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Abstract
An unusual feature of many eukaryotic genomes is the presence of regions that
appear intrinsically difficult to copy during the process of DNA replication.
Curiously, the location of these difficult-to-replicate regions is often conserved
between species, implying a valuable role in some aspect of genome
organization or maintenance. The most prominent class of these regions in
mammalian cells is defined as chromosome fragile sites, which acquired their
name because of a propensity to form visible gaps/breaks on
otherwise-condensed chromosomes in mitosis. This fragility is particularly
apparent following perturbation of DNA replication—a phenomenon often
referred to as “replication stress”. Here, we review recent data on the molecular
basis for chromosome fragility and the role of fragile sites in the etiology of
cancer. In particular, we highlight how studies on fragile sites have provided
unexpected insights into how the DNA repair machinery assists in the
completion of DNA replication.
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Introduction
The duplication of the genome during the process of DNA replica-
tion is fundamental for the viability of all cells. This process initi-
ates from DNA replication origins and proceeds along the parental 
DNA template in a bidirectional manner until convergence with 
another replication fork occurs (“DNA replication termination”)1. 
DNA replication generally occurs with remarkable accuracy. For 
example, it is estimated that only one error occurs for every 100 
million base pairs of replicated DNA in human cells, a degree of 
fidelity that is achieved by a combination of accurate copying of 
the template coupled with efficient error correction mechanisms2. 
Nevertheless, any event that interferes with the DNA replication 
process has the potential to generate errors that can be inherited 
by future cell generations. The perturbation of DNA replication in 
this way is broadly termed “replication stress”3. Although there are 
several definitions of replication stress, we refer to it as a pertur-
bation of replication fork progression leading to fork stalling and 
the need for fork protection/repair processes to be employed. An 
array of highly coordinated DNA repair mechanisms have evolved 
to ensure that the completion of DNA replication occurs in a timely 
and faithful manner in order to maintain genomic integrity in the 
face of replication stress4,5. Defects in these protective functions  
can lead to genomic instability and, in multicellular organisms, to 
cancer predisposition6.

DNA replication stress is implicated as a major driver of tumori-
genesis. This is because one of the key features of tumorigenesis is 
the activation or overexpression of proto-oncogenes, which drives 
cell proliferation by interfering with the regulatory pathways of cell 
cycle progression7. Uncontrolled cell proliferation interferes with 
replication timing and replication fork progression, manifesting as 
enhanced DNA replication stress8. This can generate chromosome 
rearrangements and mis-segregation during cell division9, which 
in turn can lead to aneuploidy (an abnormal number of chromo-
somes), which is a common feature of solid tumors10. Constitutive 
activation of a so-called DNA damage response (DDR) during  
oncogene-induced replication stress was the first evidence to 
link DNA replication stress with cancer11,12. This association was 
strengthened by the detection of mutations in DDR pathway genes 
in primary cancers13–15. Moreover, perturbation of DNA replication 
using agents that slow replication fork progression by inhibiting 
DNA polymerases (for example, aphidicolin [APH]) can generate  
DNA rearrangements, such as micro-deletions, that closely resemble 
those found in human tumors16. Strikingly, recent cancer genome-
sequencing projects have revealed that more than half of the DNA 
rearrangements in cancers cluster within certain chromosomal loci 
known as common fragile sites (CFSs)17, including in the FHIT 
gene located within FRA3B and the WWOX gene within FRA16D. 
In this article, we discuss recent advances in our knowledge of  
replication stress and how it particularly affects CFSs.

Features of common fragile sites
CFSs are regions of the human genome that are present in all 
individuals18. They were first described over three decades ago as 
sites where gaps or constrictions are visible in condensed mitotic  
chromosomes19. Formation of these gaps/constrictions (usually 
termed fragile site “expression”) is far more prominent in cells 
exposed to mild replication stress. CFSs are conserved to a large 

extent in mice20–23 and other primates24. Over 200 CFSs have been 
identified in human lymphocytes; however, it is known that the 
frequency of expression of any single CFS depends on the nature 
of the replication stress and the cell type. As a result, most of the 
known sites are infrequently expressed25. Sequence analysis of 
CFSs has revealed some conserved features. For example, most 
commonly expressed CFSs harbor a very long gene that takes 
more than one cell cycle to transcribe. This led to the hypoth-
esis that an underlying cause of CFS expression is the inevitable  
collision between the replication fork and the transcription  
machinery that must occur in each S-phase26. Another feature 
shared in some cases is the presence of stretches of interrupted 
AT-dinucleotide repeats that influence DNA helix flexibility27,28 
and have the potential to form stable DNA secondary structures29. 
It was recently demonstrated that replication forks pause at CFS 
loci in the absence of proteins involved in their maintenance, likely 
due to the accumulation of DNA-associated structures such as  
R-loops30. This is proposed to lead to replication fork arrest and 
DNA breakage. In cultured cells, CFS expression is generally trig-
gered by the use of low doses of APH to induce mild replication  
stress31,32. This treatment also induces sister chromatid exchange 
and an elevated frequency of translocations and deletions at CFSs33. 
In the context of cancer, CFSs are hotspots for micro-deletions and 
are associated with chromosomal translocation breakpoints34–38. 
CFSs also act as hotspots for viral DNA integration, which can lead 
to cancer development39–42. Despite these observations, it is clear 
that many of the structural changes observed at CFSs in cancers are 
present on only one allele, and hence these have been proposed to 
be passenger, not driver, mutations33,37,38. Nevertheless, some mouse 
models with CFS gene inactivation have shown an increased tumor 
burden34,35.

Common fragile site maintenance pathways
Many proteins involved in the recognition and/or repair of DNA 
damage triggered by replication stress have been reported to play a 
role in CFS maintenance. These include the ATR and CHK1 kinases, 
BRCA1, RAD51, and FANCD230,43–45. A major challenge for CFS 
maintenance systems in cells undergoing replication stress is ensur-
ing that the completion of DNA replication occurs before the cell 
enters mitosis. CFSs appear to replicate in late S-phase, which may 
render them more susceptible to DNA replication stress46. Indeed, 
they can remain under-replicated and escape the checkpoint surveil-
lance, even when the cell enters mitosis47. This is potentially danger-
ous, as it can enhance the formation of chromatin bridges, ultra-fine 
anaphase DNA bridges (UFBs), and lagging chromosomes during 
mitosis. Anaphase bridges, in turn, can promote the nondisjunction 
of sister chromatids and micronucleus formation47–49. Not surpris-
ingly, therefore, cells have evolved efficient mechanisms to process 
anaphase bridges and counteract mitotic defects. The mechanism 
of this resolution is poorly characterized but involves the BLM  
helicase in association with topoisomerase IIIα, RMI1 and RMI2, 
and the Plk1-interacting checkpoint helicase (PICH)49,50.

Common fragile site replication is completed in 
mitosis during stress conditions
Though seemingly counterintuitive, CFS expression is a pro-
tective mechanism to promote CFS maintenance44. This can be 
explained by the fact that CFS expression is not accidental but 
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instead is a programmed event mediated by DNA repair pro-
teins such as the MUS81-EME1 endonuclease48,51. This finding 
led us to investigate whether cells might be attempting to rescue 
failed replication at CFSs in mitosis. Indeed, we demonstrated 
that replication stress activates nascent DNA synthesis at CFSs 
in the prophase of mitosis (Figure 1)47. Interestingly, this synthe-
sis coincides with the sites of the gaps/breaks in the condensed  
chromosomes. Thus, it would appear that CFS expression denotes 
sites where DNA synthesis is still ongoing in mitosis. This mitotic 
DNA synthesis, which we termed MiDAS, has also been detected 
in other studies using a different kind of replication stress52 and 
in a different cell type53. Thus, MiDAS is likely to be a univer-
sal mechanism used by cells in mitosis to buffer the effects of  
DNA replication stress.

On the basis of our observations, we propose that MiDAS is not 
just a continuation of normal semi-conservative DNA replication 
but rather is a form of DNA repair analogous to break-induced 
replication (BIR) that has been characterized largely in budding 
yeast. BIR is generally a conservative form of DNA synthesis, and 
the nascent DNA is present on only one sister chromatid, leading 
to the accumulation of changes/mutations in only one allele, as is 
commonly found at CFSs in cancers33,37,38,54 (Figure 1). Consist-
ent with this, we have observed characteristic patterns of DNA 
replication that resemble this in mitotic human cells. MiDAS 
also requires the RAD52 and POLD3 proteins, the homologs of 
which (Rad52 and Pol32, respectively) are essential for BIR in 
yeast47,54–56. Indeed, a recent study showed that RAD52 is required 
more generally for repairing perturbed DNA replication forks in 

Figure 1. Mitotic DNA synthesis (MiDAS) occurs via a break-induced replication (BIR)-like process. (A) Metaphase spread of U2OS cells 
treated with low-dose aphidicolin showing mitotic 5-ethynyl-2′-deoxyuridine (EdU) incorporation. Most sites of EdU incorporation exhibit a 
conservative pattern of DNA synthesis, having EdU incorporation on only one sister chromatid. Selected chromosomes are shown in numbered 
boxes and are enlarged on the right. (B) Model showing how MiDAS might occur via a BIR-like process. A replication fork stalls at a common 
fragile site (CFS), perhaps due to the presence of an R-loop or a DNA secondary structure (a stem-loop structure is shown as an example). 
The fork is then cleaved by an endonuclease, followed by limited end resection of the generated DNA end. This exposes a region of micro-
homology that can be annealed with the partially single-stranded template DNA by the RAD52 protein. Processing of the resulting replication 
intermediate by the activated SLX-MUS complex (SLX4 in complex with MUS81-EME1 and other nucleases) in early mitosis is then associated 
with POLD3-dependent conservative DNA repair synthesis. This process would account for the high level of copy number variations that arise 
at CFS loci in cancer cells. For clarity, the replication fork merging with the MiDAS bubble from the right is omitted. If the converging fork were 
to suffer the same fate as the fork depicted, this could lead to the newly synthesized DNA occurring on both sister chromatids.
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cells exposed to replication stress57. Interestingly, MiDAS in human 
cells does not require RAD5154, although most BIR in yeast is  
Rad51-dependent56.

Closing remarks
It is curious that MiDAS in human cells is apparently RAD51- 
independent but that canonical BIR in yeast requires the DNA 
strand invasion function of this protein. This suggests that MiDAS 
might represent an atypical form of BIR that occurs in mitosis 
only at a time when BRCA2 and RAD51 are excluded from the  
chromatin. One possible explanation for this comes from studies 
in yeast indicating that RAD51-independent BIR in that organism 
requires much less homology for DNA copying to be initiated58. 
As MiDAS occurs during a narrow time window in early mitosis  
and involves sister chromatids that are already in very close  
proximity, there might be a selective advantage in using a “quick 
and dirty” form of repair that serves to prevent the accumulation of 
fatal mitotic abnormalities at the expense of mutations.

There is still much to be understood about MiDAS; for example, 
how is the reaction initiated if the replisome remains associated 
with stalled forks in the CFS loci, and how similar is the mecha-
nism of BIR in human cells to that defined in yeast? Intriguingly, 
BIR has been proposed to be required for the maintenance of tel-
omeres in cells lacking telomerase, and therefore MiDAS might be 
mechanistically related to telomere maintenance by the so-called 
ALT (alternative lengthening of telomeres) pathway59. Moreover, 
it is possible that the existence of MiDAS could be exploited as a 
therapeutic approach to kill cancer cells, as MiDAS inhibition is 

synergistically toxic to cancer cells in combination with inhibitors 
of ATR kinase54.

Research on CFSs has been ongoing for decades, but these con-
served “enemies within the genome” still manage to provide new 
surprises and insights into the biology of chromosome mainte-
nance. It will be intriguing to define why CFSs have not been elimi-
nated during evolution. Their conservation predicts a positive role 
in DNA metabolism, but this role remains elusive. Clearly, there is 
still much to be learned from studying these idiosyncratic regions 
of our genome.
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