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Abstract 

Bone metastasis occurs when tumour cells dissociate from primary tumours, enter the circulation (circulating tumour 
cells, CTCs), and colonize sites in bone (disseminated tumour cells, DTCs). The bone marrow seems to be a particularly 
dormancy-inducing environment for DTCs, yet the mechanisms of dormancy initiation, reactivation, and interaction 
within the bone marrow have to be elucidated. Intriguingly, some evidence has suggested that dormancy is a revers-
ible state that is switched ‘on’ or ‘off’ depending on the presence of various bone marrow resident cells, particularly 
osteoclasts and osteoblasts. It has become clear that these two cells contribute to regulating dormant tumour cells 
in bone both directly (interaction) and indirectly (secreted factors). The involved mechanisms include TGFβ signalling, 
the Wnt signalling axis, the Notch2 pathway, etc. There is no detailed review that specifically focuses on ascertaining 
the dynamic interactions between tumour cell dormancy and bone remodelling. In addition, we highlighted the roles 
of inflammatory cytokines during this ‘cell-to-cell’ communication. We also discussed the potential clinical relevance 
of remodelling the bone marrow niche in controlling dormant tumour cells. Understanding the unique role of osteo-
clasts and osteoblasts in regulating tumour dormancy in bone marrow will provide new insight into preventing and 
treating tumour bone metastasis.
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Background
Tumour metastasis remains an extraordinarily compli-
cated and poorly understood process. During tumour 
metastasis, cancer cells first undergo epithelial-to-
mesenchymal transition (EMT) to dissociate from the 
primary tumour and enter the microvasculature of 
the blood and lymphatic systems [1]. Once entering 
the circulation, circulating tumour cells (CTCs) may 

extravasate from the blood vessels, disseminate to dis-
tant organs and settle in the secondary microenviron-
ment, where they are termed disseminated tumour 
cells (DTCs) [2, 3]. It is thought that the majority of 
DTCs from different primary tumours are inclined to 
be delivered to the bone, because the bone marrow is 
an especially congenial soil for tumour cell metastasis 
due to its rich sources of growth factors, neovasculari-
zation factors, cytokines, and chemokines [4]. Previ-
ous clinical observation revealed that bone metastasis 
only forms in sites that host haematopoietically active 
red marrow [5]. One of the possible reasons is DTCs 
are collected by the spongy tissue of red marrow that 
normally contains haematopoietic stem cells (HSCs) 
during bone metastasis [6]. However, there are consid-
erable barriers to cell colonization and growth in the 
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bone microenvironment, and the physical properties 
of bones make them a harsh and unwelcoming site for 
colonizing DTCs [7].

To survive and grow, cancer cells must navigate them-
selves to adapt to these features in the bone micro-
environment, thus it is sensible for DTCs to enter the 
dormant state. Tumour dormancy is generally divided 
into two categories, tumour cell dormancy and tumour 
mass dormancy. Tumour cell dormancy (also termed as 
quiescent cancer cells) refers to cancer cells, including 
CTCs and DTCs, that are transiently suspended in  G0 
phase, and able to re-enter the cell cycle and re-prolifer-
ate [8]. While tumour mass dormancy is characterized 
by insufficient angiogenesis and immune surveillance 
[9]. Dormant tumour cells are therapeutically challeng-
ing owing to their resistance to most radio-chemothera-
pies that target proliferative cancer cells [10]. Moreover, 
tumour cell dormancy could resist CD8+ T cell attack by 
orchestrating a local hypoxic immune-suppressive milieu 
[11]. Indeed, most of the colonizing DTCs were found 
in a dormant state instead of proliferating when they 
anchored the bone surface [12–14]. Because endosteal 
bone surface is a predominant (approximately 80%) 
dormancy-inducing microenvironment, which consists 
of quiescent bone lining cells, adipocytes, osteomas, 
immune cells and neurocytes [7, 15]. After years or even 
decades, these dormant tumour cells may reactivate, 
reproliferate to subclinical growth and eventually become 
detectable as a late metastatic relapse [16]. Notably, when 
solid tumours metastasize to the bone, they are often 
considered incurable. Therefore, there is an urgent need 
to expand our understanding of the cellular and molecu-
lar interactions between dormant tumour cells and the 
bone microenvironment and to develop therapies to pre-
vent tumour bone metastasis.

Accumulating evidence has revealed the close involve-
ment of bone remodelling during the progression of bone 
metastasis. Bone remodelling involves a complex set of 
interactions that result in an overall maintenance of bone 
mass or an anabolic or catabolic bone state [17]. This 
dynamic equilibrium is well controlled by a diverse popu-
lation of bone marrow resident cells, such as osteoblasts, 
osteoclasts, bone lining cells, and osteocytes. Particu-
larly, attention should be devoted to osteoblast-mediated 
bone formation and osteoclast-mediated bone resorp-
tion, two primary processes under dynamic balance 
that contribute to physiological bone remodelling [18]. 
Once the delicate balance is disturbed, diseases such as 
osteoporosis (excess bone loss) and osteopetrosis (excess 
bone formation), will occur [19]. More importantly, these 
bone diseases will further create a more favourable bone 
metastasis microenvironment for a diverse of primary 
tumour types.

Intriguingly, evidence has illustrated the unusual role 
of osteoblasts and osteoclasts in controlling the switch 
between dormancy versus proliferation in DTCs dur-
ing bone metastasis [20]. Take myeloma as an example, 
dormancy would be initiated and maintained (dormancy 
switched on) by osteoblasts, but would be reactivated to 
proliferate (dormancy switched off) by osteoclasts [21]. 
A similar phenomenon also occurs in breast tumour dor-
mancy [22] and prostate tumour dormancy [20], yet the 
underlying mechanisms are quite different and remain 
elusive. It is likely that osteoclasts and osteoblasts can 
either directly interact with dormant tumour cells or 
secrete various factors to control the dormant state of 
the tumour cells near the endosteal bone surface [23]. 
Conversely, dormant tumour cells could recruit osteo-
clast progenitors and enhance local osteoclast activity to 
reactivate them from dormancy [24], indicating that the 
‘on-and-off dormancy switch’ of osteoblasts/osteoclasts 
could also be influenced by dormant tumour cells.

Several critical mechanisms involved in osteoclasts/
osteoblasts and tumour cell dormancy must be eluci-
dated. a. How do tumour cells initiate and maintain a 
dormant state via osteoclasts/osteoblasts in the bone? b. 
What factors released during bone remodelling trigger 
the reactivation of dormant tumour cells? c. Do dormant 
tumour cells influence the effects of the bone marrow 
niche on regulating tumour dormancy? In this review, we 
clarified and summarized the unique role of osteoclasts 
and osteoblasts in regulating tumour dormancy in bone 
marrow, highlighted the link of dormant tumour cells 
in remodelling the bone marrow niche, and discussed 
promising therapeutic approaches.

Main text
Bone formation initiates and maintains tumour cell 
dormancy
Recent findings revealed the role of osteoblasts in pro-
moting tumour cell dormancy through direct inter-
actions with cancer cells (Table  1) (Fig.  1). By using a 
specialized 3D model of a bone mimic that permits the 
growth of a multiple layer of mineralized osteoblast tis-
sue from pre-osteoblasts, human MCF-7 breast cancer 
cells were shown to enter a dormant state when co-cul-
tured with normal human osteoblasts [25]. Moreover, 
human-derived osteoblast-like cells appeared to induce 
a dormant phenotype by downregulating migration- and 
proliferation-related proteins such as BMI1 and ID1 in 
primary breast cancer 3384T cells [22]. Capulli et  al. 
revealed that spindle-shaped N-cadherin+/CD45- oste-
oblasts (SNOs) induced breast tumour cell dormancy 
through a Notch2-dependent mechanism in highly met-
astatic human MDA-MB-231 and mouse 4T1 cell lines. 
Instead, the inhibitory effect on cell division was not 
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obvious in the cocultures of poorly-aggressive human 
breast cancer MCF-7 cells with SNOs. This result sug-
gested that SNO-induced quiescence is a selective and 
specific occurrence that is likely associated with poor-
prognosis breast tumours [26].

Apart from direct interaction between osteoblasts 
and cancer cells, it has also been observed that fac-
tors such as type-I collagen, osteopontin, and Wnt5a 

produced by osteoblasts or the osteoblastic niche could 
support tumour cell dormancy. Lawson and colleagues 
tracked individual myeloma cells by intravital imaging 
in a green fluorescent protein (GFP) transgenic mouse 
model. They found that dormant myeloma cells local-
ized directly adjacent to endosteal bone surfaces occu-
pied by type-I collagen-expressing osteoblast cells, 
while proliferating myeloma cells were preferentially 

Table 1 The role of osteoblasts and osteoblastic niche in inducing tumour cell dormancy

Note: ‘↑’ represents increased, upregulated, induced, enhanced and activated; While ‘↓’ represents decreased, downregulated, inhibited; N/A represents not applicable

Cancer types Osteoblast-secreted factors Mechanisms Reference

Human breast cancer cells Direct interaction N/A  [25]

Primary breast cancer cells ↑ KLF7, THY1, PECA1, and PLAUR; ↓ BMI1 and ID1  [22]

Breast cancer cells ↑ Notch2 signalling  [26]

Myeloma cells Type-I collagen N/A  [21]

Primary leukaemia cells OPN ↑ cell cycle exit  [23]

Prostate cancer cells BMP7 ↑ NDRG1 mRNA expression via activating p38 and p21  [27]

Prostate cancer cells Wnt5a ↑ SIAH2/ROR2 signalling axis; ↓ Wnt/β-catenin signalling  [28]

Prostate cancer cells TGFβ2 ↑ TGFβRIII signalling; ↑ p38MAPK phosphorylation and nuclear translocation; 
↑ pS249/pT252-RB in the nucleus; ↑ p27 and  G1-cell cycle arrest

 [20]

Breast cancer cells LIF Binding to LIFR and ↑ gene expressions of TSP1, TPM1, TGFβ2, P4HA1, miR-190 
and SELENBP1

 [29]

Cancer cells CXCL12 Binding to CXCR4 in tumour cells and ↑ drug resistance  [30, 31]

Prostate cancer cells Gas6 ↑ Axl, Sky and Mer  [32]

Fig. 1 Osteoblast-mediated bone formation initiates and maintains tumour cell dormancy
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found at locations distant from the bone surface [21]. 
Another important protein expressed by endosteal 
osteoblasts is osteopontin (OPN), a soluble cytokine 
or chemokine as well as an adhesive component of the 
extracellular matrix. After engrafting dormant pri-
mary leukaemia cells via the tail vein into NOD-SCID 
IL2Rγ(null) (NSG) mice, the majority of dormant 
cells were specifically present in high OPN expression 
regions of the calvarial bone marrow. Confocal analy-
sis showed that a large number of dormant leukaemia 
cells directly colocalized with OPN. This interaction 
induced cell cycle exit in leukaemic blasts, protecting 
them from cytotoxic chemotherapy, while inhibiting 
the OPN signalling axis led dormant lymphoblastic leu-
kaemia cells to proliferate, thereby sensitizing them to 
chemotherapy [23]. In addition, bone morphogenetic 
protein 7 (BMP7) secreted by osteoblasts induced the 
dormancy of PC-3 prostate cancer cells by upregulating 
the mRNA expression of N-myc downstream-regulated 
gene 1 (NDRG1), a metastasis suppressor gene, via 
activating p38 and p21. An in vivo study showed that 
withdrawal of BMP7 significantly abrogated the sup-
pressive effect of osteoblasts and induced metastatic 
growth of stem-like prostate cancer cells in the bone 
[27]. Wnt signalling within the bone microenvironment 
plays a crucial role in the equilibrium of cell dormancy 
and reactivation [33]. Ren et  al. revealed that Wnt5a 
produced from the osteoblastic niche induced bone 
metastatic prostate tumour cell dormancy by activat-
ing the receptor tyrosine kinase-like orphan receptor 
2 (ROR2)/SIAH2 signalling axis, resulting in repres-
sion of the Wnt/β-catenin pathway. Silencing Wnt5a 
restored the growth ability of prostate tumour cells, 
indicating a potential therapeutic role of Wnt5a in pre-
venting bone metastatic recurrence by inducing cancer 
cell dormancy [28].

Interestingly, the bone-derived transforming growth 
factor (TGF) β1 and TGFβ2 have been demonstrated 
to exert opposite functions on the behaviour of tumour 
cell dormancy in the bone marrow. TGFβ1 facilitates 
rapid tumour proliferation [34], while TGFβ2 pro-
motes tumour cell dormancy. The expression of TGFβ2 
secreted by osteoblasts was markedly upregulated dur-
ing osteoblast differentiation and induced prostate 
tumour dormancy in vitro and in vivo, indicating that 
osteoblast differentiation may affect tumour dormancy 
[20]. Mechanistically, TGFβ2 secreted by differenti-
ated osteoblasts activated TGFβRIII to stimulate p38 
mitogen-activated protein kinases (MAPK) phospho-
rylation and nuclear translocation. Nuclear p-p38 
then phosphorylates the N-terminus of retinoblas-
toma (RB) at Ser249/Thr252, leading to increased p27 
and  G1-cell cycle arrest [20]. Similar studies confirmed 

that activating the p38MAPK pathway by osteoblast-
secreted factors, such as BMP1, dickkopf-related pro-
tein 3 (DKK3), vasorin, and neogenin [35], might drive 
tumour cells to a dormant state [36].

Currently, emerging evidence has proven that osteo-
blast-mediated bone formation and the related osteoblas-
tic niche play a supportive role in dormancy induction 
and maintenance. This is contrary to previous beliefs 
that osteoblasts could encourage tumour growth by pro-
viding essential growth factors [37, 38]. To date, how 
osteoblasts determine whether to promote the growth of 
tumour cells or initiate and maintain them in dormancy 
remains largely unknown. Some views believe that the 
state of osteoblasts (active or quiescent) might be one of 
the reasons. In addition, the functions of different types 
of osteoblasts vary, which should also be taken into con-
sideration in further investigations.

Osteoblasts can either interact directly with dormant 
tumour cells or indirectly through secretion of various 
factors, wherein both ways control the rate of cell pro-
liferation and induce dormancy of the tumour cells near 
the bone surface. Osteoblast-secreted factors include 
BMP7, TGFβ2, BMP1, DKK3, vasorin, neogenin, LIF, 
CXCL12, Wnt5a, Type-I collagen, OPN, and Gas6. In 
turn, dormant tumour cells preferentially adhere to oste-
oblasts, thus facilitating bone formation to induce and 
maintain themselves in a dormant state. In this case, dor-
mant tumour cells upregulate their expression of several 
signalling receptors, such as Axl, TBK1, and N-cadherin, 
thereby allowing adhesive attraction of dormant tumour 
cells to osteoblasts. BMP7, bone morphogenetic protein 
7; BMP1, bone morphogenetic protein 1; TGF, trans-
forming growth factor; DKK3, dickkopf-related protein 
3; ROR2, receptor tyrosine kinase-like orphan receptor 2; 
NDRG1, N-myc downstream-regulated gene 1; MAPK, 
mitogen-activated protein kinases; LIF, leukaemia inhibi-
tory factor; LIFR, LIF receptor; CXCL12, C-X-C motif 
chemokine ligand 12; CXCR4: C-X-C motif chemokine 
receptor 4; OPN, osteopontin; Gas6, growth-arrest spe-
cific 6; TBK1, TANK binding kinase 1; mTOR, mam-
malian/mechanistic target of rapamycin. Graphics were 
partly generated using Servier Medical Art, provided by 
Servier, licensed under a Creative Commons Attribution 
3.0 unported license (https:// smart. servi er. com/).

Bone resorption reactivates dormant tumour cells
Tumour recurrence that occurs years after seemingly 
successful treatment of primary tumours is one of the 
major causes of mortality in cancer patients. The reac-
tivation of dormant tumour cells is mainly responsible 
for this phenomenon. Therefore, blocking dormant 
tumour cells from reproliferation would be a promising 
strategy for preventing tumour relapse. Evidence has 

https://smart.servier.com/
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shown that bone metastasis tumour cells exit dormancy 
and can be influenced by factors produced during bone 
resorption (Table  2) (Fig.  2). In experimental models, 
increasing bone resorption through parathyroid hor-
mone (PTH) stimulation or calcium restriction aggra-
vated tumour development in bone [39, 40]. Cackowski 
et  al. demonstrated that bone resorption stimulated 
bone angiogenesis in foetal mouse metatarsal explants 
by producing matrix metalloproteinase-9 (MMP-9) 
[41], a factor that could awaken dormant cancer cells 
through extracellular matrix (ECM) remodelling in vivo 
[42]. Moreover, TGFβ1, an important growth factor, is 
abundantly released from resorbed bone and activated 

by osteoclasts. In contrast to the role of TGFβ2 in 
osteoblast-induced dormancy, activated TGFβ1 could 
induce a mesenchymal phenotype and reawaken dor-
mant breast tumour cells to rapid growth in the bone 
marrow [43]. Lawson et  al. demonstrated that induc-
ing bone resorption by a soluble form of the ligand for 
the receptor activator of NFκB (sRANKL) reactivated 
dormant myeloma cells from a proliferative-suppressed 
condition caused by osteoblasts or bone lining cells 
[21]. These results suggest that therapies that inhibit 
bone resorption might be beneficial for prevent-
ing tumour relapse by blocking dormant tumour cell 
reactivation.

Table 2 The role of osteoclasts and bone resorption in reactivating dormant tumour cells

Note: ‘↑’ represents increased, upregulated, induced, enhanced and activated; While ‘↓’ represents decreased, downregulated, inhibited

Dormant cancer types Factors that induced bone resorption Mechanisms Reference

Prostate and breast cancer cells PTH stimulation / calcium restriction ↑ tumour development in bone  [39, 40]

Breast cancer cells Osteoclasts secreted MMP-9 ↑ bone angiogenesis and ECM remodelling  [41, 42]

Breast cancer cells Osteoclasts secreted TGFβ1 ↑ a mesenchymal phenotype and motility  [43]

Myeloma cells Osteoblast expressed sRANKL Remodelling the endosteal niche  [21]

Breast cancer cells OVX (surgery) ↓ expression of the osteoblast formation inhibitors Dkk1, 
2 and 3; ↑ PTH expression

 [44]

ER-positive breast cancer cells Oestrogen depletion (surgery) ↑ ANGPT2 signalling  [45]

Prostate cancer cells Androgen deprivation (surgery) ↑ serum levels of the osteoclast marker TRAP and P1NP  [46]

Fig. 2 Osteoclast-mediated bone resorption reactivates dormant tumour cells
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Bone resorption is also mediated by hormones, espe-
cially oestrogen and androgen, which might subsequently 
impact dormant tumour reactivation in bone (Table  2). 
Bone loss in women occurs rapidly in the years follow-
ing menopause or experiencing ovariectomy (OVX) 
when natural levels of oestrogen are greatly reduced 
[47]. Ottwell and colleagues showed that increased bone 
resorption stimulated dormant breast tumours to pro-
liferate. They found that the ratio of developed bone 
metastasis was less than 20% in the premenopausal mice 
model, while the ratio increased to over 80% in mice with 
OVX-induced bone loss [44]. Administration of OPG-
Fc, a potent inhibitor of osteoclastogenesis that prevents 
RANKL-RANK binding, reversed OVX-induced bone 
loss and thus suppressed the reproliferation of dormant 
breast tumour cells in vivo [48]. Additionally, oestrogen 
depletion triggered oestrogen receptor (ER)-positive 
breast tumour cell awakening from dormancy by acti-
vating angiopoietin-2 (ANGPT2) signalling in the bone 
marrow niche [45]. In men, androgen deprivation ther-
apy is well known to cause bone loss. Another study con-
ducted by Ottwell and colleagues mimicked the effects of 
androgen deprivation by castrating 12-week-old BALB/c 
nude mice, which caused increased bone resorption and 
loss of bone volume. The results showed that castration 
triggered a significantly higher rate of bone metastasis of 
disseminated PC-3 cells compared to the sham operation 
group [46]. In fact, androgen deprivation and OVX are 
critical therapies for managing aggressive and advanced 
prostate cancer and ovarian cancer, respectively. Para-
doxically, the bone loss caused by androgen or oestrogen 
insufficiency increased the risks of overt tumour metas-
tasis or relapse in the bone [49–51]. The influence of this 
undesirable adverse effect should be taken into consid-
eration in future clinical investigations.

Bone metastasis tumour cells exit from dormancy can 
be influenced by factors produced during osteoclast-
mediated bone resorption, including TGFβ1 and MMP-
9. To reactivate themselves from dormancy, dormant 
tumour cells are inclined to promote osteoclastogen-
esis by upregulating the expression of several receptors, 
such as VCAM-1 and PTHrP. Hormone-related thera-
pies (OVX, oestrogen withdrawal, and androgen depri-
vation) could facilitate osteoclastogenesis and increase 
bone resorption, subsequently releasing dormant 
tumour cells to reproliferate and consequently induc-
ing overt metastasis. Therapeutic agents that suppress 
bone resorption could inhibit bone metastasis, such as 
EGFR tyrosine kinase inhibitor, Cathepsin K inhibitor, 
Cathepsin B inhibitor. TGF, transforming growth fac-
tor; MMP-9, matrix metalloproteinase-9; VCAM-1, 
vascular cell-adhesion molecule 1; PTHrP, parathyroid 
hormone-related protein; IL-1β, interleukin-1β; IL-1R, 

interleukin-1 receptor; PGE2, prostaglandin E2; RANK, 
receptor activator of nuclear factor-κB; RANKL, recep-
tor activator of nuclear factor-κB ligand; sRANKL, a 
soluble form of the RANKL; TNF-α, tumour necrosis 
factor-α; OPG, osteopontin; EGFR, epidermal growth 
factor receptor. Graphics were partly generated using 
Servier Medical Art, provided by Servier, licensed under 
a Creative Commons Attribution 3.0 unported license 
(https:// smart. servi er. com/).

Self-control of dormant tumour cells by utilizing bone 
remodelling
It is well documented that bone remodelling could largely 
impact tumour cell dormancy by either maintaining them 
in a dormant state or reactivating them from dormancy. 
However, limited attention has been focused on how dor-
mant tumour cells maintain their dormant state or even 
reactivate themselves during bone remodelling [52].

For the sake of reactivating themselves from dormancy, 
dormant tumour cells are inclined to promote osteoclas-
togenesis to facilitate bone resorption (Fig. 2) (Table 3). 
For example, breast tumour cells overexpress vascular 
cell-adhesion molecule 1 (VCAM-1), a member of the 
transmembrane immunoglobulin superfamily. The excess 
VCAM-1 increased the recruitment of osteoclast precur-
sors via directly interacting with the cognate receptor 
integrin α4β1, thus stimulating their adhesion to dor-
mant breast tumour cells. Eventually, activated osteo-
clastogenesis enhanced bone resorption and reawakened 
dormant breast tumours to regrowth. Treatment with 
antibodies against VCAM-1 and integrin α4 effectively 
suppressed bone metastasis progression and preserved 
bone structure [24]. Tumour-derived parathyroid hor-
mone-related protein (PTHrP) can stimulate osteoclas-
togenesis and subsequent bone resorption by stimulating 
RANKL expression in an autocrine manner [53]. Moreo-
ver, PTHrP-overexpressing tumour cells could block pro-
dormancy gene expression, suggesting that PTHrP also 
plays a role in promoting tumour cell exit from dormancy 
[29]. These findings indicate that identifying tumour-
derived osteoclastogenic factors, such as VCAM-1 and 
PTHrP, might provide new potential therapeutic targets 
for preventing and inhibiting metastatic recurrence in 
bone.

On the other hand, dormant tumour cells preferen-
tially adhere to osteoblasts, thus facilitating bone for-
mation to induce and maintain themselves in a dormant 
state (Fig.  1) (Table  3). A very recent study found that 
high expression of N-cadherin in MDA-MB-231 (MDA) 
breast cancer cells reduced tumour metastasis and bone 
osteolysis in a mouse model. Mechanistically, N-cadherin 
facilitated the adhesive attraction of MDA to SNOs in 
vitro, allowing SNOs to induce dormancy in MDA cells 

https://smart.servier.com/
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[54]. These evidences may partially explain why dormant 
tumour cells were often located near the endosteal niche 
with enriched SNOs. Alternatively, dormant tumour cells 
could also aberrantly increase the expression of several 
genes, such as ROR2, Axl and TANK binding kinase 1 
(TBK1), to facilitate osteoblast-induced tumour cell dor-
mancy. Ren et  al. showed that silencing ROR2 in dor-
mant prostate tumour cells abrogated Wnt5a-induced 
dormancy driven by osteoblasts during bone metasta-
sis [28]. Dormant DTCs residing close to osteoblasts 
have been proven to express high levels of Axl, which 
inspired growth suppression of prostate cancer cells by 
osteoblasts [55]. The upregulated expression of Axl could 
combine with the growth-arrest specific 6 (Gas6) pro-
duced by osteoblastic cells, which induced the expression 
of TGFβ2 and its receptor in the endosteal niche [56]. 
Similarly, prostate tumour cells increased their expres-
sion of TBK1 to interact with and inhibit mammalian/
mechanistic target of rapamycin (mTOR) when binding 
to osteoblasts. Eventually, the inhibition of mTOR signal-
ling induced prostate tumour dormancy and contributed 
to chemoresistance in vitro and in vivo [57].

One hypothesis that has gained favor is that the pro-
cess of DTCs colonizing osteoblastic niche is functionally 

similar to the homing behavior of HSCs. The presence 
of HSCs hindered DTC colonization of bone niche in a 
competitive manner and thus limited bone metastasis 
[6]. There are three ways of DTCs compete with HSCs 
in occupying the osteoblastic niche, thus initiating and 
maintaining themselves in a dormant state [26]. Firstly, 
osteoblasts secrete molecules that are critical in HSCs 
homing, such as OPN and C-X-C motif chemokine 
ligand 12 (CXCL12), which are also utilized by DTCs 
to establish footholds in the bone marrow [23, 58, 59]. 
Secondly, DTCs mimic HSC-like phenotype, allowing 
them competitively bind to the proteins, such as annexin 
II, that are responsible for HSCs’ bone localization [32, 
60, 61]. Finally, DTCs could directly or indirectly drive 
HSCs’ maturity, and displace HSCs from the osteoblas-
tic niche. Disseminated prostate cancer cells accelerated 
haematopoietic differentiation, thus replacing and mobi-
lizing HSCs from the osteoblastic niche into the periph-
eral blood [6]. Although dormant tumour cells may not 
be directly intervened by HSCs, the presence of HSCs 
largely restricted the occupancy of DTCs to the osteo-
blastic-induced dormancy microenvironment. Therefore, 
targeting HSCs is a promising therapeutic strategy for 
limiting bone metastasis.

Table 3 Self-control of dormant tumour cells by utilizing bone remodelling

Note: ‘↑’ represents increased, upregulated, induced, accelerated, enhanced and activated; While ‘↓’ represents decreased, downregulated, inhibited; N/A represents 
not applicable

Self-control Dormant cancer types Reactions Mechanisms Reference

Reactivate from dormancy Breast cancer cells ↑ VCAM-1 ↑ the recruitment of osteoclast 
precursors; directly interacting with 
the cognate receptor integrin α4β1; ↑ 
preosteoclasts’ adhesion to dormant 
breast tumour cells

 [24]

Breast cancer cells and giant cell 
tumour of bone

↑ PTHrP ↓ pro-dormancy gene expression; ↑ 
osteoclastogenesis and bone resorp-
tion through ↑ RANKL expression in an 
autocrine manner

 [29, 53]

Maintain dormancy Breast cancer cells ↑ N-Cadherin ↑ the adhesive attraction of MDA to 
SNOs

 [54]

Prostate cancer cells ↑ ROR2 ↑ Wnt5a-induced dormancy driven by 
osteoblasts

 [28]

Prostate cancer cells ↑ Axl Gas6/Axl signalling ↑ expression of 
TGFβ2 and its receptor

 [55, 56]

Prostate cancer cells ↑ TBK1 After binding to osteoblasts,↓ mTOR 
and ↑ drug resistance to chemo-
therapy

 [57]

Acute lymphoblastic leukemia cells Express OPN receptors Compete with HSCs for adhesion to 
OPN within the bone marrow

 [23]

Acute lymphoblastic leukemia cells Express CXCR4 Compete with HSCs for binding to 
CXCL12 in the bone marrow

 [58, 59]

Prostate cancer cells and myeloma cells Express Annexin II receptor Compete with HSCs for binding to 
annexin II on osteoblasts

 [32, 60, 61]

Prostate cancer cells N/A ↑ haematopoietic differentiation, 
replace and mobilize HSCs from the 
osteoblastic niche

 [6]



Page 8 of 12Dai et al. J Exp Clin Cancer Res          (2022) 41:316 

Collectively, the ability of dormant tumour cells utiliz-
ing bone remodelling or competing with HSCs to control 
their dormant state is non-negligible, as they might fur-
ther complicate the consequences after primary thera-
pies. However, how dormant cells determine whether 
they should become dormant or reawakened remains 
largely unknown and deserves more profound mechanis-
tic studies in the future.

The role of inflammatory cytokines in regulating tumour 
cell dormancy during bone remodelling
The “bone-tumour-inflammation network” is a system 
that tightly combines the bone microenvironment with 
the tumour microenvironment through inflammatory 
responses. However, the fact that inflammatory cytokines 
produced during bone remodelling participate in regulat-
ing tumour cell dormancy is seriously underestimated. 
In this section, we illustrated some vital inflammatory 
cytokines produced during bone remodelling (mainly 
by osteoblasts) that could determine the conditions of 
tumour dormancy.

Leukaemia inhibitory factor (LIF), an inflammatory 
cytokine of the IL-6 family, is produced by osteoblasts. 
LIF promoted breast cancer cell dormancy in the bone 
by binding to the LIF receptor (LIFR), which induced the 
expression of crucial dormancy-related genes in breast 
tumour cells, including thrombospondin-1 (TSP1), 
tropomyosin-1 (TPM1), TGFβ2, prolyl 4 hydroxylase 
α-1 (P4HA1), miRNA-190 (miR-190) and SELENBP1. 
Knockdown of LIFR resulted in lower p53 protein levels 
and greater c-MYC and pSRC (Y527) protein levels, sug-
gesting that LIFR was crucial for MCF7 cells to remain 
dormant [29]. CXCL12, another chemokine secreted by 
osteoblasts, triggers DTC dormancy in the bone mar-
row by binding to C-X-C motif chemokine receptor 4 
(CXCR4), one of the receptors of CXCL12 in tumour 
cells [31]. Moreover, a high concentration of CXCL12-
induced tumour dormancy contributes to drug resist-
ance, arousing the clinical value of controlling CXCL12 
production and scavenging excessive CXCL12 in the 
bone marrow [30]. Evidence has proven that Gas6 pro-
duced by osteoblasts can also induce tumour dormancy 
during bone metastasis [32]. Decker et  al. revealed that 
the sympathetic nervous system/norepinephrine (NE) 
reactivated dormant prostate tumour cells in the bone 
marrow niche by downregulating the expression of Gas6 
in osteoblasts [62]. Gas6 also inhibits the production of 
tumour necrosis factor (TNF)-α, interleukin (IL)-1β and 
IL-6 in monocytes and macrophages, which are essential 
pro-inflammatory factors [63]. Therefore, Gas6 plays a 
dominant role in connecting tumour dormancy and bone 
microenvironment with the inflammation network.

In contrast to the dormancy-inducing effect of LIF, 
CXCL12 and Gas6, the inflammatory cytokine IL-1β 
promoted tumour proliferation and subsequently trig-
gered overt metastasis of breast tumour cells. Direct 
interaction between breast tumour cells and osteoblasts 
promoted IL-1β release from both cell types, which 
enhanced the progression of EMT, invasion, migration, 
angiogenesis, and bone colonization [64]. Moreover, 
inhibiting its receptor (IL-1R) signalling by anakinra, an 
IL-1R antagonist, impeded overt metastasis by maintain-
ing disseminated breast tumour cells in dormancy [65]. 
Similarly, Sosnoski and colleagues found that IL-1β and 
TNF-α broke the dormant state of breast tumour cells 
induced by osteoblasts in their coculture system. These 
two cytokines stimulate the production of prostaglandin 
E2 (PGE2), another critical inflammatory molecule, lead-
ing to the nuclear localization of Ki67 in breast tumour 
cells [25].

Overall, inflammatory cytokines produced mainly by 
osteoblasts during bone remodelling play a dual role in 
tumour cell dormancy. This may partially explain why 
osteoblasts could both induce tumour cell dormancy and 
promote tumour cell growth in the bone marrow. Inflam-
matory factors produced during the interactions between 
dormant tumour cells and osteoblasts may serve as novel 
biomarkers, which can be utilized to predict the state of 
tumour cell dormancy and the potential risk of tumour 
relapse.

Clinical relevance
There is compelling clinical evidence that tumour cell 
dormancy exists and that the bone microenvironment 
may initiate tumour cell dormancy and trigger DTC 
proliferation. Increasing the understanding that osteo-
blasts and osteoclasts control the state of dormancy 
provides essential clinical implications. For instance, 
identifying dormancy-related factors produced by 
osteoblasts and osteoclasts provides opportunities to 
predict and prevent dormant tumours from develop-
ing overt bone metastasis. Bone-disseminated prostate 
tumour cells with lower expression of TGFβRIII caused 
by differentiated osteoblasts might be less able to enter 
dormancy. Further prognostic analysis confirmed that 
lower levels of TGFβRIII expression are associated with 
metastasis and poor clinical performance outcomes in 
prostate cancer patients [20]. ROR2 could be used as 
a reliable biomarker in predicting bone metastasis in 
prostate cancer patients. The bone marrow of patients 
with low levels of ROR2 disrupted Wnt5a signalling 
produced by the osteoblastic niche, which hinted at 
the potential development of osteolytic tumours in 
bone [28]. Additionally, a significant and positive cor-
relation between high N-cadherin levels produced 
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by osteoblasts and overall survival was identified in 
oestrogen- or progesteron-positive breast tumour 
patients [54]. Increased bone resorption is also related 
to tumour burden in patients. Lawson et  al. proved 
that the serum level of the bone resorption biomarker 
C-terminal telopeptide (CTX) was strongly corre-
lated with β2-microglobulin (β2m), a protein that can 
measure tumour burden in newly diagnosed myeloma 
patients (R2=0.3588, P<0.0001) [21].

Another important implication may come in the con-
text of treatment. Because dormant tumour cell-tar-
geting agents are not yet clinically available, treatments 
that regulate bone biological processes, especially anti-
resorptive therapies, hold promise for controlling tumour 
dormancy (Fig.  2). In the clinic, bisphosphonate treat-
ments, such as zoledronic acid, decreased bone resorp-
tion and limited inadvertent activation of dormant breast 
cancer cells in the bone of patients [66–68]. Recent clini-
cal trials exhibited similar effects on preventing tumour 
bone metastasis by treatment with the anti-RANKL 
agent denosumab, which disrupts the RANK-RANKL 
signalling involved in osteoclastogenesis [69–72]. The 
epidermal growth factor receptor (EGFR) signalling was 
found to regulate the production of pro-osteoclastogenic 
factors and osteoclast formation [73]. Gefitinib, a clini-
cally available EGFR tyrosine kinase inhibitor, reduces 
osteoclast differentiation and blocks osteolytic bone 
metastasis [74, 75]. Cysteine cathepsins are a class of 
proteolytic enzymes that function in numerous physi-
ological processes and have emerged as drug targets in 
bone-related diseases [76]. Cathepsin K (CK), one of the 
members, is predominantly secreted by mature osteo-
clasts to facilitate bone degradation [77, 78]. Odanacatib, 
a CK-selective inhibitor, has been evaluated in a phase II 
trial for breast-to-bone metastasis treatment and showed 
some positive results accompanied with decreased 
bone resorption before discontinuation of clinical test-
ing [76]. Another cysteine family member, Cathepsin B 
(CB) is closely associated with local recurrence and dis-
tant metastases in patients with bone chondrosarcoma 
[79]. Although CB plays less important role in regulat-
ing osteoclastogenesis than CK, inhibition of CB activ-
ity is also shown to impede bone metastasis progression 
[80, 81]. Withana et al. proved that selective CB inhibitor, 
CA-074, significantly decreased late-stage bone metasta-
sis of breast cancer [82]. Besides, inhibitors that suppress 
bone resorption, such as dasatinib (Src tyrosine kinase 
inhibitor) and PSK-1404 (integrin αVβ3 inhibitor) were 
proved to inhibit osteolytic bone metastasis [83–86]. Yet, 
the precise mechanisms or long-term outcomes of these 
inhibitors in cancer patients warrant further evaluation. 
Taken together, these evidences suggest that suppres-
sion of bone resorption may prevent the reactivation of 

dormant tumour cells in the bone marrow niche before 
the development of overt metastatic tumours.

Conclusion and future prospects
Undoubtedly, cellular dormancy is a highly complex 
phenomenon involved during bone metastasis. The 
interactions between osteoclast/osteoblast-medi-
ated bone remodelling and dormant tumour cells are 
likely among the most critical rationales of metastatic 
tumour outgrowth in bone. A majority of strategies 
focus on keeping dormant tumours ‘asleep’ instead of 
‘waking them up’ so that tumour outgrowth and metas-
tasis can be potentially prevented. However, we cannot 
exclude the possibility that creating more bone niches 
for supporting dormant tumour cell survival will cause 
long-term deleterious effects. Dormant tumour cells 
are resistant to most chemotherapies and radiothera-
pies that target proliferative tumour cells [16]. Activat-
ing dormant tumour cells to succumb to conventional 
cancer treatment could serve as an alternative anti-
cancer strategy. Lawson et  al. suggested that activat-
ing dormant myeloma cells might render them more 
susceptible to the existing anticancer agents, thereby 
overcoming drug resistance and achieving complete 
remission [21]. However, this treatment approach has 
been widely debated because preclinical evidence has 
shown that activated dormant tumour cells exhibit 
enhanced proliferation and metastasis capacities [10]. 
It is currently difficult to determine the pros and cons 
between these two strategies during bone metasta-
sis. More systematic and in-depth mechanistic stud-
ies are urgently required before this knowledge can 
be used for therapeutic benefit [87]. Since inhibitor of 
apoptosis proteins (IAPs) are overexpressed in many 
human malignancies, IAPs antagonists have emerged 
as potent anticancer drug candidates [88]. The major 
anticancer mechanisms of IAPs antagonists involve 
disrupting IAPs interaction with caspases and decreas-
ing intracellular levels of IAPs [89]. However, sev-
eral evidence showed that IAPs antagonist treatment 
unexpectedly increased bone metastasis. Owing to the 
osteoclastogenesis that was promoted by IAPs antago-
nists through non-canonical NF-κB pathway, dormant 
tumour cells in the bone marrow were reactivated 
[90, 91]. Therefore, co-treatment with anti-resorptive 
agents, such as zoledronic acid, could potentially pre-
vent such unwanted side effects of IAPs antagonists on 
bone metastasis [92]. Moreover, the generally immune-
privileged nature of the bone can be favourable for dor-
mant tumour cell seeding and escape from immune 
surveillance. This phenomenon potentially explains 
why bone is such a common site for both dormant and 
active tumour cells to anchor. As immunotherapies 
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continue to gain momentum for tumour treatment in 
the clinic, an exquisite understanding of tumour-bone-
immune crosstalk, especially on how current therapies 
affect bone metastatic tumour cells, will shed light on 
new anticancer strategies.
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