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Abstract: We have developed a Monte Carlo wavefunction (MCWF) approach to the singlet fission
(SF) dynamics of linear aggregate models composed of monomers with weak diradical character.
As an example, the SF dynamics for a pentacene dimer model is investigated by considering the
intermolecular electronic coupling and the vibronic coupling. By comparing with the results by the
quantum master equation (QME) approach, we clarify the dependences of the MCWF results on the
time step (∆t) and the number of MC trajectories (MC). The SF dynamics by the MCWF approach is
found to quantitatively (within an error of 0.02% for SF rate and of 0.005% for double-triplet (TT) yield)
reproduce that by the QME approach when using a sufficiently small ∆t (~0.03 fs) and a sufficiently
large MC (~105). The computational time (treq) in the MCWF approach also exhibits dramatic
reduction with increasing the size of aggregates (N-mers) as compared to that in the QME approach,
e.g., ~34 times faster at the 20-mer, and the size-dependence of treq shows significant reduction from
N5.15 (QME) to N3.09 (MCWF). These results demonstrate the promising high performance of the
MCWF approach to the SF dynamics in extended multiradical molecular aggregates including a large
number of quantum dissipation, e.g., vibronic coupling, modes.

Keywords: Monte Carlo wavefunction; singlet fission; quantum master equation; molecular
aggregate

1. Introduction

Singlet fission (SF) is a photophysical process, where a singlet exciton state splits into two triplet
excitons, and is known to be a very fast reaction process on time scales of pico- or subpico-seconds [1–5].
One of the reasons is that the two triplet excitons created are firstly coupled and in a singlet state
overall. The SF materials in solar cells are expected to reduce the energy loss concerning the excess
absorption energy by creating another triplet exciton and to increase the number of the created triplet
excitons which reach the donor-acceptor interface due to their longer lifetime than singlet excitons [6].
Thus, intensive experimental and theoretical studies on SF have been conducted toward development
of efficient single-junction solar cells. Nakano et al. clarified that the molecules suitable for efficient SF
materials tend to exhibit weak diradical character (y0) as well as much weaker tetraradical character
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(y1) [7–9], i.e., ~0.1 < y0 < ~0.5 and y1/y0 < ~0.2 (at the spin-projected unrestricted Hartree-Fock
(PUHF) level of approximation), which are needed to satisfy the energy level matching conditions
for the monomer presented by Smith and Michl [1]: (a) 2E(T1) ∼ E(S1) or 2E(T1) < E(S1) and (b)
2E(T1) < E(T2), where S1 and T1 indicate the lowest singlet and triplet exciton states, respectively,
and T2 indicates the second triplet exciton state. In addition, the investigation of the effects of
molecular packing and vibronic coupling on the SF dynamics is also indispensable for understanding
the detailed SF mechanism as well as for constructing the rational design guidelines for highly-efficient
SF materials [1–5,10–19]. The SF dynamics is characterized by the SF rate (singlet Frenkel exciton (FE)
state (e.g., S1S0)→ double-triplet (correlated triplet-pair) exciton state 1(T1T1), which is referred to as
TT hereafter) and TT yield. Although the SF rate is often evaluated by perturbation theory (Fermi’s
golden rule) using the electronic couplings calculated for cluster models [17,20], it is known that there
are some application limits in such kinetic models [13,20,21]. Thus, non-perturbative approaches
such as the time-convolutionless (TCL) quantum master equation (QME) approach [22] are recently
applied to the exciton dynamics in oligomers with multiple exciton states [23–25]. For SF dynamics in
oligomer cases, however, the numerical integration of the QME using the reduced density matrix is
known to encounter difficulty in the case of a large number of bases (NB) since the number of density
matrix elements is proportional to N2

B. One approach to overcome this difficulty is the Monte Carlo
wavefunction (MCWF) approach, which has been developed at first in the field of quantum optics by
Dalibard, Castin and Mølmer [26] and also by Carmichael [27] for simulating open quantum systems.
The dynamics by the MCWF approach is described by both the continuous time-evolution obtained
by solving the Schrödinger-type wave equation with non-Hermitian Hamiltonian, and quantum
jumps randomly interrupting the coherent evolution of the system. As a result, the MCWF approach
generates a large number of quantum trajectories of wavefunctions, and the ensemble average of the
quantum trajectories is proved to satisfy the QME under the Markov approximation for the reduced
system density operator [26,27]. Due to solving the Schrödinger-type wave equation (not QME),
a significant advantage of the MCWF approach lies in its small numerical efforts (the number of
elements is proportional to NB). This advantage is predicted to become marked when we investigate
the dynamics in large-scale dissipative quantum systems, e.g., SF dynamics of oligomers with a large
number of vibronic coupling modes.

In this study, the first-order MCWF approach is applied to the SF dynamics of molecular
aggregates involving vibronic couplings. We investigate the dependences of the accuracy of the
results of SF dynamics (SF rate and TT yield) on time step and the number of MC trajectories using a
pentacene dimer model, and discuss the applicability and performance of the MCWF approach to the
SF dynamics for larger-size molecular aggregate systems.

2. Hamiltonian of a Linear Molecular Aggregate

The total Hamiltonian of a linear molecular aggregate (N-mer) (Figure 1a) [25]:

H = Hex + Hph + Hex-ph (1)

where Hex is the exciton Hamiltonian; Hph and Hex-ph indicate the phonon (vibrational) Hamiltonian
and exciton-phonon (vibronic) coupling Hamiltonian, respectively. In the exciton Hamiltonian Hex,
only the interactions between neighboring monomers are considered, while the direct couplings
between FE and TT states, couplings between charge transfer (CT) states and those between TT states
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are ignored because they are known to be mostly much smaller than the other couplings [1,2]. Thus,
the approximate exciton Hamiltonian Hex is expressed as [25]

Hex = HFE + HCT + HTT + Hint

=
N
∑

i=1
ES1S0

F†
i Fi +

N−1
∑

i=1

(
VS1S0/S0S1 F†

i Fi+1 + h.c.
)
+

N−1
∑

i=1

(
EACC†

i,i+1Ci,i+1 + ECAC†
i+1,iCi+1,i

)
+

N−1
∑

i=1
ETTT†

i,i+1Ti,i+1

+
N−1
∑

i=1

(
VS1S0/ACF†

i Ci,i+1 + VS0S1/CAF†
i+1Ci+1,i + VS1S0/CAF†

i Ci+1,i + VS0S1/ACF†
i+1Ci,i+1 + h.c.

)
+

N−1
∑

i=1

(
VTT/ACT†

i,i+1Ci,i+1 + VTT/CAT†
i,i+1Ci+1,i + h.c.

)
,

(2)

where the first and the second terms in the right-hand side indicate the FE Hamiltonian; the third and
the fourth terms represent the CT and TT Hamiltonians, respectively; the remaining terms represent
the interactions between different-type exciton states, i.e., FE–CT and TT–CT. Here, F†

i (Fi) denotes
the creation (annihilation) operator for a FE state at the i-th monomer; C†

i,i+1(Ci,i+1) denotes the
creation (annihilation) of an anion (A) and a cation (C) at the i-th and (i+1)-th monomer, respectively;
T†

i,i+1(Ti,i+1) denotes the creation (annihilation) of two triplets over the i-th and (i+1)-th monomers.
The term h.c. stands for the Hermitian conjugate of the terms already included in each parenthesis.
In this model, we approximately consider the situation that all correlated triplet pairs are located on
adjacent monomers, i.e., the migration of triplet excitons is ignored. For simplicity, since we consider
symmetric linear aggregates composed of identical monomers with the same intermonomer distance,
FE exciton energies ES1S0

at all the monomers are identical with each other (referred to as EFE hereafter);
CT energies ECA and EAC at all (i, i+1)-pair of the monomers are equal to each other (referred to as ECT

hereafter); TT energies ETT are the same over all the (i, i+1)-pair of monomers. The VS1S0/S0S1 indicates
the FE coupling between S1S0 at the (i, i+1)-th monomers and S0S1 at the (i, i+1)-th monomers, so that
VS1S0/S0S1 = VS0S1/S1S0(≡ Vex) in the present case. For the FE–CT couplings, there are two types of
couplings, VS1S0/AC = VS0S1/CA and VS1S0/CA = VS0S1/AC. Similarly, VTT/CA = VTT/AC is considered
for the TT–CT couplings.
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Figure 1. Linear molecular aggregate (N-mer) model with monomer number (a) and its dimer (N = 2)
unit (θ = 60◦, R = 3.5 Å) (b).

The vibrational and vibronic coupling Hamiltonians are represented in atomic units (m = c = } = 1
a.u.), respectively, by [24,25]:

Hph = ∑
a

ωab†
a ba, and Hex-ph = ∑

m
∑
a
|m〉〈m|ωa

(
gmaba + g ∗mab †

a

)
(3)

Here, the vibrational Hamiltonian Hph is described by a collection of harmonic oscillations, and b†
a

(ba) indicates the creation (annihilation) operator of the a-th vibrational mode with a frequency ωa,
where the vibrational modes are approximated to be common for each diabatic exciton state. In the
vibronic Hamiltonian Hex-ph, the sum of m covers all the diabatic exciton states and a runs over all the
vibrational modes, where gma indicates the coupling constant between diabatic exciton state m (with
energy ωm) and vibrational mode a (with energy ωa). In this study, we consider only the Holstein
coupling, which causes the fluctuation of the energy gaps among the FE, CT and TT states and is
predicted to provide significant effects on the SF dynamics [14,24,25]. Note here that the MCWF
can be applied to another type of vibronic coupling, i.e., the Peierls coupling [12], which causes a
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fluctuation of electronic coupling (off-diagonal term in the exciton Hamiltonian Hex matrix) and is
mostly a function of intermolecular vibrational modes. The diabatic exciton bases for FE, CT and TT
states of a linear N-mer model are defined as:

{|FE〉} = {|S1S0 · · ·〉, |S0S1 · · ·〉, · · · , |· · · S0S1S0〉, |· · · S0S0S1〉} (4)

{|CT〉} = {|CAS0 · · ·〉, |ACS0 · · ·〉, |S0CAS0 · · ·〉, |S0ACS0 · · ·〉, · · · , |· · · S0CA〉, |· · · S0AC〉} (5)

{|TT〉} = {|TTS0 · · ·〉, |S0TTS0 · · ·〉, · · · , |· · ·TT〉} (6)

The numbers of FE, CT and TT bases for the linear N-mer model are N, 2(N – 1), and N – 1, respectively
(total basis number NB = 4N − 3). The electronic couplings between those diabatic bases are obtained
from those for a dimer system in this study (see Figure 1b) [25].

3. Quantum Master Equation Approach and Monte Carlo Wavefunction Approach

The second-order time-convolutionless (TCL) QME under the Markov approximation is expressed
by [22–25]:

d
dt ρ(t) = −i[HS, ρ(t)]

− 1
2 ∑

m,ω
γm(ω)

(
A†

m(ω)Am(ω)ρ(t) + ρ(t)A†
m(ω)Am(ω)

)
+ ∑

m,ω
γm(ω)Am(ω)ρ(t)A†

m(ω), (7)

where m indicates the diabatic exciton state (Equations (4)–(6)); Am(ω) = ∑
Eq−Ep=ω

|p〉〈p|Am|q〉〈q|,

where Am ≡ |m〉〈m|, and {|p〉(= ∑
m

Cmp|m〉), Ep} indicates an eigenstate (adiabatic exciton state) and

an eigenvalue of Hex|p〉 = Ep|p〉. The second and the third terms on the right-hand side of Equation (7)
indicate the relaxation of exciton density matrix (causing SF), which is characterized by the relaxation
parameter γm(ω) under the Markov approximation [25]:

γm(ω) = 2π Jm(ω)(1 + nB(ω, T)) forω > 0,
γm(ω) = 2π Jm(−ω)nB(−ω, T) forω < 0,
γm(ω) = 4 λm

ωm c
kBT forω = 0,

(8)

where nB(ω, T) is the Bose-Einstein distribution of phonons with energyω at temperature T, kB is the
Boltzmann constant, and Jm(ω) indicates the spectral density of the Holstein vibrational mode of the
m-th diabatic exciton state. We employ an Ohmic function with a Lorentz-Drude cutoff [14,22–25]:

Jm(ω) =
1
π

2λmΩmω

ω2 + (Ωm)
2 (9)

where λm and Ωm indicate the reorganization energy and the cutoff frequency, respectively, in the m-th
diabatic exciton state. Note here that this spectral density indicates a vibronic coupling distribution
with a peak value of λm/π at Ωm vibrational mode. In this study, we consider an identical spectral
density case (λ ≡ λm, Ω ≡ Ωm) for different diabatic exciton states since our purpose is to just compare
the results between the QME and MCWF approaches though the effects of state-dependent spectral
densities are discussed in our previous paper [24]. Using Equation (7), the working equations to solve
for diagonal and off-diagonal (p < q) density matrix elements in the representation of the adiabatic
exciton basis {|p〉} are given by:

d
dt

ρpp(t) = −∑
r

Γpp;rrρrr(t) (10)

d
dt

ρpq(t) = −iωpqρpq(t)−∑
r,s

Γpq;rsρrs(t) (11)
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where ωpq ≡ ωp −ωq and decay rate Γpq;rs is expressed as

Γpq;rs = 1
2 ∑

t
∑
m

δsq|Cmt|
2C∗mpCmrγm(ω)δωpt ,ωδωrt ,ω + 1

2 ∑
t

∑
m

δrp|Cmt|
2C∗msCmqγm(ω)δωst ,ωδωqt ,ω

−∑
m

C∗mpCmrCmqC∗msγm(ω)δωrp ,ωδωsq ,ω.
(12)

As seen from these equations, the computational complexity (numerical efforts) of the QME approach
is approximately proportional to N5 (NB (the number of bases) is the same order as the number of
monomers (N) in the present case) since the number of density matrix elements is proportional to N2

and threefold iteration loops (∝N3) are included in the right-hand side of Equation (11). This fact is
used later in the comparison of computational times for SF dynamics in aggregates between the QME
and MCWF approaches.

In the first-order MCWF approach, the explicit form of Lindblad operator Lrelax [26,27] is needed.
This describes the relaxation of reduced exciton density (the second and the third terms in Equation
(7)), and is expressed under the Markov approximation by [22–27]:

Lrelaxρ(t) ≡ −1
2∑

i

(
C†

i Ciρ(t) + ρ(t)C†
i Ci

)
+ ∑

i
Ciρ(t)C

†
i (13)

Note here that in principle, the MCWF approach can be applied to the QME with the Lindblad-type
relaxation term Equation (13) in the Markov approximation. From the integration of the QME (Equation
(7)) to the first order in δt, the following form is obtained [26,27]:

ρ(t + δt) ∼= Uρ(t)U† + δt∑
i

Ciρ(t)C†
i + O(δt2) (14)

where U indicates the non-Hermitian evolution (referred to as the “no-quantum-jump” evolution)
under the influence of the effective Hamiltonian Heff:

U = exp(−iHeffδt), where Heff = HS −
i
2∑

i
C†

i Ci (15)

Each term on the right-hand side of Equation (14) represents the “minitrajectories” [26,27]. The MCWF
approach simulates the evolution of quantum trajectories in Hilbert space conditioned on continuous
photodetection involving two types of elements: one is smooth evolution (“no-quantum-jump”
evolution) by the non-Hermitian Hamiltonian Heff, which originates in the first two terms on the
right-hand side of Equation (7), and another represents the random interruptions of the non-Hermitian
evolution by projections (quantum jumps) described by the second term on the right-hand side of
Equation (14) (or the third term in Equation (7)). These two types of evolutions are described by:

|Ψ(t)〉 → U|Ψ(t)〉, (no-quantum-jump) (16)

|Ψ(t)〉 → Ci|Ψ(t)〉. (i = 1, 2, . . .) (quantum jump) (17)

Note here that the MCWF approach can only treat wavefunctions instead of density matrices in order
to obtain the solutions of the QME (Equation (7)). This implies that the MCWF approach requires less
computational resources than a numerical integration of the QME, though alternative calculations of a
large number of quantum trajectories are needed before an average in the Monte Carlo approach to
obtain sufficiently converged solutions of Equation (7). However, since the generation of quantum
trajectories is completely independent of each other, the use of parallel computation can overcome
this difficulty. As a result, the MCWF approach is expected to be a highly-efficient simulation scheme
for treating large-scale open quantum systems involving a large number of degrees of freedom of the
system and reservoirs, e.g., exciton states and vibrational modes.
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In the MCWF approach, the density matrix evolution can be simulated with pure states such as
Equations (16) and (17) by using an expansion of density matrix into minitrajectories (see Equation
(14)). The first minitrajectory (the first term) of Equation (14) (m1) describes a no-quantum-jump
evolution and the second (m2) minitrajectories represent quantum jumps. It is noted that the first-order
unraveling specifies only one point in the interval δt to condition the density operator by quantum
jumps. The procedure of turning Equation (14) into a Monte Carlo simulation is obvious because each
minitrajectory in Equation (14) corresponds to the conditioned evolution of the system, which occurs
with a specific probability. Thus, the first-order MCWF procedure is described as follows [26,27]:

(i) A random number uniformly distributed between 0 and 1 is generated to choose a
minitrajectory (representing no-quantum-jump and/or quantum-jump evolutions of the system)
with a specific probability δp1 at the next time step δt.

(ii) The no-quantum-jump evolution is tested first because the probabilities of choosing other
minitrajectories (m2i) (involving quantum-jumps) are small for small δt. If the no-quantum-jump
minitrajectory (m1) is not chosen, one of the minitrajectories (m2i) involving quantum-jumps is chosen
at the specific probability δp2i. After the evolution δt of wavefunction for a chosen minitrajectory, the
resulting wavefunction is renormalized.

For minitrajectory m1:

Wavefunction |w f (1)〉 = U|ψ(t)〉√
δp1

(18)

Probability δp1 = 〈ψ(t)|U†U|ψ(t)〉 (19)

For minitrajectory m2i corresponding to Ci (Equation (17)):

Wavefunction |w f (2i)〉 = Ci|ψ(t)〉√
δp2i/δt

(20)

Probability δp2i = 〈ψ(t)|C†
i Ci|ψ(t)〉δt (21)

(iii) The procedure (i)–(ii) is repeated at each time step δt.
From Equations (7) and (13), the explicit forms of Lindblad operators Ci in Equation (13) are

given by:

Ci =
√

γm(ω)Am(ω) (22)

where i represents (m,ω).

4. Comparison of QME and MCWF Approaches to SF Dynamics in a Pentacene Dimer Model

In order to clarify the performance of the MCWF approach by comparing with the QME results,
we examine a pentacene dimer model with R = 3.5 Å and θ = 60◦ (N = 2 in Figure 1) [24,25], which
indicate the intermonomer distance between the nearest neighbor carbon atoms in the zigzag edges,
and the angle between the pentacene monomer plane and the longitudinal axis in parallel to the R
direction. The monomer geometry is optimized by the RB3LYP/cc-pVDZ method [25] and is employed
in the dimer model since the present study is just focused on the comparison between the MCWF
and QME results. The Hex for the dimer model is expressed in the representation of diabatic exciton
basis by:

|S1S0〉 |S0S1〉 |CA〉 |AC〉 |TT〉

Hex =


EFE Vex Vll −Vhh 0
Vex EFE −Vhh Vll 0
Vll −Vhh ECT 0

√
3/2Vlh

−Vhh Vll 0 ECT
√

3/2Vhl
0 0

√
3/2Vlh

√
3/2Vhl ETT


(23)
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The electronic couplings are calculated by the following equations [1,2]:

VS1S0/CA ≡ 〈CA|Hex|S1S0〉 ≈ 〈lA|F|lB〉 = Vll (24)

VS1S0/AC ≡ 〈AC|Hex|S1S0〉 ≈ −〈hA|F|hB〉 = −Vhh (25)

VTT/CA ≡ 〈TT|Hex|CA〉 ≈
√

3
2
〈lA|F|hB〉 =

√
3
2

Vlh (26)

VTT/AC ≡ 〈TT|Hex|AC〉 ≈
√

3
2
〈hA|F|lB〉 =

√
3
2

Vhl (27)

The FE coupling Vex is calculated using the transition densities of the monomers in the Mulliken
approximation [25]:

Vex = 〈S1S0|Hex|S0S1〉 ≈ ∑
m∈A

∑
n∈B

ρmρn
rmn

(28)

where ρm and ρn are the integrated transition densities at atom sites m (in monomer A ( hA → lA )) and
n (in monomer B ( hB → lB )), respectively, at the B3LYP/cc-pVDZ level of approximation and rmn is the
distance between m (in monomer A) and n (in monomer B) sites. Here, hX and lY indicate the HOMO
(= the highest occupied molecular orbital) and LUMO (= the lowest unoccupied molecular orbital)
of monomer X and Y, respectively, and we assume mutually orthogonal frontier MOs in Equations
(24)–(27), so that they can be represented by the Fock matrix 〈i|F|j〉(≡ Vij) at the B3LYP/cc-pVDZ
level of approximation [1,2,24,25]. For EFE and ETT, we adopt typical values (EFE = 2120 meV, ETT =
1720 meV) estimated from experiments for pentacene monomer, dimer and crystal [28–30]. The CT
exciton energy ECT for the dimer model is approximately calculated by [24,25]:

ECT ≈ EC + EA − 2EN + Estatic (29)

where EC, EA, and EN represent the self-consistent-field (SCF) energies of the C, A and neutral (N)
states, respectively, of the monomer at the B3LYP/cc-pVDZ level of approximation. The electrostatic
interaction between the C and A monomers in the dimer configuration is evaluated by [24,25]:

Estatic ≈ ∑
m∈C

∑
n∈A

qmqn

rmn
(30)

where qm and qn indicate the Mulliken atomic charges at atom sites m (in C monomer) and n
(in A monomer), respectively, and rmn is the distance between sites m and n. These quantum
chemical calculations were performed by Gaussian 09 [31]. The pentacene monomer is shown to
give intermediate diradical character y0 = 0.415 as well as much smaller tetraradical character y1 =
0.064 at the PUHF/6-31G* level of approximation, and the energy level matching condition is found to
be satisfied (EFE (2120 meV) > ETT (1720 meV)) [25]. Although this diradical character y0 of a pentacene
monomer may be considered to be a little bit larger than expected by experimentalists, it should be
noted that the diradical character is a non-observable chemical index and somewhat depends on the
calculation method [32,33]. The important point is that the PUHF diradical character map is found to
be useful for quantitative screening of efficient SF molecules [7,8]. Indeed, the present results are in
good agreement with our diradical-character-based guideline for efficient SF molecules as mentioned
in Introduction. The CT exciton state energy ECT (2806 meV) calculated using Equation (29) is found to
be much higher than the EFE and ETT in the present dimer model. This indicates that the SF process is
driven by the CT-mediated superexchange mechanism as shown in realistic pentacene crystals [1,2].
We employ the electronic couplings (Vhh, Vll, Vhl, Vlh) = (312.2, −244.7, −247.6, 247.6) meV (Equations
(24)–(27)) [25], and the FE coupling Vex, −34.22 meV (Equation (28)) [25], which is much smaller in
amplitude than the other electronic couplings. This indicates that the FE coupling effect on the SF
dynamics in the present dimer is not significant, which is in qualitative agreement with our previous
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results on a realistic pentacene dimer model [24]. The features of relative amplitudes of these electronic
couplings, the relative adiabatic exciton energies and the involved diabatic configurations for the
dimer model are explained by the different representation of Hex using the superposition exciton basis,
e.g., superposition FE states = (|S1S0〉 ± |S0S1〉)/

√
2 [1,2,24,25].

Firstly, we show the results of SF dynamics by the QME approach using the six-order Runge-Kutta
method. The time step used in the Runge-Kutta method is determined by ∆t = T/ND, where T is a
period of a virtual oscillating optical field with a frequency ω = 200 meV, i.e., 20.68 fs, and ND is a
division number of the field period. Figure 2 shows the time-evolution of diabatic exciton state {FE, CT,
TT} populations for the pentacene dimer model with the FE coupling Vex = −34.22 meV. The initial
population is set to be localized in monomer 1 (Figure 1), i.e., PS1S0 = 1.0, at T = 300 K. The vibronic
coupling parameters in the spectral density Equation (9) are set to (λ, Ω) = (50, 180) meV, which
are known to be typical values concerning the carbon-carbon stretching mode for acenes and other
conjugated organic molecules [14]. The TT yield PTT = 1.0 at t = ∞ ps means that a singlet exciton
created at the initial time (PFE = 1.0 at t = 0) is converted completely to the double-triplet exciton.
The SF rate k [ps−1] and TT yield (a) of SF dynamics are calculated by fitting the time-dependent PTT

with a three-parameter function PTT(t) = a− b exp(−kt) within the first 10 ps, where note that since b
= a − PTT(0), b = a is satisfied within the numerical fitting error since the initial population of S1S0 is
1.0 in the present case. The present dimer model is found to provide k = 1.966 ps−1 and a = 0.8897, the
former of which is of the same order as the experimentally observed SF time scales in pentacene [34,35].
It is here noted that the use of ND = 40 presents sufficiently precise k (converged to the third digit after
the decimal point) and TT yield (converged to the fourth digit after the decimal point) in the QME
approach to the present system.
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Figure 2. Time-evolution of diabatic exciton state {FE, CT, TT} populations for the pentacene dimer
model (Figure 1b) with FE coupling Vex = −34.22 meV by the QME approach. The SF rate k [ps−1] and
TT yield a [−] are also shown.

On the other hand, the numerical error of the result obtained by the MCWF approach is known to
depend on the time step used in the Runge-Kutta method to perform the no-quantum-jump evolution
Equation (16), and the sample size MC of the Monte Carlo trajectories used in the Monte Carlo
ensemble. The former effect of the time step is alternatively examined by the division number ND,
i.e., ∆t = 20.68/ND fs. Figure 3 shows the convergence behaviors of each diabatic exciton population
for the dimer with respect to the different MC at ND = 700. It is turned out that when the MC is not
large enough (Figure 3a–c), the time evolution of exciton population changes stepwise. This indicates
that the stochastic interruptions (quantum jumps) of continuous time evolution occur in the MCWF
scheme, and that we need more Monte Carlo trajectories to obtain the sufficiently converged results.
When MC is larger than ~104 (Figure 3e,f), the dynamical behavior of exciton population is in good
agreement with that obtained by the QME approach (see Figure 2).
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Figure 3. Ensemble results of MCWF time-evolution of diabatic exciton state {FE, CT, TT} populations
for the pentacene dimer model (Figure 1b) with FE coupling Vex =−34.22 meV with respect to different
Monte Carlo sample sizes (MC). The time step is ∆t = 20.68/700 fs ~ 0.03 fs. The estimated SF rate k
[ps−1] and TT yield a [−] are also shown with the dotted fitting curves (P(TT) = a – bexp(−kt)).

We here examine the quantitative dependences of the calculated SF rate k and TT yield for the
present pentacene dimer on the number of MC for different division numbers (ND), where the time step
is ∆t = 20.68/ND fs (see Figure 4). It is found that the error of SF rate tends to reduce with increasing
the MC for ND = 100–400 though the converged SF rates are improved as increasing ND: the SF rates
achieve the converged values approaching to 99% (ND = 100), 99.5% (ND = 200), and 99.8% (ND = 400)
of 1.966 ps−1 (QME) around MC = 6 × 105. It is found for ND ≥ 700 that the error of SF rate is rapidly
reduced before MC = 2 × 105, and after MC = 5 × 105, it remains around 99.8% of 1.966 ps−1 (QME).
The converged values of TT yields are found to show much smaller errors (<0.0045%) than those of the
SF rates after MC = 4 × 105.
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Figure 4. Variations of SF rate k [ps−1] (a) and TT yield a [−] (b) for the pentacene dimer model
(Figure 1b) as a function of the number of Monte Carlo trajectories (MC) for different division number
ND. For (a) and (b), the horizontal dotted lines show k = 1.966 ps−1 and a = 0.88966, respectively,
obtained by the QME approach.

We finally discuss the performance of the MCWF approach as compared to the conventional
QME approach to the SF dynamics. As easily predicted from the difference in the calculation schemes,
the numerical effort in the MCWF approach is expected to be significantly reduced as compared to
the QME approach since the MCWF treats a wavefunction instead of a density matrix. In the case of
a large number of MC, the ensemble average of the trajectories can be performed without difficulty
using the distributed processing since the calculation of each trajectory is definitely independent
of each other. In addition, although the one-time step evolution generally involves the evaluation
of plural minitrajectories (Nmin: the number of minitrajectories) [see Equations (18) and (20)], the
calculation of all the minitrajectories is usually unnecessary since the probability of no-quantum-jump,
i.e., non-Hermitian continuous evolution, is larger than those of quantum jumps in the case of usual
vibronic couplings. Even if not so, these minitrajectories are also independent of each other, so that
the calculations of probabilities of the minitrajectories can be partitioned into each node computer,
providing all the probabilities in one-time step at a time. Thus, such distributed computing (by
partitioning into MC × Nmin nodes of computers, in principle) enables to perform the MCWF approach
with a significantly reduced computational power as compared to the conventional QME approach.
The computational times required for the SF dynamics (up to 500 optical cycle (~10 ps)) in the present
linear pentacene N-mer model (N = 2–20) are shown in Figure 5, where the time (treq) required for
a Monte Carlo trajectory (MC = 1) is considered for the MCWF approach, and all the required times
are scaled with that at N = 2 (MCWF) as the reference value of 1.0. Here, we adopt the time steps
∆t = 20.68/40 ~ 0.517 fs for the QME and 20.68/700 ~ 0.03 fs for the MCWF, both of which are found
to give sufficiently converged SF rate and TT yield with the similar precision (see Figures 2 and 4).
Although for small size systems (N≤ 3), the required time is found to be larger in the MCWF than in the
QME, e.g., treq = 0.0399 (MCWF) vs. 0.0236 (QME) at N = 2, the required time in the QME is shown to
remarkably increase with increasing N (N > 3) as compared to that in the MCWF, e.g., ~34 times speed
up at N = 20 by the MCWF approach. Indeed, the size (N) dependence of treq for the QME is found to be
much larger than that for the MCWF: treq ∝ N5.15 (QME) vs. treq ∝ N3.09 (MCWF). The size dependence
of treq in the QME approach is found to be in good agreement with the computational complexity
estimated in Equations (10)–(12) though the exponent ratio QME/MCWF = 5.15/3.09 ~ 1.66 is slightly
smaller than that (2.0) expected from the relationship of the number of elements between these two
approaches, NQME = (NMCWF)2. This is predicted to be caused by the increase in the trial numbers
of minitrajectories (Nmin) generated by quantum jumps in each time step in the MCWF approach
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(Equation (20)) since the present MCWF calculations are done by only partitioning into Mc nodes
of computers. Thus, the performance of the MCWF approach is expected to be further improved
in principle by partitioning into MC × Nmin nodes of computers. In summary, the present results
demonstrate the outstanding advantage of the MCWF approach over the conventional QME approach
when applying to the SF dynamics of extended molecular aggregate systems with a large number of
vibronic coupling modes by partitioning the calculations of trajectories into the MC (× Nmin) nodes of
computers in the MCWF approach.
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curves treq = αNβ are also shown by dotted curves ((α,β) ~ (0.013, 5.15) for the QME vs. (0.188, 3.09)
for the MCWF).

5. Concluding Remarks

We have developed the MCWF approach to the SF dynamics of linear molecular aggregate systems
involving the Holstein vibronic couplings approximated by an Ohmic function with a Lorentz-Drude
cutoff. The SF dynamics obtained by the MCWF approach is found to reproduce the QME results when
we employ a high-order Runge-Kutta method with a sufficiently small time step for the continuous
non-Hermitian time-evolution and a sufficiently large number of Monte Carlo trajectories for the
ensemble average. It is found that the increase in the numerical efforts with the increase in the size
of the system is significantly reduced by distributing the calculations of Monte Carlo trajectories to a
sufficient number of nodes of computers since the calculation of trajectories is independent of each
other. In summary, the MCWF approach is expected to be indispensable for the analysis of the SF
mechanism and rational design of highly-efficient SF materials since the singlet fission dynamics in
realistic molecular aggregate systems usually require a larger number of exciton states and vibronic
coupling modes. An application of the MCWF approach to SF dynamics of other geometric types of
multiradical molecular aggregates including the Peielrs coupling in addition to the Holstein coupling,
and extensions to the higher-order unraveling MCWF approach [36] as well as to the non-Markov
quantum jump approach [19,37,38] are in progress in our laboratory.
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