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Abstract

There is growing evidence showing that the representation of the human “self” recruits special systems across different
functions and modalities. Compared to self-face and self-body representations, few studies have investigated neural
underpinnings specific to self-voice. Moreover, self-voice stimuli in those studies were consistently presented through air
and lacking bone conduction, rendering the sound of self-voice stimuli different to the self-voice heard during natural
speech. Here, we combined psychophysics, voice-morphing technology, and high-density EEG in order to identify the
spatiotemporal patterns underlying self-other voice discrimination (SOVD) in a population of 26 healthy participants, both
with air- and bone-conducted stimuli. We identified a self-voice-specific EEG topographic map occurring around 345 ms
post-stimulus and activating a network involving insula, cingulate cortex, and medial temporal lobe structures. Occurrence
of this map was modulated both with SOVD task performance and bone conduction. Specifically, the better participants
performed at SOVD task, the less frequently they activated this network. In addition, the same network was recruited less
frequently with bone conduction, which, accordingly, increased the SOVD task performance. This work could have an
important clinical impact. Indeed, it reveals neural correlates of SOVD impairments, believed to account for auditory-verbal
hallucinations, a common and highly distressing psychiatric symptom.
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Introduction
Human voice is one of the most important sounds we experi-
ence on a daily basis. Integrating different types of information
(gender, emotional content, social setting, accents, and so on), it
plays an important role in individuals’ identification (Belin et al.
2004; McGettigan et al. 2013; Zarate et al. 2015). Neuroimaging
studies demonstrate that, already in infancy, humans exhibit a
selective activation of brain areas, predominantly in the right
hemisphere (namely, right middle and superior temporal gyri)
for voices compared to non-vocal stimuli (Grossmann et al.
2010). Although face is considered the main carrier of human
identity (Blank et al. 2014), people can unequivocally be identi-
fied also through their voice (Belin et al. 2004). However, whether
the process of identifying oneself is equivalent to identifying
others is still a question of debate (Gillihan and Farah 2005).

The self could be defined as an entity that is distinct from
the environment and other humans to which certain mental
events and actions are ascribed (Kircher and David 2003). The
special nature of the self is thought to arise from multisen-
sory integration of bodily signals (Blanke 2012; Blanke et al.
2015; Tsakiris 2017; Park and Blanke 2019) and sensorimotor
congruency resulting from the interactions of the body with
the environment (Blakemore et al. 2000; Tsakiris and Haggard
2005; Kannape and Blanke 2012; Braun et al. 2018). Accordingly,
self-specificity has been reported in many neuroimaging stud-
ies that investigated self-referential processes across different
functional domains (e.g., emotional, spatial, memory) (Northoff
et al. 2006). Compared to the extensive work done on self-face
representation (for an overview see Uddin et al. 2005), self-
voice representation has been investigated to a surprisingly
lesser extent. However, acquiring a better understanding of neu-
ral mechanisms underlying self-voice perception is of utmost
importance, as erroneous self-voice misattribution is thought to
account for auditory-verbal hallucinations (Frith and Done 1989;
Frith 1992; Ford and Mathalon 2005; Shergill et al. 2014), the most
common hallucination in schizophrenia, associated with high
degrees of distress in the affected population (Harkavy-Fried-
man et al. 2003).

Electroencephalographic (EEG) investigations of self-voice
specificity have been confined to oddball paradigms and mostly
focused on the analysis of the event-related potential (ERP)
at predefined electrodes (e.g., located on central and parietal
areas) and time windows following self- and other deviant vocal
stimuli. The majority of these studies emphasizes the role of
the late auditory ERP components, namely P3 (∼300 ms from
stimulus onset) and N4 (∼400 ms from stimulus onset). For
example, the amplitude of the P3a component in a passive
oddball paradigm was observed to be lower for self-voice,
compared to unfamiliar (Graux et al. 2013) and familiar voices
(Graux et al. 2015), suggesting less pre-attentional processes
being involved in the discrimination of one’s own voice. (Conde
et al. 2016) confirmed this finding and narrowed the P3 reduction
down to experimental stimuli consisting of simple vocalizations,
compared to words. However, in active oddball paradigms
requiring attentional processes, the P3 amplitude increased
for self-voices compared to other voices, indicating that one’s
own voice has a greater affective salience than an unfamiliar
voice (Conde et al. 2015, 2018). However, Liu et al. (2019) failed
to replicate the differences in P3 component between self-
and other voices, while showing an increased parietal N400
amplitude for self-voices when uttering other names but not
the own name.

It is important to note that in the above-described ERP
studies, a few electrodes in pre-selected time windows were

analyzed that differed between the studies, making a compar-
ison difficult. Additionally, such approach does not allow for a
comprehensive analysis of the spatio-temporal modulation of
the ERPs to self- and other voices that might be seen at other
electrodes or latencies than those pre-selected (Murray et al.
2008).

Concerning the brain areas associated to the self-voice, in a
PET study of Nakamura et al. (2001), a contrast between self-
voice and familiar voice activation revealed a peak in the right
inferior frontal sulcus and parainsular cortex. Similarly, right
inferior frontal gyrus produced greater signal to self- compared
to familiar voice in a study of Kaplan et al. (2008). Allen et al.
(2005) found that, when contrasted to unfamiliar voice, self-
voice was associated to increased activation in left inferior
frontal and right anterior cingulate cortex. Clinical investiga-
tions highlight the involvement of the right hemisphere in the
self-other voice discrimination showing that patients with right
lesions were worse in discriminating their (own) voice compared
to left damaged patients and healthy participants (Candini et al.
2018). Together, these findings suggest that self-voice is repre-
sented differently from other voices both in neuronal activation
and in the brain areas implicated. Importantly, however, no
study related the behavioral performance (e.g., ability to recog-
nize own voice or to discriminate self-voice from other voices)
to the neural activations.

Behavioral investigations that compared recognition of self-
versus-other voices mostly showed lower accuracy or slower
response times for self-voice compared to other-voice stimuli
(Gur and Sackeim 1979; Shuster 1998; Allen et al. 2005; Rosa
et al. 2008; Hughes and Nicholson 2010; Conde et al. 2015;
Schuerman et al. 2015), indicating an inability to recognize
self-voice as well as other voices. This arguably reflects the
lack of bone conduction in self-voice stimuli presented in
corresponding studies, which is present while speaking (Békésy
1949; Reinfeldt et al. 2010). Namely, when we speak, we hear our
voice also through bone conduction, which applies a physical
transformation to the sound of our voice (Stenfelt 2016) and,
besides auditory, often involves somatosensory (Tremblay et al.
2003; Ito et al. 2009) and vestibular (Todd et al. 2000; Emami et al.
2012) processing. In our recent work (Orepic 2020), we showed
that multimodal presentation of self-voice stimuli facilitates
self-voice recognition. Specifically, combining psychophysics
with voice-morphing technology (Kawahara et al. 2013), we
designed a sensitive self-other voice discrimination (SOVD) task
that enables pinpointing of perceptual specificities underlying
SOVD, and observed a better SOVD task performance with
the stimuli presented through a commercial bone-conduction
headset compared to traditional air conduction media (e.g.,
loudspeakers).

Here, we build up on those findings by investigating brain
mechanism underlying SOVD both through air and bone con-
duction, with a high-density EEG setup, which allows to localize

neuronal sources with high specificity, (Brodbeck et al. 2011;
Mégevand et al. 2014; Michel and He 2019; Seeber et al. 2019).
We recorded evoked responses of healthy individuals hearing
ambiguous self-other voice morphs (e.g., a voice morph could
be created such that it contains 40% of self-voice and 60% of
stranger’s voice) and related neural activity with the ability to
determine a dominant voice in such voice morphs.

First of all, we investigated the EEG characteristics during
SOVD task of the principal auditory ERP exogenous components
P1 (∼50 ms after stimulus onset), N1 (∼100 ms after stimulus
onset), P2 (∼200 ms after stimulus onset), and for the late period
corresponding to the complex P3/N4 (Winkler et al. 2015). The
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late period of ERP demonstrated to play an important role in the
discrimination between different voices (Titova and Näätänen
2001; Beauchemin et al. 2006; Graux et al. 2013, 2015; Conde et al.
2016; Liu et al. 2019).

For each component, we conducted an electrode-wise wave-
form analysis and examined the differences in global field power
(GFP) as a measure of global synchronization (Lehmann and
Skrandies 1980). The analysis was performed on all electrodes
and not only on pre-selected channels to avoid a selection bias
(Murray et al. 2008). While this conventional ERP analysis gives
information about the “strength” of stimulus-induced activity,
it does not provide information about potential differences in
the topography of the evoked potential field induced by the
different stimulus conditions. Differences in the topography
would directly indicate modulation of the generating sources
in the brain (Michel et al. 2009). Therefore, to study differences
in the “distribution” of the scalp potential field, we performed
the so-called topographic analysis of the variance, or TANOVA
(Karniski et al. 1994; Koenig and Melie-García 2010; Habermann
et al. 2018). In order to have a comprehensive description of the
electrophysiological processes involved in our task, we further
took advantages of a more complete spatio-temporal approach,
known as EEG microstate segmentation (Brandeis and Lehmann
1986; Murray et al. 2008; Brunet et al. 2011; Schiller et al. 2016).
This approach allows identifying the optimal set of EEG topogra-
phies that explain the averaged ERPs, both in space and in
time. EEG microstate segmentation, indeed, relies on the obser-
vation that EEG topographic maps (both spontaneous EEG and
ERPs) are not randomly distributed but exhibit a defined tem-
poral sequence, which reflect the functionally stable (in time)
associated brain states (Michel et al. 2001; Michel and Murray
2012; Michel and Koenig 2018). Importantly, this approach is
completely reference-independent and thus renders statisti-
cally unambiguous results (Michel and Murray 2012).

We investigated dependency of EEG parameters describing
each map obtained from the microstate segmentation (i.e., first
onset, mean duration, occurrence, global explained variance)
on hearing a varying degree of self-voice and its relationship
to psychophysically quantified SOVD performance. Finally, we
identified underlying neural sources accounting for the process
of discriminating own from a stranger’s voice. Based on previous
works, we predicted that self-versus-other voice activates, in the
late ERP component (after 300 ms) (Graux et al. 2015; Conde
et al. 2016), limbic and cortical midline structures (Nakamura
et al. 2001; Allen et al. 2005; Northoff et al. 2006) whose temporal
characteristics might reflect in participant’s task performance.

Materials and Methods
Participants

This study involved 26 healthy participants, 14 female, mean
age ± SD: 37.4 ± 14.7 years old. All participants were right
handed, reported no hearing deficits and no history of
psychiatric or neurological disorders. They were instructed on
the conduct of the task, gave informed consent in accordance
with institutional guidelines (the Declaration of Helsinki and
reference to the protocol PB_2016-01635, amendment 3 approved
by the Commission Cantonal d’ Ethique de la Recherche de
Geneva) and received monetary compensation (CHF 20/h).

Self-other Voice Discrimination Task

Prior to participating in the studies, participants’ voices were
recorded while vocalizing phoneme/a/for approximately 1 to 2 s

(Zoom H6 Handy recorder). Each recording was standardized for
average intensity (−12 dBFS) and duration (500 ms) and cleaned
from background noise (Audacity software). Short vocalizations
were chosen to control for other linguistic and paralinguistic
accounts for speaker identification, such as accent or prosody,
constricting the identification process to simple acoustical prop-
erties of the voice. Previous work has shown that short vocaliza-
tions suffice for speaker identification (Zarate et al. 2015). Each
participant’s preprocessed voice was mixed with a target voice
of a gender-matched unfamiliar person in order to generate
voice morphs spanning a voice identity continuum between
the two voices by using TANDEM-STRAIGHT (Kawahara et al.
2013), a voice-morphing software package running in MATLAB.
It decomposes recordings of two speakers into mutually inde-
pendent acoustic parameters that can be precisely controlled,
interpolated and extrapolated between the speakers. As a result,
a new voice can be created, such that it contains a desired ratio
of each speaker’s voice (e.g., a voice containing 30% speaker A’s
and 70% of speaker B’s voice). Six voice ratios (% self-voice: 15,
30, 45, 55, 70, 85) were chosen based on our previous work (Orepic
2020; Orepic et al. 2021).

During the experiment, participants were seated in comfort-
able armchair, in a silent and moderately lit room, and were
asked to perform the task with eyes open, facing a white wall.
Voice morphs were presented to participants either through
bone-conducting headphones (Aftershokz Sports Titanium) or
through laptop loudspeakers (air conduction). The order of air-
and bone-conduction blocks was counterbalanced across partic-
ipants. The study contained 10 experimental blocks, 5 of which
were conducted consecutively with the same sound conduction
type (air, bone). Each block contained 60 trials of morphs ran-
domly selected from the 6 self-voice ratios (Fig. 1A), for a total of
50 trials per each voice-morph and sound conduction type. Inter-
trial intervals jittered between 1 and 1.5 s to avoid predictability
of stimulus onset. For each voice morph, participants were asked
to indicate whether the voice they heard resembled their own or
someone else’s voice by clicking on a mouse button. Importantly,
participants were not presented with their unmorphed voice
recordings prior to task execution, assuring that they performed
the task by comparing voice norphs with the internal self-voice
representation (Orepic 2020). The experimental paradigm was
created in MATLAB 2017b with Psychtoolbox library (Kleiner
et al. 2007).

During the task, electrophysiological (EEG) data were
continuously recorded with a sampling rate of 1000 Hz using
a 256-electrodes Hydrocel cap (Megstim, Electrical Geodesics
Inc.), referenced to the vertex (Cz). The impedance of electrodes
was monitored carefully and kept below 40 kΩ. For the
reference electrode, the impedance was kept below 10 kΩ.
Bone-conducting headphones were installed on participants’
head underneath the EEG cap, by avoiding the overlap with
any (namely temporal) electrodes. An illustration of the
experimental paradigm and setup is given in Figure 1.

Behavioral Performance

Performance in self-other voice discrimination task was ana-
lyzed with mixed-effects binomial regressions with Accuracy
as dependent variable and two fixed effects—Conduction (Air,
Bone) and Voice Morph (15, 30, 45, 55, 70, 85)—related with
an interaction term. The Accuracy variable indicated the per-
centage to which participants correctly identified the dominant
voice in the presented morph. The model further contained
the polynomial expansion of the Voice Morph variable to level
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Figure 1. SOVD task. (A) Stimuli. Six self-other voice morphs between
participant’s voice Self, black and the voice of a gender-matched unfamiliar per-
son (Other, gray) were randomly presented 50 times throughout the experiment.
(B) Task. Voice morphs were presented either through air (laptop, above) or bone

conduction (commercial headset, below). In every trial, participants responded
whether the morph they hear resembles more to their or to someone else’s voice
by clicking on the corresponding mouse button. (C) EEG setup. Bone conduction
headphones (black) placed under a high-density EEG cap (light gray spheres and

connections) formed by 256 electrodes organized as an extension of the standard
clinical 10–20 setup (electrode names indicated in black).

2. Random effects included a by-participant random intercept,
whereas by-participant random slopes for the fixed effects were
added following model selection based on maximum likelihood.
Trials with reaction times greater or smaller than two interquar-
tile ranges from the median for each subject were considered as
outliers and excluded. Equivalent mixed-effects regression was
run for Response Time as a dependent variable.

EEG Data Pre-Processing And Selection of Epochs

EEG data were preprocessed with the free academic software
CARTOOL (Brunet et al. 2011). The EEG was reduced to 204
channels, by eliminating the electrodes covering the cheeks and
the lowest neck surfaces because they were often not attached
to participants’ skin (due to individual anatomical configura-
tions) and contained motion artifacts (e.g., spontaneous chew-
ing). First, the data were downsampled to 500 Hz and band-
pass filtered between 1 and 40 Hz using non-causal Butterworth
filters and a Notch filter of 50 Hz to eliminate (environmental)
50-Hz noise. Then, independent component analysis (ICA) was
applied to remove eye-movement (eye blinks and saccades) and
ballistocardiogram artifacts (Jung et al. 2000). A MATLAB script
based on the “EEGlab runica” function that allows for component
inspection both across time and scalp topographies was applied,
while period of motion-artifact and noisy channels were tem-
porarily excluded. After ICA artifact removal, noisy electrodes
were interpolated (3-D spherical spline, Perrin et al. 1989) and a
spatial filter was applied (Michel and Brunet 2019). In order to
perform further analyses on the event-related potentials (ERPs),
for each participant and for each type of Voice Morph, epochs
between −50 ms pre-stimulus and 500 ms post-stimulus were
visually inspected. Epochs characterized by residual artifacts,
mostly due to motion were excluded.

EEG Data Analysis

For each participant and each Conduction (Air, Bone), we
grouped the ERPs belonging to each end of the self-other voice
continuum, to increase the number of epochs from 50 to 100
and therefore the signal-to-noise ratio of the ERPs. Specifically,

we averaged Self-dominant (containing 85% and 70% self-voice)
and Other-dominant voice morphs (15% and 30% self-voice). This
resulted in four group-averaged ERPs: Bone-Other, Bone-Self,
Air-Other, Air-Self.

At the level of the scalp, the EEG differences associated to
the SOVD task were characterized with four levels of analy-
sis: 1) electrode-wise ANOVA, 2) GFP ANOVA, 3) TANOVA, and
4) microstate segmentation. Additionally, we interpreted our
results in terms of brain regions by considering the signal dif-
ferences in the inverse space.

ERP Waveform Analysis And Global Topographic
Measurement

In a first step, we conducted an exploratory waveform analysis
on all electrodes (204) and on the GFP. To this aim, we
defined the auditory ERP component peaks in the conventional
time windows (Picton 2010; Winkler et al. 2015), adjusted by
visually inspecting the four group-averaged ERPs: P1 = [25–
75] ms; N2 = [75–175] ms; P2 = [175–270] ms; the late complex
P3/N4 = [270–500] ms (Fig. 2). For each subject and for each
ERP component, we collected the amplitude of the peak (with
the appropriate positive or negative sign) and its latency,
across all electrodes and for the GFP. Statistically significant
differences for each peak and latency were, therefore, assessed
by an electrode-wise and GFP two-way-ANOVA, with factors
Conduction and Dominant Voice and respective levels of
Bone/Air, Other/Self. A statistical threshold of P < 0.05 for the GFP
and Bonferroni corrected for multiple comparisons (P < 0.0002)
for the electrode-wise analyses were considered.

In a second step, we investigated the differences in the scalp
potential distribution between the four experimental condi-
tions by computing a TANOVA for each time point with the
same factors and associated levels of the ERPs ([0–500] ms).
The TANOVA is a non-parametric randomization test of global
dissimilarity (GD) (Habermann et al. 2018). GD is an amplitude-
independent measure which assesses the difference between
the scalp topographies normalized by dividing the potential
values at each electrode by the GFP. The TANOVA analysis was
performed with the Ragu software (Koenig et al. 2011); 1000
randomizations were selected to assure a significant threshold
of P < 0.05.

Spatio-Temporal ERP Dynamics

As a third step, and in order to have a comprehensive informa-
tion on the spatial and temporal EEG patterns associated to the
SOVD task, we used the EEG segmentation approach (Fig. 6A).
In details, we considered the group-averaged ERPs: Bone-Other,
Bone-Self, Air-Other, Air-Self, and we applied a k-means cluster
analysis (300 randomizations, 1–30 clusters) (Pascual-Marqui
et al. 1995; Murray et al. 2008; Brunet et al. 2011). The values
of a meta-criterion, that is a combination of seven independent
optimization criteria (for details see Bréchet et al. 2019), allowed
to define the optimal number of EEG topographic maps (or clus-
ter maps) that best described the four group-averaged ERPs. To
assess the statistical difference between the four experimental
conditions, we projected back or “fitted back” the obtained clus-
ter maps on the ERPs of each subject, for each dominant morph
and each Conduction. The back-fitting of the cluster maps was
applied in three non-overlapping time windows defined around
the typical ERP components (N1, P2, and the late complex P3/N4)
by taking into account the temporal subdivision revealed by the
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Figure 2. ERP components analysis. Butterfly plot of the ERP waveform of all electrodes overlapped (A) and of the GFP (B) for each of the four experimental conditions
(Bone-Other, Bone-Self, Air-Other Air-Self) are represented. The gray dashed boxes in (A) and (B) indicate the time-windows selected for the auditory ERP components
(P1, N1, P2, P3/N4). Peak and latency of the ERP components were defined in the associated time windows and then used for the electrode-wise and GFP ANOVA

analyses. In (C) the averaged-topographies (across subjects, conditions, and time-window) associated to each ERP component are shown.

back-fitting of the maps to the four group-averaged data: 1) [20–
140] ms for maps 1 and 2; 2) [140–270] ms for map 3; and 3)
[270–500] ms for maps 4, 5, 6, and 7.

The back-fitting approach evaluates the spatial correlation
between the cluster maps and the single-subject ERP at each
time point, by labeling the latter with the cluster map that
shows the highest spatial correlation after power normalizing
each map. In our case, we used a competitive attribution of the
maps, thereby taking into account the polarity of the maps. No
label was assigned to a time point if the correlation between the
ERP signal and any of all cluster maps was <0.25. In general,
the output of the back-fitting consists of several parameters
characterizing the time and goodness of fit of each cluster map,
for each subject and each experimental condition. In particular,
we investigated, the temporal parameters first onset (FO), occur-
rence (Occ) and the mean duration (MD), as well as the global
explained variance (GEV). The description of these parameters
is reported in Table 1.

A linear mixed-effects regression with the dependent
variable parameter value (FO, MD, Occ, GEV) was performed
with two fixed effects: Conduction (Air, Bone) and Dominant
Voice (Self, Other), related with an interaction term, and with
by-participant random effects. Mixed-effects regression was
used to account for possible missing values in the data,

as for some participants, back-fitting procedure could omit
the attribution of certain maps. For the maps that indicated
significant interactions involving the effect of Parameter, we
ran additional mixed-effects regressions separately for each
Parameter, directly assessing the effects of Conduction and
Dominant Voice on Parameter Value of the corresponding
parameter.

EEG-Behavior Relationship

We further investigated the relationship between SOVD task
performance and the significant fitting parameters (FO, Occ, MD,
GEV). As task performance, or behavioral variables, we consid-
ered the subject’s average Response Time and the Accuracy, i.e.,
the percentage of correct answers. We performed a linear mixed-
effects regression with the dependent variable Parameter value
(FO, Occ, MD, GEV) and with three fixed effects—Dominant Voice,
Conduction, and the behavioral variable (respectively, Accuracy,
and Response Time).

All the statistical tests (electrode-wise and GFP ANOVA for
the peak and latency of the ERP components; link EEG-behavior)
were performed with R (R Core Team 2020), using the lme4 (Bates
et al. 2015), and lmerTest (Kuznetsova et al. 2018) packages. The
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Table 1 Back-fitting parameters

Parameter Description Unit

First occurrence The first time point a given map yields the highest spatial correlation
value

ms

Occurrence The total number of data points in which a given map yields the
highest spatial correlation value

ms

Mean duration Mean number of consecutive data points in which a given map yields
the highest spatial correlation value

ms

GEV Global Explained Variance, i.e., how well a given map “explains” the
data

Scalar number in the range [0, 1]

Notes: The definition and description of the four parameters selected from the back-fitting to assess the statistical difference between the experimental conditions
(Bone/Air; Self-Other) are reported in the table.

results were illustrated using sjplot (Lüdecke 2021) and ggplot2
(Wickham 2016) packages.

Source Localization of Cluster Maps

To estimate the brain networks underlying the topographies
of the scalp EEG resulting from the clustering procedure, a
distributed linear inverse solution matrix (needed to project the
ERPs data from the scalp to the brain space) was computed.

For the forward model, we used the asymmetrical, non-
linear Montreal Neurological Institute (MNI) template includ-
ing the cerebellum, as head model with consideration of skull
thickness (Locally Spherical Model with Anatomical Constraints
(LSMAC); for a review see Michel and Brunet 2019) and a grid
of around 6000 solution points distributed equally in the gray
matter. The final inverse matrix was computed using the low-
resolution brain electromagnetic tomography (LORETA) method
(Pascual-Marqui et al. 2002).

Similarly to Bréchet et al. (2019), the cluster maps from the
group-averaged ERPs segmentation were back-projected to each
subjects’ ERPs with a winner-takes-all method. For a given sub-
ject and for each map, data points assigned to a given map
were concatenated in a separate cluster. The vectorial source
localization of all the obtained clusters were then computed
using the inverse matrix described above. Within each sub-
ject, the resulting inverse solutions were standardized across
all solution points (Michel and Brunet 2019) using the whole
subject’s dataset. Finally, the vectorial mean across all subjects’
standardized clusters were computed, then normalized between
[0 1].

Results
Two participants were excluded from the analysis due to
the poor quality of the EEG and six because they had a task
performance lower than 50% independent of conduction type
(bone, air). Similar number of participants was unable to perform
the same task in our previous study (Orepic 2020), where we
introduced the task and compared it to other self-related tasks
in three different behavioral experiments, thereby discussing
the factors accounting for its high difficulty. Our sample
resulted therefore in 17 subjects (9 females, mean age ± SD:
37.3 ± 15.1 years old).

Behavioral Results

A mixed-effects binomial regression in the self-other discrim-
ination with Accuracy as dependent variable revealed a main

effect of the polynomial expansion of the Voice Morph vari-
able (estimate = 72.85, Z = 17.18, P < 0.001), indicating a u-shaped
task performance with the increase of self-voice present in
the morph. It further revealed a main effect of Conduction
(estimate = −0.18, Z = 2.93, P = 0.003), reflected as higher accu-
racy for bone conduction. A two-way interaction between the
effects of Conduction and Voice Morph was also significant
(estimate = 19.13, Z = 3.05, P = 0.002), observed as a difference in
performance for bone conduction across Voice Morphs. Post hoc
investigation of the interaction revealed that higher accuracy
for bone conduction only in the morphs with least self-voice
present or other voice (15%) (Estimate = 1.22, Z = 2.57, P = 0.01).
Difference in accuracy between other Voice Morphs was not
significant (all P > 0.05). Together, these findings indicated that
participants discriminated own from a stranger’s voice bet-
ter with bone compared to air conduction, and this was most
prominent for other-dominant morphs (Fig. 3, left).

Linear mixed-effects regression for response times as
dependent variable similarly revealed the main effect of the
polynomial expansion of Voice Morph variable (estimate = −6.05,
t(9535) = −11.93, P < 0.001), indicating a reversed u-shape of
response times dependent on self-voice ratio. There was the
main effect of Conduction (estimate = −0.07, t(9535) = −9.31,
P < 0.001), revealing faster response times for bone conduction.
Interaction between the effects of Voice Morph and Conduction
was not significant (estimate = −0.2, t(9535) = 0.28, P = 0.783).
Response times are shown at the right of Figure 3.

EEG Results

The visual inspection of ERPs resulted in an average of 45/50
(range [39/50, 50/50]) selected epochs, across subjects and per
condition.

Auditory ERPs Components And Topographical
Differences

The electrode-wise ANOVA conducted for each peak amplitude
and latency of the auditory ERP components revealed a signif-
icant difference (P < 0.0002) only for the latency of N1 ([75–175]
ms). In more details, only a significant main effect of Conduction
was observed for two right centro-parietal electrodes (131 and
155, close to CPz, C4, CP2, C2, Fig. 4).

No significant main effects for Conduction and Dominant
Voice and no significant interaction between them were
observed for the GFP (P > 0.05).

The TANOVA across the whole ERP period ([0–500] ms)
revealed a significant (P = 0.02) main effect of the Conduction
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Figure 3. Behavioral results indicating the effects of the two forms of sound conduction (air, bone) on accuracy (left) and response times (right) in self-other voice
discrimination task. The abscissa of both plots indicates the percentage of the self-voice present in a Voice Morph. The shaded areas around each curve represent the

95% confidence intervals. Accuracy was higher and response times were faster for bone conduction.

Figure 4. Electrode-wise ANOVA results. The ANOVA conducted for each peak
and each latency of the auditory ERPs components, corrected for multiple
comparisons, showed a main effect of Conduction (P < 0.0002) for the latency of

N1 component over the electrodes 113 and 155. They are located over the right
centro-parietal area (A) and their waveform is shown in (B), for each of the four
experimental conditions.

for N1 and for the complex P3/N4, specifically in the periods:
[122–174] ms and [370–450] ms. No main effect of the Dominant
Voice (P = 0.03) and no interaction effect (P = 0.8) were observed.
The difference in the topographies associated to Bone and Air
in the first period (Fig. 5A) reflected a shift in latency of N1,
which peaked later in Air than Bone. In the second period
([370–450] ms), differently to Bone, Air condition had more
pronounced negativity over the right parietal regions which
could be interpreted as a prolonged effect of P3 (in literature
observed more over parietal sites) for Air, with respect to Bone
(Fig. 5B).

EEG Segmentation Results

The meta-criterion associated to the K-means clustering applied
to the four group-averaged ERPs (Bone-Other, Bone-Self, Air-
Other, Air-Self) established as optimal segmentation the set
of seven cluster scalp EEG topographies, or maps that were

Figure 5. Topographical differences. The TANOVA across the period [0–500] ms

revealed a significant main effect of the Conduction (P < 0.05) for N1 (B) and the
late complex P3/N4 (A). The topographies associated to the Bone and Air and
averaged in the periods of significance (gray dashed boxes) are shown (B).

dominating in seven different time segments (Fig. 6B). These
set explained 93% of all ERP data. The investigation of missing
values after the back-fitting procedure revealed a low number of
missing maps in our cohort: 24%, 18%, and 6% and 0% for Bone-
Other, Bone-Self, and both Air-Other and Air-Self, respectively.

Statistical Differences of the Cluster EEG Topographies

Among the seven topographic maps derived from the EEG
segmentation (Fig. 6B), we observed significant interactions
of effects Dominant Voice and Conduction with the effect
of Parameter only for map 4. This map appeared in the
range [292 ± 46; 380 ± 68] ms (average and standard deviation
of first onset and last offset, across subjects and all the
experimental conditions). Specifically, for map 4, there was
a significant interaction between Parameter and Dominant
Voice (F(3, 227.04) = 4.51, P = 0.004) and between Parameter
and Conduction (F(3, 227.62) = 5.47, P = 0.001). A three-way
interaction between the effects of Parameter, Dominant Voice,
and Conduction was not significant (F(3, 226.93) = 0.91, P = 0.437).
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Figure 6. Results of the group-average ERP segmentation. (A) Different colors indicate different segments marked under the Global Field Power curves extracted by

the K-means clustering on the group-averaged ERPs corresponding to the Other-dominant (15–30% self-voice) and Self-dominant (70–85%) Voice Morphs and to the
two types of sound conduction (Bone, Air). The gray dashed boxes indicate the three time-windows considered for the back-fitting procedure. (B) Topographic maps
associated to each segment. The “+” symbol indicates the position of the electrodes exhibiting the highest (positive, red) and the lower (negative, blue) amplitudes of

the scalp voltage potential.

Thus, for each Parameter, we conducted a separate linear mixed-
effects regression with Parameter Value as dependent variable,
and Conduction and Dominant Voice as fixed effects. From
all parameters, mixed-effects regression revealed significant
effects only for the parameter Occurrence: there were both
the main effect of Dominant Voice (F(1, 51) = 6.64, P = 0.013),
indicating higher occurrence of map 4 for self-dominant morphs
(Fig. 7A), and the main effect of Conduction (F(1, 51) = 7.74,
P = 0.01), indicating higher occurrence during air conduction
(Fig. 7B). There was no significant interaction between the
effects of Dominant Voice and Conduction (F(1, 51) = 1.7,
P = 0.198). For exploratory purposes, however, we additionally
conducted the pairwise post hoc t-tests for all the combinations
of the values of Conduction and Dominant Voice (Air-Self vs. Air-
Other, Air-Self vs. Bone-Other, Air-Self vs. Bone-Self, Air-Other
vs. Bone-Other, Air-Other vs. Bone-Self, Bone-Other vs. Bone-
Self). This analysis indicated that map 4 occurred significantly
more in Air-Self compared to all other conditions, with no
significant differences in occurrence between other conditions
(Supplementary Table 1 and Supplementary Fig. 2).

Map4 Occurrence-Behavior Relationship

The linear mixed-effects regression considered for the link
between EEG and behavioral patterns revealed the main effect
of Accuracy (F(1, 25.28) = 5.6, P = 0.026), indicating a negative
relationship with overall task accuracy and map occurrence.
There was a three-way interaction between the effects of
Dominant Voice, Conduction and Accuracy (F(1, 39.42) = 5.29,
P = 0.027). To further investigate the nature of this interaction,
we performed a separate analysis for each type of sound

conduction. Whereas there were no significant effects in Bone
conduction (all P > 0.05), in the trials with Air conduction
there was a significant interaction between Dominant voice
and Accuracy (F(1, 26.27) = 5.29, P = 0.037), indicating a stronger
negative relationship between Accuracy and Occurrence for
Self-dominant, compared to other-dominant morphs (Fig. 7C).
For map 4, mixed-effects regression with Response Times as
additional factor similarly revealed the main effect of Response
Times (F(1, 28.33) = 11.1, P = 0.002), indicating an overall increase
in Occurrence with the increase in Response Times. There was a
significant interaction between Response Times and Dominant
voice (F(1, 21.86) = 15.87, P < 0.001), indicating a stronger positive
relationship between response times and map 4 occurrence
for Self-dominant, compared to Other dominant morphs
(Fig. 7D). Response Time did not interact with Conduction (F(1,
28.52) = 1.34, P = 0.26), and there was no significant three-way
interaction between Response Times, Conduction and Response
Times (F(1, 19.09) = 1.2, P = 0.29).

Source Localization

In order to localize the brain networks associated to the
EEG topographies resulting from the segmentation (Fig. 6B),
we restricted the visualization of the current density values
estimated from the inversion of the cluster maps to the top
5th percentile of the distribution of activation values across
all solution points. Brain areas were assessed by the overlap
with the automated anatomical labeling (AAL) brain atlas
(Tzourio-Mazoyer et al. 2002).

Map 4 revealed a network more strongly activated in the
right than in the left hemisphere (Supplementary Fig. 1) with

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhab329#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhab329#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhab329#supplementary-data


1986 Cerebral Cortex, 2022, Vol. 32, No. 9

Figure 7. Experimental effects on map 4 occurrence. Map 4 occurred more for self-dominant morphs (A) and when stimuli were presented through air conduction (B).
Horizontal lines in boxplots indicate median, whereas dots mean values. The whiskers extend to 1.5 interquartile range and the remaining dots are outliers. Map 4
occurrence was negatively correlated to task accuracy (C) and positively to response times (D), specifically for self-dominant stimuli presented through air conduction.

Shaded areas around linear regressions represent 95% confidence intervals. ∗: P < 0.05; ∗∗: P < 0.001.

maximum of activation in the right insula. Concomitant acti-
vation was observed in: right hippocampus, right superior and
inferior temporal pole, left insula, in the middle cingulum, in
bilateral putamen and amygdalae (Fig. 8 and Table 2).

Discussion
In this work, we analyzed the electrophysiological processes
involved in the discrimination of self- versus other voice, by
integrating the effect of hearing the voices through two sound
conduction systems.

The electrode-wise waveform analysis showed a main effect
of the conduction in the early stage of the auditory process,
namely for the N1 ERP component, likely demonstrating an
effect on the sound perception according to the conduction

system used. Topographical analysis confirmed this finding
and in addition revealed the main effect of conduction in a
late stage, correspondent to the of the ERP components P3/N4.
However, the conventional ERP analysis did not reveal any
differences in amplitude or latencies between self- and other
voice for P3/N4. In contrast, the EEG microstate segmentation
allowed to define a topographic map associated with the ability
to discriminate self-voice from other voices. This map (map
4) was activated more during self-dominant voice and more
with air conduction. Map 4 occurred after 300 ms from stimuli
onset had a fronto-temporal positivity and parieto-occipital
negativity with gradients towards the right hemisphere. Source
localization of this map identified a bilateral, but right-dominant
network with the maximum activation in the insula and
further involving bilaterally the putamen, the amygdalae,
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Figure 8. Brain network associated to map 4. The axial (A), coronal (B), and sagittal (C) view of the source current density estimated for map 4 are shown. Details on

the anatomical regions forming the network are reported in Table 2. Green-to-red blobs indicate activation above the 95th percentile of the distribution of the total
activation values (color-bar on the top left). Red lines indicate the region of maximal activation. R: right.

Table 2 Brain network associated to EEG topography 4

Brain region AAL region number MNI coordinates

R insula 30 [43,−1,0]
R hippocampus 38 [26,−5,−17]
R superior temporal pole 84 [40,−1,11]
R inferior temporal pole 90 [38,−10,−36]
L insula 29 [−40,9,4]
Middle cingulum 33, 34 [0,−6,40]
R and L putamen 73,74 [±31,−3,−4]
R and L amygdala 41, 42 [±24,−5,−11]

Notes: AAL atlas was used to define the anatomical name of the regions defining the brain network resulting from the inversion of the cluster map 4. The index of
the AAL atlas and the MNI coordinates are also indicated. R: right; L: left.

middle cingulum, and the right superior and inferior temporal
pole.

Taken together, our results emphasize the role of the late
auditory ERP components, P3/N4 in the voice discrimination
task, as reported in the literature (Graux et al. 2013, 2015; Conde
et al. 2016, 2018; Liu et al. 2019). However, in contrast to previous
work using oddball paradigms, our task did not evoke differ-
ences in terms of amplitudes of late components, but in terms
of topography of the evoked potential field.

Crucially, we link the self-voice related neural activations to
behavioral performance: the occurrence of this map negatively
correlated with accuracy in self-voice trials, which was more
prominent during air conduction. Similarly, we observed a pos-
itive correlation between map occurrence and response times
in self-voice trials, which was, again, stronger when self-voice
stimuli were presented through air conduction.

We propose that map 4 reflects an auditory self-referencing
mechanism that compares the heard voice with the internal

self-voice representation. The map occurred more during self-
dominant voice morphs, which indicates its specificity for self-
voice, and, crucially, it was related to behavioral performance
only in self-dominant voice morphs. Specifically, the better
participants were in labeling the ambiguous morph as self-
dominant and the faster they responded, the less they activated
the map. This finding corresponds to the interpretation of
earlier ERP studies that less pre-attentional processes need to
be recruited in the discrimination of one’s own voice (Graux
et al. 2015). Seen from a different perspective, the worse
participants were at recognizing their voice, the more they
recruited the network generating this map. This is reminiscent
of a scenario in which a given resource is used only when
needed. For example, imagine writing an exam in physics
while being allowed to consult a relevant textbook. The better
the hypothetical examinee is in physics, the less she/he will
use the textbook. Accordingly, our data shows that the better
participants are in recognizing our voice, the less they recruit
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this network. Thus, we suggest that this map represents a neural
resource that is used in scenarios of vocal ambiguity, thereby
exploited proportionally to the ability to recognize self-voice.
This interpretation is further confirmed in the observation that
the same map is activated more with air conduction. Namely,
as we have previously shown (Orepic 2020) and replicated here,
participants exhibit a poorer performance at the SOVD task with
air, compared to bone conduction. It is thus possible that, since
the task is more difficult when conducted with air conduction,
the map is recruited more.

The spatial organization of the brain network activating dur-
ing the SOVD task further supports our proposal. First, right-
hemisphere dominance for self-recognition has been consis-
tently reported in various paradigms (Decety and Sommerville
2003; Feinberg and Keenan 2005; Uddin et al. 2005; Frassinetti
et al. 2008; Candini et al. 2018). The insula, where we observe the
maximal activation, is considered a hub for multisensory inte-
gration of exteroceptive and interoceptive signals that serves as
a basis for maintaining a coherent representation of our bodily
self (Craig 2009; Seth 2013; Ionta et al. 2014; Babo-Rebelo et al.
2016; Park et al. 2018; Park and Blanke 2019). Insula activation
specific to self-dominant morphs further supports our proposal
that self-voice is fundamentally a multimodal construct (Orepic
2020), integrating auditory (i.e., the sound of our voice) and
somatosensory (i.e., vibrotactile excitation resulting from bone
conduction) signals. Integration of auditory and somatosensory
information has been observed in rat’s posterior insula (Rodgers
et al. 2008); in monkeys insula selectively activates for con-
specific vocalization compared to other sounds (environmental
or other animals vocalizations) (Remedios et al. 2009) and in
humans bilateral insulae has been related to auditory temporal
processing of nonlinguistic auditory stimuli (Steinbrink et al.
2009). Moreover, (Nakamura et al. 2001) observed activations in
parainsular cortex specific to self-voice stimuli and (Shergill
et al. 2001) associated insula with inner speech generation.
The cingulate gyrus has been associated to self-referential pro-
cessing across different functional domains (for a review, see
Northoff et al. 2006) and specific to self-voice in the study of
Allen et al. (2005). Thereby, and due to its connections with
all cerebral lobes via association fibers a primordial role for
the cingulate for emotional awareness and for the cognitive
default mode network has been postulated for the cingulate
gyrus (Maldonado et al. 2020). Moreover, from anatomical point
of view, it is believed that insula and the anterior part of the
cingulate cortex evolved by developing same neuronal charac-
teristics (the spindle-shaped neurons or von Economo neurons)
to support specific functions, such as self-awareness (Allman
et al. 2010).The hippocampus is well known to play a role in auto-
biographical memory retrieval (Greenberg et al. 2005; Cabeza
and St Jacques 2007) as well as in self-referential processing
(Kurczek et al. 2015); thus, its recruitment in SOVD task might
reflect the retrieval of the internal self-voice representation,
that is compared to the voice morph. Finally, the amygdala is
recognized as a detector of several self-relevant processes, such
as fear conditioning in both animals and humans (Markram et al.
2008; Rodgers et al. 2008; Feinstein et al. 2011), or for the evalu-
ation of the emotional content in human voices (Sander et al.
2003). The amygdaloid complex consists of several nuclei with
reciprocal (para-) limbic connections with the olfactory system,
the anterior nucleus of the thalamus, and the basal part of the
insula, (insula of Reil; Mesulam and Mufson 1985), which may
explain the functional association of these areas in integrating
the extra-personal experiences and (self-)motivational states
(Marafioti et al. 2018). This notion has been confirmed by various

clinical and basic neuro-anatomic observations in the context
of the salience-network research (Seeley 2019). We hypothesize
that in our experiment the amygdala could have contributed to
the “affective” response known to occur after hearing the own
voice (Holzman and Rousey 1966).

We believe that this work would have relevant clinical
impact, in particular to characterize the still poorly understood
neuronal mechanisms underlying auditory-verbal halluci-
nations (AVH) (Wilkinson and Alderson-Day 2016). Being
predominantly negative in content and in affect, AVH represent
a major source of distress in patients with psychosis and their
presence alone significantly increases risk of suicide in this
group (Harkavy-Friedman et al. 2003). Thus, understanding the
etiology of AVH is a critical next step towards the development
of new diagnostic tools and treatments. One of the most
prominent accounts for AVH suggests that they arise as a self-
to-other misattribution of inner speech, i.e., as an impairment
in (internal) SOVD (Frith and Done 1989; Frith 1992; Ford and
Mathalon 2005; Ford et al. 2007; Moseley et al. 2013). Crucially, to
date, no study has directly investigated neural underpinnings
of SOVD in voice hearers and the empirical support for this
account mainly comes from studies (reviewed by Whitford 2019)
in which patients with schizophrenia, compared to healthy
participants, exhibited differences in amplitudes of certain ERP
components following self-voice stimuli. In this work, however,
we identified a brain mechanism directly related to SOVD;
thus, an investigation of the corresponding network in people
with AVH could provide evidence that would either signifi-
cantly support or challenge this long-standing and prominent
account.

Methodological Consideration

In this work, we investigated the electrophysiological effect
linked the SOVD task, in a period lasting 500 ms from the stim-
ulus onset. Although the literature is rich with documentations
and guidelines for an efficient analysis of ERPs, a standard dura-
tion for the analysis is not established and rather depends on the
type of stimulation (auditory, motor, visual, and so on) and on
the hypothesis beyond the study (Handy 2005; Woodman 2010;
Luck 2014). In our case, we investigated the periods associated to
the auditory ERP components with particular regard to the late
components, P3 and N4 which in the literature are considered as
the main “candidates” for the self-voice discrimination (Titova
and Näätänen 2001; Beauchemin et al. 2006; Graux et al. 2013,
2015; Conde et al. 2018), extending the window length to 500 ms
to account for participants’ variability.

The EEG segmentation was selected as a comprehensive
analysis of the changes of the scalp voltage potential in strength,
topography, and time independent of the appearance of domi-
nant ERP components. This technique is complemented by the
back-fitting, which establishes the “role” of each topographic
map in each subject, allowing the statistical inference. There-
fore, segmentation results on the grand mean ERP should not
been interpreted without the back-fitting procedure and statis-
tical analysis of the fitting parameters. For example, in our study,
map 6 could be considered as a peculiarity of the air conduction
according to the segmentation (Fig. 6A). However, when tested
across subjects, the statistics did not show any significance for
this map, probably due to the low GFP already visible in the
grand-averaged ERPs and even lower at the subject level.

Although the recognized limitation of the spatial reso-
lution of EEG and MEG source imaging compared to other
neuroimaging techniques (e.g. fMRI), the accuracy and
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precision of the estimated sources from high-density EEG (>200
channels) is well established through experimental, clinical,
and simulation studies (Michel and Murray 2012; Michel and He
2019; Seeber et al. 2019). In this work, we applied an innovative
and validated approach to localize sources of EEG microstates
by temporal normalization approaches (Bréchet et al. 2019,
2020, 2021; Michel and Brunet 2019) to define the brain sources
responsible of the activity recorded on the scalp and interpret
our findings in terms of brain network.

First of all, the solutions points were constrained to belong to
the gray matter only. Secondly, the approach attributes an iden-
tical background distribution (“weight”) to each solution point
and significantly improves the accuracy (not to be confused
with the lower resolution) of the localization. In fact, after the
inversion step, each solution point returns an activation value
that explains the input EEG. The distribution of such values,
which can be normalized between [0,1] (as in this work), demon-
strates that the majority of solution points are characterized by
low values and can be, therefore, ascribed to noise/background
activity. Therefore, only the right tail of the distribution (i.e.,
solution points with normalized activation values close to 1) is
meaningful to detect significant activations.

Of course, the results strongly depend on the threshold value,
which at the same time is a necessary parameter to fix (in all
types of analysis). Here, we considered as threshold a set of
percentiles of the distribution of activation values. In details,
we explored the results obtained by selecting the values from
the 20th to the 1th percentiles of the distribution which allowed
to detect a consistency of the localization of the activated brain
areas (Supplementary Fig. 1) across the different threshold used.

General Conclusions

In conclusion, this work encompasses novel scientific and
methodological aspects. First, to the best of our knowledge,
we were the first to correlate self-voice-related neural activity
with behavioral task performance. This work advances the
understanding of the self-voice phenomenon as it provides
an exhaustive characterization of spatio-temporal activity
related to SOVD, relying on the improved source localization of
high-density EEG and the topographic segmentation approach.
Second, we consolidate the importance of multisensory self-
voice presentation by demonstrating a reduced processing of
the map associated to SOVD task performance with bone-
compared to air-conducted self-voices. Finally, this work has
clinical importance as it sheds new light on the very mechanism
believed to account for auditory–verbal hallucinations—a major
source of distress in mental disorders (Harkavy-Friedman et al.
2003) whose underlying principles are still unknown (Wilkinson
and Alderson-Day 2016).

Supplementary Material
Supplementary material can be found at Cerebral Cortex online.
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