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Best Practices in Adolescent and Young Adult Patients
with Acute Lymphoblastic Leukemia:

A Focus on Asparaginase

Nicolas Boissel, MD, PhD,1 and Leonard S. Sender, MD 2,3,4

The inclusion of asparaginase in chemotherapy regimens to treat acute lymphoblastic leukemia (ALL) has had a
positive impact on survival in pediatric patients. Historically, asparaginase has been excluded from most
treatment protocols for adolescent and young adult (AYA) patients because of perceived toxicity in this pop-
ulation, and this is believed to have contributed to poorer outcomes in these patients. However, retrospective
analyses over the past 12 years have shown that 2-, 5-, and 7-year overall survival of AYA patients is signifi-
cantly improved with pediatric versus adult protocols. The addition of asparaginase to adult protocols yielded
high rates of first remission and improved survival. However, long-term survival remains lower compared with
what has been seen in pediatrics. The notion that asparaginase is poorly tolerated by AYA patients has been
challenged in multiple studies. In some, but not all, studies, the incidences of hepatic and pancreatic toxicities
were higher in AYA patients, whereas the rates of hypersensitivity reactions did not appear to differ with age.
There is an increased risk of venous thromboembolic events, and management with anti-coagulation therapy is
recommended. Overall, the risk of therapy-related mortality is low. Together, this suggests that high-intensity
pediatric protocols offer an effective and tolerable approach to treating ALL in the AYA population.
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Acute lymphoblastic leukemia (ALL) is a heterogenic
disease that disproportionately affects children between

the ages of 2 and 10 years.1–3 Roughly 6000 new cases of
ALL are diagnosed each year in the United States alone.2,4

Substantial advancements have been made in crafting ef-
fective multiagent pediatric chemotherapeutic protocols,
raising overall survival (OS) rates for pediatric patients to
nearly 90%.5,6 Unfortunately, there has been less success in
achieving these same improvements in adolescent and young
adult (AYA) patients diagnosed with ALL.7 In contrast to the
high survival rates in pediatric patients, 5-year survival rates
for adolescents (aged 15–19 years) and young adults (aged
20–29 years) diagnosed with ALL are approximately 61.1%
and 44.8%, respectively (1973–2004 limited use database of
the Surveillance, Epidemiology, and End Results Program of
the U.S. National Cancer Institute issued in April 2007).7

Poor outcomes in AYA patients diagnosed with ALL
likely result from a number of factors. AYA patients display a
greater incidence of adverse prognostic indicators, including

an increased prevalence of adverse genetic abnormalities,
compared with younger patients.8,9 Several socioeconomic
factors, such as reduced enrollment in clinical trials, possibly
lower compliance rates, and increased delays in treatment
initiation, may also contribute to the poor outcomes seen in
the AYA population.10 Arguably, one of the most important
factors in the disproportionate survival between pediatric and
AYA patients are the chemotherapy protocols historically
used to treat these two groups of patients. Most pediatric ALL
protocols follow the Berlin-Frankfurt-Munster (BFM) model
with a heavy reliance on nonmyelosupressive agents (vin-
cristine, steroids, and asparaginase).11 Adult protocols were
for a long time characterized by a greater use of myelosu-
pressive agents (including cyclophosphamide and anthracy-
clines) with little or no asparaginase, as the enzyme was
perceived to be prohibitively toxic in adults.12 In fact, one
widely used adult ALL protocol, hyper-CVAD, includes no
asparaginase.13 Recently, a wealth of clinical evidence has
emerged challenging the differential treatment of pediatric
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and AYA patients with ALL.14–21 Retrospective studies re-
port that high-intensity pediatric protocols are both feasible
and tolerable in patients aged q15 years and that the use of
these protocols is associated with substantially improved
long-term survival compared with commonly used adult
protocols.14,22–24 This review will summarize the relevant
differences between pediatric and AYA leukemia biology
and treatment, highlighting the rationale for treating adult
patients according to pediatric protocols. The use of aspar-
aginase, a near-universal component of pediatric ALL regi-
mens, will be reviewed in detail.

Disease Biology

There are a number of biological factors that contribute to
low cure rates in AYA patients. T-cell ALL is known to be
associated with poor outcomes and is seen in 20–25% of adult
cases of ALL compared with 15% in children.15,25 Further-
more, early T-cell precursor leukemia is a particularly high-risk
subtype of T-cell ALL found in approximately 15% of T-cell
ALL. This subtype has been characterized by a high risk of
treatment failure and poor prognosis in patients.26,27 However,
recent results in larger patient populations have shown non-
inferior outcomes in patients with T-cell and early T-cell pre-
cursor ALL.28 Several chromosomal abnormalities associated
with negative outcomes are more commonly observed in adult
patients relative to pediatric patients with ALL.29 The inci-
dence of Philadelphia chromosome positive (Ph1) ALL,
strongly associated with poor outcomes, is one of the most
common cytogenetic abnormalities in adult ALL.30 Ph1 ALL is
found in 15–20% of patients aged 25–35 years compared with
<3% of patients aged <18 years.23,30,31

Further compounding the problem, genetic alterations as-
sociated with positive prognosis occur less often in AYA
patients. High hyperdiploidy, associated with favorable
prognosis, occurs in 25–30% of pediatric patients with ALL,
but only in 20% of adolescents and 10% of young adult pa-
tients.23 Similarly, the TEL-AML1 fusion gene occurs in
approximately 25% of pediatric cases compared with just 3%
of adults with ALL.32 Other adverse prognostic features, such
as intrachromosomal amplification of chromosome 21, MLL
translocations, and IGH@ translocations, have been shown to
occur more frequently in the AYA population.26,33,34 Ph1-like
ALL is a subtype of B-cell ALL with similar patterns of gene
expression to Ph1 ALL, but does not express the BCR-ABL1
fusion protein.35,36 Ph1-like ALL has been reported in 27% of
B-cell ALL patients between 21 and 39 years of age, com-
pared with 10% of patients between 1 and 9 years of age.36

This subtype has been associated with a resistance to aspar-
aginase and daunorubicin,35 higher MRD levels after induc-
tion,37 and a higher risk of relapse in the AYA population.36

Changes in drug resistance may also occur with age, re-
sulting in reduced benefits from chemotherapy and poor
outcomes in AYA patients. Leukemic cells from patients
aged >10 years were significantly more resistant to prednis-
olone, dexamethasone, asparaginase, idarubicin, and 6-
mercaptopurine compared with leukemic cells from children
aged 1.5–10 years.38 Additionally, genetic factors specific to
genes regulating the immune system, found in both pediatric
and adult patients, have recently been shown to increase a
patient’s risk for developing an allergic reaction to aspar-
aginase.39 Metabolism of certain chemotherapeutic drugs

may also differ in adult patients, possibly increasing the in-
cidence of drug-related toxicities or decreasing the effec-
tiveness of critical chemotherapeutic agents, such as
asparaginase or dexamethasone.40

Treatment of AYA Patients with ALL

There are important differences in how ALL is treated in
pediatric and AYA patients that may contribute to the poor
outcomes observed in these patients. AYA patients are less
likely to be enrolled in clinical trials. Clinical trials help to
maintain standardization of care and may be an important
factor toward ensuring the effectiveness of treatment.10,41–43

One American study found that <5% of AYA cancer patients
were enrolled in clinical trials compared with 60% of pedi-
atric patients.44 Additionally, children with ALL are gener-
ally cared for by a parent or legal guardian who may help
maintain compliance throughout the prolonged treatment
schedules. Treatment compliance is often problematic in
AYA patients who may require substantial support to cope
with treatment-related toxicities.45–47 Bhatia et al. evaluated
adherence to mercaptopurine treatment schedules in 327
patients diagnosed with ALL.43 The results showed signifi-
cantly lower adherence over a 6-month period in patients
aged q12 years compared with younger patients (85.8% vs.
93.1%, p < 0.001). Investigators also found a higher risk of
relapse in patients with lower adherence rates, highlighting
the importance of high treatment adherence.47

While socioeconomic factors may contribute to the poor
outcomes seen in AYA patients, likely the most critical—and
most readily addressable—difference between pediatric and
AYA treatment of ALL is the type of protocol used to treat each
patient population. Pediatric protocols typically contain high
doses of vincristine, corticosteroids, and asparaginase. In pedi-
atric trials, adolescents are often treated as high-risk patients and
are given a more intensified chemotherapy schedule. The
treatment of AYA patients typically includes the use of allo-
geneic stem cell transplantation (SCT), a procedure associated
with significant adverse events (AEs) and with a transplant-
related mortality rate up to 20%. Pediatric protocols restrict SCT
to a minority of patients with specific high-risk features.48,49

During the past decade, a number of retrospective trials have
evaluated outcomes in AYA patients treated on either adult or
pediatric protocols.15–21 The results of these studies show a
consistent trend toward improved outcomes for AYA patients
treated on pediatric ALL protocols compared with similar
patients treated on adult ALL protocols (Fig. 1).15,16,18,19,21

Boissel et al. compared outcomes in patients aged 15–20 years
treated according to the French ALL Cooperative Group
(FRALLE)-93 and Leucemie Aiguë Lymphoblastique de
l’Adulte (LALA)-94 protocols.15 The pediatric FRALLE-93
protocol included significantly more vincristine, steroids, and
asparaginase compared with the adult LALA-94 protocol. In
FRALLE-93, patients were exposed to up to 20 times more
cumulative amounts of asparaginase compared with patients in
LALA-94. Asparaginase was incorporated into induction and
delayed intensification in FRALLE-93 compared with a 2-day
exposure in LALA-94. Investigators found that the patients
treated in the pediatric FRALLE-93 trial showed significantly
higher complete response (CR, 94% vs. 83%), 5-year event-
free survival (EFS; 67% vs. 41%), and OS (78% vs. 45%)
compared with patients treated in the adult LALA-94 trial.15
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The North American Cancer and Acute Leukemia Group B
(CALGB) and the Children’s Cancer Group (CCG) also
retrospectively evaluated patients treated according to adult-
or pediatric-based protocols.19 Overall, 321 AYA patients,
aged 16–20 years, were treated on either adult CALGB or
pediatric CCG treatment regimens. CALGB trials included a
five-drug remission induction regimen (cyclophosphamide,
daunorubicin, vincristine, prednisone, and asparaginase).
Patients in the CCG trials were treated with either a standard
CCG protocol or an augmented regimen that included greater
exposure to asparaginase during consolidation, interim
maintenance, and delayed intensification. At a 7-year follow-
up, AYA patients in CCG showed EFS of 63% and OS of
67% compared with AYA patients in CALGB who showed
EFS of 34% and OS of 46%. Subsequent retrospective reports
revealed similar benefits when evaluating adolescent patients
treated with pediatric protocols.16–18 Taken together, these
results show a consistent trend toward better outcomes for
young adolescent patients (aged 15–19 years) treated on
pediatric regimens with greater cumulative doses of vin-
cristine, steroid, and asparaginase.

Although these results highlight substantial improvements
for adolescents treated on pediatric regimens, the patient
populations in these retrospective studies were restricted to
individuals aged 20 years and younger. Treatment-related
AEs associated with asparaginase-containing regimens are
generally believed to increase with age. Patients aged 46–60
years showed poor tolerance of asparaginase when compared
with patients aged 14–45 years.50 Establishing the feasibility
of asparaginase use in the older adult population is currently a
critical area of research.

Results of several recent clinical trials suggest that the
improved outcomes with pediatric-like treatment protocols
can be generalized to the broader AYA population.50–53

Storring et al. evaluated 85 BCR-ABL–negative newly di-
agnosed ALL patients (aged 18–60 years) treated on a
modified Dana–Farber Cancer Institute (DFCI) 91-01 Con-
sortium Protocol, which included high-dose weekly aspar-
aginase for 30 weeks during induction.51 The CR rate in these
adult patients was 89%, and the 5-year OS was 63%. Age was
a prognostic factor, with younger adult patients, aged 35
years or younger, showing greater 3-year OS compared with

patients older than 35 years of age (83% and 52%, respec-
tively). Prolonged asparaginase treatment was generally well
tolerated, with only 12 patients failing to receive the com-
plete 30 weeks of scheduled asparaginase therapy during
intensification. Interestingly, patients who received at least
80% of their planned asparaginase therapy showed signifi-
cantly greater 3-year OS and a lower cumulative risk of re-
lapse compared with patients who were unable to receive
>80% of their scheduled treatment. Fathi et al.54 examined
the efficacy in an older population of a protocol derived from
a completed DFCI consortium regimen used in younger
adults. Pegylated (PEG)-asparaginase was given to 30 pa-
tients aged 51–75 years during induction and Cycle 1 of
consolidation phases of therapy. A total of 19 of 29 evaluable
patients achieved CR. Of the 18 patients who achieved CR
after induction therapy, disease-free survival (DFS) at 1 year
was 77%; the 1-year OS of 61% for evaluable patients with at
least 1 year of follow-up was significantly higher than the
historical rate of 33%.

The inclusion of asparaginase is potentially a key factor in
the achievement of improved long-term outcomes for AYA
patients treated on pediatric protocols. Hyper-CVAD is an
asparaginase-free chemotherapeutic regimen widely used to
treat adults with ALL.13,55–61 This regimen consists of two
alternating cycles: Cycle A, characterized by fractionated
cyclophosphamide, vincristine, doxorubicin, and dexameth-
asone, and Cycle B, characterized by high-dose methotrexate
and cytarabine.13,59 A number of recent studies have retro-
spectively compared patients treated on pediatric-inspired
and hyper-CVAD.61–63 In one study, patients treated on
either the CALGB-8811 or hyper-CVAD treatment regi-
men were retrospectively compared.61 As reviewed above,
CALGB-8811 included the use of asparaginase, although at
a lower cumulative dose than in pediatric-based protocols.
The investigators found that the majority of patients on both
protocols achieved first remission, with CR rates of 84% for
hyper-CVAD and 74% for CALGB-8811. However, a lower
5-year OS rate was seen in patients treated on hyper-CVAD
compared with CALGB-8811 (26% vs. 44%, respectively).
Similarly, a recent report from Alacacioglu et al.62 found
similar CR rates after induction therapy for patients treated
with BFM or hyper-CVAD protocols (95% and 96%,

FIG. 1. Retrospective comparison of
outcomes in adolescent and young
adult (AYA) patients treated on pedi-
atric and adult protocols. *2-year OS;
**5-year OS; ***7-year OS. AIEOP,
Italian Association of Pediatric He-
matology and Oncology; CALGB,
Cancer and Leukemia Group B; CCG,
Children’s Cancer Group; DCOG,
Dutch Childhood Oncology Group;
FRALLE-93, French ALL Coopera-
tive Group; GIMEMA, Italian Group
for Adult Hematologic Diseases; HO-
VON, Hemato-Oncology Cooperative
Study Group; LALA-94, Leucemie
Aiguë Lymphoblastique de l’Adulte;
OS, overall survival.
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respectively). However, patients in the BFM group showed
higher 5-year survival rates compared with the hyper-CVAD
group (59% vs. 34%, respectively). In contrast with these
reports, Rytting et al.63 found no significant difference in
3-year OS in a retrospective study of patients treated on an
augmented-BFM protocol when compared with historically
matched patients treated with hyper-CVAD (74% and 71%,
respectively).63 Outcomes for clinical trials of AYA patients
with ALL treated on pediatric-like and hyper-CVAD regi-
mens are summarized in Table 1.50,52,53,55,58–61,63–66

Similar long-term results were observed in a modeling
study of AYA patients treated on hyper-CVAD or a
pediatric-inspired protocol.67 Investigators used an explor-
atory decision-analytic approach to model the survival and
quality-adjusted survival of AYA patients treated according
to these different protocols. Model results at 1 year showed
only minor differences between protocols. However, survival
and quality-adjusted survival were both noticeably greater in
the pediatric-inspired group at 5 and 10 years compared with
hyper-CVAD.

Asparaginase

The use of asparaginase as a chemotherapeutic agent dates
back to 1953 when Kidd et al. reported that guinea pig serum
induced leukemic cell death when injected into diseased
mice.68 In 1961, asparaginase was identified as the agent
responsible for this antileukemic effect and was subsequently
investigated for use in human cancer patients.69 Unlike
healthy cells, leukemic blasts do not produce asparagine and
rely exclusively on extracellular sources of the amino acid.70

Asparaginase takes advantage of this metabolic difference
by catalyzing the breakdown of asparagine to aspartic acid
and ammonia, depriving leukemic cells of the amino acid.71

Healthy cells continue to produce asparagine de novo, through
the enzymatic action of asparagine synthetase, and are largely
spared. However, prolonged asparagine deprivation in leu-
kemic cells results in reduced DNA, RNA, and protein syn-
thesis and eventually leads to the activation of programmed
cell death mechanisms.71

Asparaginase activity levels show an inverse relationship
with circulating asparagine concentrations and are often used
to determine a patient’s asparagine depletion status.72–75

Human and animal studies have shown that serum aspar-
aginase activity levels q0.1 IU/mL are adequate for aspar-
agine depletion, and this criterion has become accepted as the
minimal therapeutic level in practice.74,76 The regular mea-
surement of asparaginase activity was used in several pedi-
atric trials to ensure that the patients maintain asparagine
depletion throughout treatment.77,78

As a foreign protein, asparaginase has the potential to elicit
an immune response when administered to patients. Immune
reactions to asparaginase are broadly classified as clinical
hypersensitivity or subclinical hypersensitivity (also referred
to as ‘‘silent inactivation’’). Both clinical and subclinical
hypersensitivity are associated with reduced asparaginase
activity levels in patients and can lead to poor outcomes if not
properly addressed.78–81

There are three types of asparaginase approved for the
treatment of ALL. Native Escherichia coli asparaginase and
PEG-asparaginase are derived from the bacterium E. coli.82

Owing to their common origins, these asparaginases display a
significant amount of cross-reactivity with respect to their
ability to elicit an immune response in patients.83 The third
asparaginase, asparaginase Erwinia chrysanthemi, is derived
from the bacterium Erwinia chrysanthemi (revised taxonomy:
Dickeya dadantii) and shows limited cross-reactivity with
E. coli–derived asparaginases.83,84 Asparaginase Erwinia
chrysanthemi is indicated as a component of a multiagent
chemotherapeutic regimen for the treatment of patients with
ALL who have developed hypersensitivity to E. coli–derived
asparaginase.85 Recently, the supply of native E. coli aspar-
aginase has been discontinued in the United States, and has
largely been replaced by PEG-asparaginase as first-line treat-
ment for patients with ALL.86

All three asparaginases share the same mechanism of ac-
tion, the deamination of asparagine. However, each aspar-
aginase has markedly different pharmacokinetics, which
must be accounted for when establishing dose and treatment
schedules (Table 2).87 Due to the addition of polyethylene

Table 1. Characteristics and Outcomes in Older Patients Treated on Pediatric-Like

and Hyper-CVAD Protocols for ALL

Reference Patients (n) Age, years median (range) CR OS, years OS

Pediatric-like
Ribera et al., 200853 81 20.0 (15–30) 98% 6 69%
Huguet et al., 200950 225 31.0 (15–60) 93.5% 3.5 60%
DeAngelo et al., 200764 75 28 (18–50) 84% 2 77%
Rijneveld et al., 201165 54 26 (17–40) 91% 2 72%
Haiat et al., 201152 40 33 (18–55) 90% 3 75%
Cluzeau et al., 201266 89 19 (15–29) 99% 5 66%
Rytting et al., 201463 85 21 (13–39) 94% 3 74%
Hyper-CVAD
Garcia-Manero et al., 200059 204 39.5 (16–79) 91% 5 <30 years = 54%;

30–49 years = 42%
Kantarjian et al., 200458 288 40 (15–92) 92% 5 38%
Kozlowski et al., 201460 24 32 (18–72) 89% 5 47%
Morris et al., 201155 63 29 (14–76) 86% 5 48%
Buyukasik et al., 201361 166 29 (16–63) 84.2% 5 26.3%

ALL, acute lymphoblastic leukemia; CR, complete response; OS, overall survival.
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glycol, PEG-asparaginase shows a longer half-life compared
with the other two asparaginase preparations and is therefore
able to provide a longer period of asparagine depletion from
a single dose.79,88 Asparaginase Erwinia chrysanthemi
shows a more rapid half-life and should be administered
more frequently than PEG-asparaginase to maintain aspara-
gine depletion.87,89 The recommended substitution dose of
asparaginase Erwinia chrysanthemi in patients who experi-
ence hypersensitivity to PEG-asparaginase is 25,000 IU/m2

administered intravenously (i.v.) or intramuscularly (i.m.) six
times on a Monday, Wednesday, Friday schedule (2 weeks) to
replace each remaining dose of PEG-asparaginase in the
patients’ scheduled treatment.85,89 In 2014, the U.S. Food and
Drug Administration approved the i.v. administration of
asparaginase Erwinia chrysanthemi.85 Based on population
data, the mean half-life of asparaginase Erwinia chrysanthemi
following i.v. infusion was 7.51 hours, compared with 15.6
hours following i.m. injection.85 Due to these differences in
pharmacokinetics, it is suggested that nadir serum aspar-
aginase activity (NSAA) levels be monitored in patients re-
ceiving i.v. asparaginase. Patients may be switched to i.m.
administration if desired NSAA levels are not achieved.85

Asparaginase Use in AYA Patients

The pharmacokinetics of asparaginase has been exten-
sively studied in pediatric patients. However, few investiga-
tions have focused on asparaginase use in AYA patients.90–92

Douer et al. evaluated asparaginase pharmacokinetics in
adult patients (aged 17–55 years) with ALL.90 Twenty-five
newly diagnosed patients were administered a single dose
of PEG-asparaginase 2000 IU/m2 during induction. In these
adult patients, the population average asparaginase activity
correlated well with serum asparagine deamination, and the
half-life of i.v. administered PEG-asparaginase was reported
as 7 days, similar to what has been shown in pediatric pa-
tients.87,92 Furthermore, asparaginase activity following
PEG-asparaginase administration was long-lasting, with 81%
of patients showing complete deamination of asparagine at
21 days post-infusion.

Although it is not known how long circulating asparagine
levels must be depleted for programmed cell death mecha-
nisms to be activated in leukemic blasts, there is strong
clinical evidence that prolonged exposure to asparaginase is
associated with superior outcomes.93,94 The DFCI ALL
Consortium Protocol 91-01 evaluated outcomes in 352 pe-
diatric patients (aged 0–18 years) treated on an intensive 30
weeks of high-dose asparaginase during intensification.93

The investigators found an increased 5-year EFS in patients
who were able to receive >25 weeks of asparaginase therapy.
EFS was 90% for patients who received >25 weeks of as-

paraginase compared with 73% in patients who tolerated
p25 weeks ( p < 0.01). Common reasons for discontinuing
asparaginase treatment prior to the 25-week mark in this
study included pancreatitis (39%), clinical allergy (19%), and
central nervous system thrombosis (12%).

The CALGB-9511 study measured asparaginase activity
in 85 adult patients (aged 17–71 years) receiving PEG-
asparaginase 2000 IU/m2 during induction and first intensifi-
cation.91 Depletion was defined as trough serum asparaginase
activity >0.03 IU/mL in this study. The majority of adult
patients maintained asparagine depletion (n = 63), with 22
patients failing to achieve asparaginase activity >0.03 IU/mL
in at least one measurement. Adult patients who failed to
achieve depletion showed significantly inferior OS and DFS
compared with patients with depletion. The reported hazard
ratio for OS and DFS between these two groups of patients
was 2.37 ( p = 0.002) and 2.21 ( p = 0.012), respectively.

Safety and Toxicity of Asparaginase in AYA Patients

Asparaginase use in AYA patients has historically been
limited because of the perception of an increased risk of tox-
icity with age. Hepatotoxicity—grade 3–4 elevations in as-
partate aminotransferase and alanine aminotransferase—was
the most common toxicity in a study with 152 patients aged
18–60 years given PEG-asparaginase according to a regimen
adapted from the augmented arm of the CCG-1882 protocol.95

In an evaluation of 76 newly diagnosed adolescent and adult
patients (aged 14–68 years) treated with PEG-asparaginase,
investigators reported a greater frequency of grade 3–4 hepatic
and pancreatic AEs compared with 1274 pediatric patients.96

The authors suggest that coexisting morbidities, possibly due
to increased use of hepatotoxic and pancreatotoxic drugs, may
contribute to the increased toxicities seen in AYA patients, as
healthy adults were able to tolerate PEG-asparaginase to an
extent comparable with younger patients in the study.96 Al-
though increased pancreatic toxicity with asparaginase is often
associated with AYA patients, it should be noted that several
studies reported a relatively low rate of pancreatitis in AYA
patients undergoing asparaginase treatment.50,53,65,95,97 De-
tailed recommendations regarding the management of pan-
creatitis and other asparaginase-associated toxicities are
beyond the scope of this review and have been summarized
elsewhere.96 The continued use of asparaginase is not re-
commended in the event of clinically confirmed pancreatitis.96

Asparaginase use has also been associated with venous
thromboembolic events (VTE) in both pediatric and adult pa-
tients. Decreased synthesis of antithrombin and fibrinogen,
leading to increased thrombin generation, is commonly asso-
ciated with asparaginase use.98–100 Asparaginase-related VTE
has been reported in 3–5% of pediatric patients undergoing

Table 2. Half-Life of the Three Asparaginase Preparations

Asparaginase Erwinia
chrysanthemi79 1 · i.m.
dose of 25,000 IU/m2

(n = 10)

Asparaginase
Erwinia chrysanthemi85

1 · i.v. dose of
25,000 IU/m2 (n = 24)

Native Escherichia
coli asparaginasea,79

1 · i.m. dose of
25,000 IU/m2 (n = 17)

PEG-asparaginase79

1 · i.m. dose of
2500 IU/m2 (n = 10)

Half-life, days (mean – SD) 0.65 – 0.13 0.31 – 1.79 1.28 – 0.35 5.73 – 3.24

aNative E. coli asparaginase is no longer available in the United States.
i.m., intramuscular; i.v., intravenous; PEG, polyethylene glycol (pegylated); SD, standard deviation.
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treatment for ALL.99,101–104 Increased age has been shown to
be a significant predictor of VTEs, with thrombotic complica-
tions occurring in up to 34% of adult patients in one study.105

Deep venous thrombosis should be managed with antic-
oagulation therapy, and it is recommended that asparaginase
be temporarily discontinued in the case of clinically signifi-
cant bleeding or thrombotic events.96 Many antithrombotic
prophylactic approaches have been adopted, including hepa-
rin or antithrombin substitution, with varied clinical evi-
dence.102,105,106 Asparaginase may be reintroduced once acute
toxicity and clinical symptoms have resolved.96

Douer et al.107 evaluated the pharmacokinetics and toxicity
of PEG-asparaginase in 51 adult patients (aged 18–57 years)
during induction therapy. In this trial, PEG-asparaginase dos-
ing was structured to avoid overlapping toxicity with other
chemotherapy drugs and to improve overall treatment toler-
ance. Additionally, PEG-asparaginase intervals were length-
ened to q4 weeks. The investigators reported that the most
common asparaginase-associated toxicities (grade 3–4) were
hyperbilirubinemia, transaminitis, hyperglycemia, and hyper-
triglyceridemia (Table 3). No deaths were reported as a result
of asparaginase-related toxicity. Overall, PEG-asparaginase
was discontinued owing to prohibitive toxicity in 20% of pa-
tients (n = 10). The most common reasons for discontinuation
in these patients were pancreatitis (n = 6) and severe clinical
hypersensitivity (n = 3).

Clinical hypersensitivity reactions range in severity, from a
localized rash or pain around the injection site to a systemic
immune reaction, possibly resulting in anaphylaxis.108 The
prevalence of asparaginase hypersensitivity in pediatric pa-
tients with ALL ranges from 3–45%.75,78,81,97,109,110 Although
less clinical data exist in adult patients, hypersensitivity rates
do not appear to differ with age. In CALGB-8811, the inci-
dence of severe hypersensitivity reactions was reported as 11%
for adults treated with native E. coli asparaginase.111 For
newly diagnosed adult patients (aged 15–39 years) enrolled in
the U.S. Intergroup Trial C10403, grade 3–4 hypersensitivity

reactions were found to occur in 8–13% of patients treated
with PEG-asparaginase.112,113 In the compassionate-use trial
for asparaginase Erwinia chrysanthemi, hypersensitivity re-
actions were reported in 11% of AYA patients compared with
15% of patients aged 10 years and younger.97 Patients with
hypersensitivity to E. coli–derived asparaginase should
immediately discontinue therapy and be switched to treatment
with asparaginase Erwinia chrysanthemi. Asparaginase
Erwinia chrysanthemi is indicated for use as a component of a
multiagent chemotherapeutic regimen for the treatment of
patients with ALL who have developed hypersensitivity to
E. coli–derived asparaginase.80,82

The development of antiasparaginase antibodies can occur
in patients without any overt signs of an immune response, a
condition referred to as subclinical hypersensitivity or ‘‘silent
inactivation.’’78,81,114 Subclinical hypersensitivity in pediatric
patients is characterized by decreased asparaginase activity
levels and can be associated with poor outcomes in those who
have not switched to an alternative asparagine preparation once
subclinical hypersensitivity is established.77,78,81 Asparaginase
Erwinia chrysanthemi shows no cross-reactivity with E. coli–
derived asparaginases and is the preferred alternative in pa-
tients who develop allergy to native E. coli or PEG-
asparaginase.76,83,96 The regular monitoring of asparaginase
activity levels throughout the course of therapy can help
identifiy patients who develop subclinical hypersensitivity
and allows clinicians to adjust treatment actively to the
individual patient.78 In a study by Burke et al., patients
aged 18–57 years were treated with PEG-asparaginase ac-
cording to a regimen adapted from the pediatric protocol
CCG-1882.115 A total of 34 of 61 PEG-asparaginase doses
were associated with antiasparagainse antibody production, 27
of which occurred within the first 7 days post-dose, and only
two of which were associated with an overt hypersensitivity
response. However, serum asparaginase activity <0.2 IU/mL
at 14 days post-dose was found in only 2 of 26 antibody-
positive patients, suggesting that antibody production is not
associated with increased drug clearance in these patients.

A large (n = 1368) compassionate-use trial evaluated the
safety and toxicity of asparaginase Erwinia chrysanthemi
in patients of various ages.97 The study included 147 AYA
patients (aged 16–39 years) and reported that the safety profile
of asparaginase Erwinia chrysanthemi in these patients was
consistent with that found in the total population (Fig. 2). The
reported incidence of pancreatitis was similar for patients aged
16–40 years and younger than 10 years (3.4% and 3.0%, re-
spectively). Rates of thrombosis were slightly higher in AYA
patients, with thrombosis reported in 4.1% of AYA patients
compared with 1.3% of children younger than 10 years of age.
All patients included in the study had a previous grade q2
hypersensitivity reaction to E. coli–derived asparaginase and
were switched to asparaginase Erwinia chrysanthemi
25,000 IU/m2 administered on a Monday, Wednesday, Friday
regimen. Overall, asparaginase Erwinia chrysanthemi was
well-tolerated in AYA patients and allowed the majority
(72.8%) to complete their planned course of asparaginase
treatment. Although outcomes were not reported in this study,
the therapeutic benefits of receiving the full course of aspar-
aginase treatment are well-established.97

Safety and toxicity data from a large prospective trial
evaluating AYA patients treated on a pediatric regimen were
recently presented in abstract form.112,113 Between November

Table 3. PEG-Asparaginase Toxicity in Patients

Aged 18–57 Years (N = 51)107

Toxicity

Grade 1 or 2 Grade 3 or 4

n n %

Pancreatitis 0 7 13.7
Allergy 2 3 5.9
Deep venous thrombosis 0 8 15.7
Bleeding 5 1 2
Transaminitis 19 32 62.7
Hyperbilirubinemia 30 16 31.3
Hyperglycemia 29 17 33.3
Hypertriglyceridemia 6 9 17.6
Fatigue 34 4 7.8
Neuropathy 10 1 2
Vomiting 19 2 3.9
Nausea 34 3 5.9
Diarrhea 16 0 0
Constipation 18 0 0
Headache 27 1 2
Edema 6 0 0

Reprinted and adapted with permission from Douer et al. 2014.107

ª 2014 American Society of Clinical Oncology. All rights reserved.
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2007 and August 2012, 318 patients (aged 16–39 years) were
enrolled in the U.S. Intergroup Trial C10403 and treated ac-
cording to the Children’s Oncology Group (COG AALL0232)
protocol by adult oncologists. Safety and toxicity results were
compared with 159 patients from COG AALL0232. The in-
cidence of hepatic toxicity, pancreatitis, and osteonecrosis
were found to be similar between AYA patients in both
groups. Grades 3–4 hepatic and pancreatic dysfunction were
slightly greater in C10403 compared with pediatric patients,
likely due to an increased use of alcohol or other hepatotoxic
and pancreatotoxic drugs. Overall, healthy adults were able to
tolerate asparaginase therapy comparable with younger pa-
tients. Treatment-related mortality was low (2%) in C10403,
and the investigators concluded that treatment with a pediatric
regimen was feasible in AYA patients up to 40 years of age.

Conclusions and Future Directions

The treatment of AYA patients diagnosed with ALL rep-
resents a unique challenge to the clinical oncologist. Sub-
stantial evidence indicates that AYA patients treated on
pediatric protocols show improved survival compared with
patients treated on traditional adult regimens. Although cer-
tain treatment-related toxicities are more prevalent in AYA
patients, emerging clinical evidence suggests that high-
intensity pediatric regimens are feasible in the AYA popu-
lation. As is the case in pediatrics, the effective management
of treatment-related toxicities is critical to ensure that AYA
patients receive the full benefit of ALL therapy. The ongoing

development of novel asparaginase preparations, such as
pegylated recombinant Erwinia-derived asparaginase (peg-
crisantaspase) and red blood-cell encapsulated asparaginase,
also promises to reduce immunogenicity and increase the
overall length of asparagine depletion.
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