is a case of different values of (g, p, a): (a) 
(1, 1, 1), (b) (0.5, 0.25, 0), (c) (0, 0, 0), (d) (0, 0, 1), (e) (1, 0, 0), (f) (0, 1, 0) and (g) (0.5, 0, 0.5). In each row, 4 trials are shown 
with different random seeds on the same parameter set. In each panel, all 100 agents are in a queue of a row. The horizontal 
axis corresponds to agent’s id. Agents with consecutive numbers are next to each other on the regular network. For example, 
the agents next to an agent having id = 24 are id = 23 and id = 25 . Agents of id = 99 and id = 0 are next to each other. 
In each graph, the lowest row shows their strategies at the first generation. Also, the second row shows those at the second 
generation, while the most top row shows those at the 100-th generation. An agent whose strategy is CP is colored in light 
blue, CN in pink, DP in red, and DN in dark blue. Parameters are (N , n) = (100, 4) , (b, c, f , s) = (2, 1, 6, 3) , and µ = 1% . 
This image is made by using Python 3.7.2 (www.​python.​org).

http://www.python.org
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good, and if the effects of punishment are attenuated by globality, punishment cannot be used to curb surround-
ing defectors and is more likely to be eliminated.

While we clarify the effects of local punishment on the cooperation, we must consider a way to enhance 
punishment behaviors as a public good. Cong et al.(2017) simulated a case in which punishers were allowed to 
have a runaway option if many defectors were in their neighbors. According to their results, such an option helps 
the adaptive survival of punishers. While the current version of our model does not give a player the freedom 
to move, such an extension should be analyzed in future work.

This study has possible extensions. A comprehensive analysis is required to determine the cost-benefit effects 
of games, the efficiency of punishment, and the cost ratio of cooperation and punishment. For example, if the cost 
of punishment and fines are relatively high, a cooperative regime may be able to be maintained with only a few 
punishers who can come in via mutations. In the current version, our model uses a regular graph to eliminate 
network heterogeneity. We estimate that the current results may be sensitive to and dependent on the network 
structure, and thus we are also interested in the performance in island models and other heterogeneous network 
structures.

This paper simulates an extremely limited version of the network structure, so the robustness of the results 
should be carefully considered. In future works, the model should be extended to 2-dimentional networks such 
as square lattices. The stochasticity in a payoff, which is absent due to the setting of expected payoff in the current 
version, can also be considered. Population size is not expected to affect cooperation. Rather, we presume that 
the network structure and the size of the neighborhood are especially important factors for the regime. Future 
work will investigate the validity of our estimate.

Received: 23 January 2021; Accepted: 18 March 2021
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