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Abstract
Background: Total mesorectal excision following neoadjuvant chemoradiotherapy 
(nCRT) is recommended in the latest treatment of locally advanced rectal cancer (LARC).
Objective: To predict whether patients with LARC can achieve pathologic complete 
response (pCR), comparing MRI‐based radiomics between before and after neoadju-
vant radiotherapy (nRT) was performed.
Methods: One hundred and sixty‐five MRI‐based radiomics features in axial T2‐
weighted images were obtained quantitatively from Imaging Biomarker Explorer 
Software. The specific features of conventional and developing radiomics were se-
lected with the analysis of least absolute shrinkage and selection operator logistic 
regression, of which the predictive performance was analyzed with receiver operating 
curve and calibration curve, and applied to an independent cohort.
Results: One hundred and thirty‐one target patients were enrolled in the present 
study. A radiomics signature founded on seven radiomics features was generated in 
the primary cohort. A remarkable difference about Rad‐score between pCR and non‐
pCR group occurred in both of primary (P < .001) or validation cohorts (P < .001). 
The value of area under the curves was 0.92 (95% CI, 0.86‐0.99) and 0.87 (95% 
CI, 0.74‐1.00) in the primary and validation cohorts, respectively. The Rad‐score 
(OR = 23.581; P < .001) from multivariate logistic regression analysis was signifi-
cant as an independent factor of pCR.
Conclusion: Our predictive model based on radiomics features was an independent 
predictor for pCR in LARC and could be a candidate in clinical practice.
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1 |  INTRODUCTION

Colorectal cancer (CRC) is considered as the third top ma-
lignancy in the world,1 approximate 30%‐50% of which is 
rectal cancer.2 Currently, the recommended treatment for lo-
cally advanced rectal cancer (LARC, T3‐4 or N+) is total 
mesorectal excision (TME) after neoadjuvant chemoradio-
therapy (nCRT).3 And neoadjuvant radiotherapy (nRT) plays 
an important role in nCRT. However, different patients bring 
the wide variabilities out of the response of LARC to nCRT, 
with a ladder from no tumor regression to pathologic com-
plete response (pCR).4 Although the necessity of surgery in 
LARC patients with pCR is a subject of ongoing argument, 
the majority of patients are still undergoing surgery in prac-
tice. Considering surgical complications, especially after 
nCRT, and outstanding long‐term outcomes in pCR patients 
apart from surgery, Habr‐Gama et al proposed the “watch‐
and‐wait” approach first.5 Thus, the identification of pCR 
before surgery gains more and more concerns in therapeutic 
management.

Radiomics, which extracted excavatable high‐dimensional 
data from digital images, revealed nonvisual information as-
sociated closely with underlying pathophysiology and even 
tumor heterogeneity.6,7 Recently, the development of radiom-
ics has shown great potential for therapy guidance and tumor 
prognosis across various types of cancer.8-11

Despite of diverse outcomes, several researches displayed 
the potential significance of imaging modalities.12-16 Among 
all modalities, magnetic resonance imaging (MRI) was re-
garded as the most recommended and promising method be-
cause it showed high soft tissue resolution without radiation 
to damage human body, and had a wide routine clinical appli-
cation for the evaluation of rectal cancer. Several predicting 
models also based tumor response to nCRT on MRI‐related 
radiomics in LARC. However, all of the studies only focused 
on the MR images prior to nCRT, which might have inherent 
limitations to reflect the impact of nCRT on target population.

Therefore, we were planning to investigate whether the 
difference of quantitative MRI‐based radiomics analysis be-
tween pre‐nRT and post‐nRT can be of great help to predict 
pCR in LARC.

2 |  MATERIALS AND METHODS

2.1 | Patients
This study collected the medical information of consecutive 
patients with LARC, who treated with nCRT followed by 
radical surgery (total mesorectal excision) between March 
2011 and March 2018 in Xiangya hospital. Biopsy‐proven 
rectal adenocarcinoma was performed before receiving radi-
otherapy and/or chemotherapy for patients. Locally advanced 
rectal cancer was defined as T3‐4 or N+ (c‐Stage II‐III) 

without any evidence of distant metastases in clinical stage, 
and evaluated by pelvic magnetic resonance imaging (MRI), 
chest X‐ray, digital rectal examination, abdomen, pelvis and/
or chest contrast‐enhanced computed tomography (CT), en-
dorectal ultrasonography (ERUS), and/or bone single‐photon 
emission computed tomography (SPECT). Exclusion criteria 
contained short‐course radiotherapy only, synchronous tu-
mors, lack of pre‐ or postradiation MR images, interval be-
tween the end of nRT and surgery <5 weeks or >12 weeks, 
and previous pelvic radiotherapy (Figure 1).

2.2 | Protocol of image acquisition and 
extraction of radiomic features
MR images were acquired with a 1.5‐T superconductive unit 
(MAGNETOM Sonata, Siemens, Erlangen, Germany; Singa 
HDxt, GE Medical Systems, Umatilla, FL, USA). Coronal, 
sagittal turbo spin‐echo T2‐weighted images, and transverse 
T1/T2‐weighted images were included in the sequences. The 
pre‐nRT MRI was obtained within 2 weeks before nRT and 
post‐nRT MRI was gained within 1 week after nRT.

One hundred and sixty‐five MRI‐based radiomics features 
(Supplementary material S1), which can quantify tumor's 
volume, intensity, and texture property, were extracted from 
manual segmentation, including pre‐ and post‐nRT MR im-
ages, by imaging biomarker explorer software (IBEX). The 
regions of interest (ROI) were outlined along the edge of 
tumor, and it took approximately 5 min to proceed segmen-
tation manually for each tumor. Segmentations of ROI were 
operated manually by Y.P—a radiotherapist with 10 years of 
experience in rectal MR imaging and reaffirmed by H.Z—a 
radiologist with 20 years of experience. The two radiothera-
pists were both blinded to the clinical data. Radiomic features 
for each of included patient were automatically calculated by 
the software following tumor segmentation.

The data we used for statistical analysis were obtained 
by subtracting quantitative MRI‐based radiomic features of 
post‐nRT from that of pre‐nRT.

2.3 | Treatment
The 6‐week administration of neoadjuvant radiotherapy was 
at a dose of 46‐50 Gy in 23‐25 fractions (2 Gy/fraction, 5 d/
wk) for the whole pelvis, and 6‐8Gy in 3‐4 fractions for the 
primary tumor. Radiotherapy machine included Trilogy, 
23EX, D‐2100CD (Varian) and TomoTherapy HTM Series 
2.1.x Hi Art 5.1x (Accuray Incorporated). All patients had a 
CT emulation of three‐dimensional conformal planning and 
intensity‐modulated radiotherapy (IMRT), concomitant with 
a three‐field treatment plan involving a 6‐MV photon poste-
rior‐anterior field and 15‐MV photon opposed lateral fields.

All patients received the treatments of neoadjuvant 
concurrent chemotherapy based on 5‐fluorouracil (5‐FU). 
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Either of the two programs was selected: mono‐chemo-
therapy of 5‐FU: bolus injection [400  mg/m2/d] for con-
tinuous 5 days in the first and last weeks of radiotherapy 
or oral capecitabine [825  mg/m2] twice per day during 
weekend breaks of radiotherapy; combined chemotherapy: 
mFOLFOX6 (bolus infusion of 5‐FU [400 mg/m2] 2 hours 
on d1, continuous intravenous drip of 5‐FU [1200 mg/m2/d] 
46 hours on d1‐2, intravenous drip of leucovorin [400mg/
m2] 2 hours on d1, intravenous drip of oxaliplatin [85 mg/
m2] 2  hours on d1, 2  weeks per cycle) or CAPOX (oral 
capecitabine [1000 mg/m2] twice daily d1‐14, intravenous 
drip of oxaliplatin [130 mg/m2] 2 hours on d1, 3 weeks per 
cycle).

TME surgery was operated between 5 and 12 weeks fol-
lowing nRT, and the surgical strategy, including abdomino-
perineal resection (APR), trans‐anal resection (TAR), low 
anterior resection (LAR), and LAR plus prophylactic ileos-
tomy, was made by surgeon.

2.4 | Tumor response evaluation
The tumor tissue was sampled prior to paraffin embedding 
and slicing into 4‐mm‐thick sections to evaluate the tumor 
response to nCRT after resection. pCR, no viable tumor cells 
in the bowel wall (T stage) and regional nodes (N stage)‐‐
ypT0N0, was equivalent to the tumor regression grade (TRG) 
0,17 which is fibrotic mass, acellular mucin pools or hyaline 
degeneration only, without detecting tumor cells (complete 
regression). The other pathological conditions, including 
TRG 1‐417 (no regression, minimal regression, moderate 
regression, and near‐complete regression), were defined as 
non‐pCR.

2.5 | Data collection
The parameters were appraised as latent clinical predictors 
of tumor response to nCRT as follows: age, gender, Body 

F I G U R E  1  Flowchart
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Mass Index (BMI), clinical T (cT) stage, clinical lymph node 
(cN) status, distance from the anal verge, histologic type, 
pre‐nCRT CEA level, concurrent chemotherapy regimen and 
interval time between nCRT and surgery.

Clinical T classification was judged by pelvic MRI and/or 
ERUS. Smallest diameter of a regional lymph node ≥5 mm 
observed on pelvic MRI was defined as positive lymph node 
involvement.18 The distance between the tumor and the anal 
verge was measured by MRI. The clinical TNM staging 
was originated from the 8th edition of the American Joint 
Committee on Cancer (AJCC) Staging system. The periph-
eral blood within 2 weeks prior to nCRT under the condition 
of abrosia was extracted for the examination of pre‐nCRT 
serum tumor markers levels.

2.6 | Construction of Rad‐score with the 
LASSO regression model
Since the multicollinearity among radiomics features existed, 
the optimal subset of radiomic features was selected by the 
LASSO binary logistic regression model in order to establish 
the radiomic signature score (Rad‐score). And a penalty pa-
rameter (also called as tuning parameter) was brought into 
the mechanism of the LASSO regression to penalize the 
coefficient of variables embodying in the LASSO regres-
sion model, averting the issue of overfitting. With the raise 
of tuning parameter (λ), more coefficients were installed to 
zero (less variables were chosen), and more shrinkage was 
applied among the nonzero coefficients. The region under 
the receiver operating characteristic curve was constructed 
vs log(λ) to find out the optimal value of log(λ) with the mini-
mum criterion and the one standard error of the minimum 
criterion. LASSO binary logistic regression analysis was 
performed in the Bglmnet^ package of R software, and the 
process of programming is presented in the Supplementary 
material S1.19-21

2.7 | Statistics
Intergroup comparisons were analyzed using Pearson's chi‐
square test, Mann‐Whitney U test, Fisher's exact test, or 
Student's t test, according to the nature of the data. The in-
dependent prognostic factors were selected by multivariable 
logistic regression analysis. The performance of the model 
was evaluated in the primary and validation cohorts. The dis-
crimination of the signature was evaluated through the area 
under the curve (AUC). The apparent calibration curve was 
drawn with model‐predicted probability vs actual probabil-
ity of invasive adenocarcinoma, and the bias‐corrected curve 
was generated from 1000 bootstrap resamples. SPSS from 
Windows, version 20.0 (IBM) was used for statistical analy-
sis. A difference was considered significant at P < .05 with 
two sides.

3 |  RESULTS

3.1 | Patients characteristics
One hundred and thirty‐one target patients were contained in 
our study. The parameter of patients in the primary and vali-
dation cohorts was listed in Table 1. Patients were randomly 
distributed into primary cohort and validation cohort in the 
ratio of 2:1 to build the pCR predictive model. In the primary 
cohort, 63.22% of target population was male, whose age was 
51.18 years in average. In the validation cohort, more than 
half of patients were male (59.09%) with an average age of 
51.64.

The percentages of patients with pCR in the primary 
cohort and the validation cohort were 20.69% (18/87) 
and 20.45% (9/44), respectively. Chemotherapy regimen 
was significantly different between the pCR and non‐
pCR groups for the primary (P = .006) but not validation 
(P  =  .548) cohorts. Conversely, there was a conspicuous 
difference of pre‐CEA level between the pCR and non‐
pCR groups in the validation (P <  .001) but not primary 
(P = .608) cohorts. The difference about clinical T staging, 
clinical N staging and the interval weeks between CRT and 
surgery were not observed in both of the primary or vali-
dation cohort.

3.2 | Feature selection of the 
radiomic signature
Aggregate 165 features were obtained from T2‐weighted 
images for individuals (both pre‐nRT and post‐nRT) by 
IBEX software. In order to incarnate the variations on 165 
MRI‐based features in the process of concurrent chemora-
diotherapy, the analytical data were obtained by subtracting 
quantitative features of post‐nRT from that of pre‐nRT. A 
set of features with corresponding numbers were selected 
by LASSO and used to calculate the Rad‐scores for the pCR 
model.

λ was chosen by 10‐fold cross‐validation in the LASSO 
model, and log(λ) of −2.85 was the optimal subset for seven 
radiomics features, at which these potential predictors, in-
cluding GOH‐Skewness, GLRLM‐Run Length Non‐uni-
formity, ID‐Local Entropy Max, ID‐ Local Range Min, 
NIDM‐Coarseness, maximum 3D diameter, and Surface 
Area Density, were extracted from 165 radiomic features with 
nonzero coefficients of the LASSO logistic regression model 
for the primary cohort (Figure 2). Both Figure 1A,B showed 
that the number of variables contained into the model was 
decreased, and the absolute values of the coefficients for the 
variables also sank toward zero as log(λ) altered from 6 to 0.

The radiomic signature score (Rad‐score) was assessed 
for each patient founded on the seven radiomic features 
(Supplementary material S1). Waterfall plots showed the 
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Rad‐score for individuals in primary (Figure 3A) and val-
idation cohort (Figure 3B). There was a marked difference 
of Rad‐score between pCR and non‐pCR group regardless 
of the primary (P <  .001) or validation cohort (P <  .001). 
pCR was associated with higher mean value of Rad‐score in 
both the primary and validation cohort (−0.57 and −0.55, 
respectively) compared to non‐pCR group (–1.74 and –1.77, 
respectively).

3.3 | Performance of the 
radiomics signature
Variables with differences (P  <  .2) in univariate analysis 
were selected into the Logistic regression model of multi-
variate analysis. Rad‐score (OR  =  23.581; P  <  .001) was 
identified as independent factors in multivariate logistic re-
gression analysis (Table 2). The value of AUCs was 0.92 
(95% CI, 0.86‐ 0.99) in the primary cohort and 0.87 (95% CI, 

0.74‐1.00) (Figure 4) in the validation cohort. The calibration 
curve of the signature was presented in Figure 5, indicating 
that the model made accurate predictions.

4 |  DISCUSSION

Increasing data supported that pCR following nCRT in 
LARC was linked to prominent enhanced local control, 
reduced incidence of distant metastasis, and long‐term 
survival compared with non‐pCR.22 With the excellent 
advantage, it had been prompting nonoperative manage-
ments, including a “watch‐and‐wait” proposal, in selected 
LARC patients.5 However, the pCR rate was unsatisfacto-
rily low, hovering at around 20% (range 15%‐27%).22 Our 
pCR incidence (20.61%) was also within the range. Hence, 
identifying the predictive factors of pCR played a key role 
while attempting to improve the pCR, especially in term 

T A B L E  1  Characteristics of patients in the primary and validation cohorts

Characteristic

Primary cohort(n = 87) Validation cohort(n = 44)

non‐pCR pCR P non‐pCR pCR P

Gender     .837     .614

Male 44 (63.77%) 11 (61.11%)   20 (57.14%) 6 (66.67%)  

Female 25 (36.23%) 7 (38.89%)   15 (42.86%) 3 (33.33%)  

Age (y) 51.35 ± 11.49 50.56 ± 10.31 .791 50.49 ± 11.14 56.11 ± 9.49 .173

BMI (kg/m2) 22.69 ± 3.18 22.19 ± 2.75 .546 21.90 ± 2.92 23.20 ± 2.68 .234

Distance from the anal 
verge (mm)

40.97 ± 14.33 35.82 ± 9.99 .155 38.49 ± 14.65 39.88 ± 13.13 .797

Pathology type     .989     .210

Well/moderately 
differentiated

49 (71.01%) 12 (66.67%)   29 (82.86%) 9 (100%)  

Poor differentiated 13 (18.84%) 5 (27.78%)   2 (5.71%) 0 (0.00%)  

Mucinous carcinomas 7 (10.15%) 1 (5.55%)   4 (11.43%) 0 (0.00%)  

Clinical T staging     .508     .090

cT2 8 (11.59%) 3 (16.67%)   3 (8.57%) 1 (11.11%)  

cT3 46 (66.67%) 12 (66.66%)   20 (57.14%) 7 (77.78%)  

cT4 15 (21.74%) 3 (16.67%)   12 (34.29%) 1 (11.11%)  

Clinical N staging     .740     .732

cN0 18 (26.09%) 4 (22.22%)   6 (17.14%) 2 (22.22%)  

cN1 14 (20.29%) 3 (16.67%)   7 (20.00%) 1 (11.11%)  

cN2 37 (53.62%) 11 (61.11%)   22 (62.86%) 6 (66.67%)  

pre‐CEA (ng/mL) 3.49 (1.42‐11.85) 4.75 (1.92‐6.14) .608 6.77 (2.71‐15.46) 0.98 (0.76‐1.89) .000

Chemotherapy regimen     .006     .548

Mono‐chemotherapy 61 (88.41%) 11 (61.11%)   28 (80.00%) 8 (88.89%)  

Combined chemotherapy 8 (11.59%) 7 (38.89%)   7 (20.00%) 1 (11.11%)  

Interval to surgery (wk) 7 (6‐9.25) 8 (6‐11) .101 9 (5.5‐11.5) 9 (7‐10) .988

Rad‐score −1.74（−2.16 to 
−1.40）

−0.57 (−1.01 to 
0.10)

<.001 −1.77 (−2.20 to 
−1.21)

−0.55 (−1.23 to 
−0.10)

<.001
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of averting more invasive treatments. Due to the superior-
ity of effective availability and broad applicability, clini-
cal characteristics were broadly discussed. Although there 

were few researches showing that clinical characteristics 
affect pCR after nCRT, some potent clinical predictive fac-
tors, especially radiomics, emerges and gain more atten-
tions. Numerous studies indicated that radiomic model can 
evaluate tumor heterogeneity, and correlate radiological 
findings with underlying genomic and biological charac-
teristics, including treatment response and prognosis.6,23 
Moreover, the large amount of previous evidences sup-
ported the application of advanced MRI‐based radiomic 
features for predict of tumor responses to nCRT in LARC 
patients.24,25

Our study was in general consistent with prior re-
searches. Nie26 and Cui27 reported a relatively satisfactory 
result by using a radiomics method, with AUCs of 0.84 
and 0.94 for pCR prediction, respectively. However, there 
was an obvious predominance in our study compared to 
their studies. First, we innovatively compared variation on 
MRI‐based features in the process of concurrent chemora-
diotherapy, which was a promising guidance in the tumor 
change and treatment response. All other studies only an-
alyzed preradiotherapy MRI images but ignored postra-
diotherapy. In fact, the development of functional MRI 
sequences has enabled us to assess tumor characteristics of 
post‐nCRT MRI.28 A large prospective trial in the MRI and 
Rectal Cancer European Equivalence (MERCURY) study 
revealed that standard morphological MRI (T2  weighted) 
had a close association with survival outcomes,29 indi-
cating the important role of post‐nRT MRI assessment of 
tumor regression grade in prognosis. Second, our radio-
mic features were acquired from only one sequence, such 
as the T2‐weighted images. The T2‐weighted images are 
commonly used in clinical practice, which is familiar to ra-
diologists. In addition, T2‐weighted images are quite stable 
and can be acquired easily. In contrast, diffusion‐weighted 
images (DWI) are prone to distortion and susceptibility ar-
tifacts, causing the inaccuracy of tumor segmentation and 
data extraction. Similarly, other sequences including T1‐
weighted dynamic contrast enhanced images depend on the 
amount and distribution of the injected contrast‐enhancing 

F I G U R E  2  Radiomic feature selection using LASSO regression 
model. A, Optimal feature selection according to AUC value; (B) 
LASSO coefficient profiles of the 165 radiomic features. Vertical line 
was drawn at the selected value using 10‐fold cross‐validation, where 
optimal λ resulted in 7 nonzero coefficients

F I G U R E  3  Rad‐score for patients in (A) the primary cohort and 
(B) the validation cohort

T A B L E  2  Results of multivariate logistic regression analysis

Characteristic β Odds ratio (95% CI) P

Intercept 4.861    

Distance from the 
anal verge (mm)

−0.041 0.959 (0.900‐1.023) .205

Chemotherapy 
regimen

0.808 2.244 (0.320‐15.749) .416

Interval to sur-
gery (wk)

−0.121 0.886 (0.621‐1.624) .504

Rad‐score 3.160 23.581 (4.445‐125.090) <.001

Abbreviations: β, regression coefficient; CI, confidence interval.
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agent, which might be influenced by the variable hemody-
namic conditions in the patients.

It was already clear that CRC is a heterogeneous dis-
ease, and tumor spatial heterogeneity is a critical predictor 
for prognosis. Image texture analysis is a feasible approach 
of quantifying heterogeneity.30 Our study suggested that a 
creative radiomic signature founded on seven radiomic fea-
tures was an independent predictor for pCR in LARC after 
nCRT. Among these seven features, GOH‐Skewness, ID‐
Local Entropy Max, ID‐ Local Range Min, GLRLM‐Run 
Length Non‐uniformity, and NIDM‐Coarseness associated 
with the heterogeneity of tumor.23,30 GOH‐Skewness, ID‐
Local Entropy Max, and ID‐Local Range Min were gained 
from various histograms of voxel intensities. NIDM‐
Coarseness is the level of alterations in the intensity of spa-
tial rate. GLRLM‐Run Length Non‐uniformity assesses the 
distribution of runs over the run lengths. Radiomics can 
have objective reflections on both the attenuation and dis-
persion of gray level intensity through quantitative analysis 

for MR images, which may be less apparent in direct visual 
assessment.31 Although the best way to determine tumor 
heterogeneity is to detect molecular subtypes using tissue 
specimens, which taken by colonoscopy are only sufficient 
for pathological diagnosis. Therefore, MRI‐based radiom-
ics analysis helps us to deepen the understanding of CRC 
disease, improve the diagnosis, and assessment therapy re-
sponse after nCRT.

As a conventional diagnostic performance, diminutive 
tumor size was associated with pCR in several studies.32 
Our previous research also reached the same conclusion.33 
However, the value of AUC for tumor size was not ideal33—
only 0.629 in the previous study. In this study, our radiomics 
model contained not only an indicator of tumor size—Max 
3D Diameter, but also a tumor density indicator—Surface 
Area Density, whose variation might not be evident on direct 
visual assessment. Therefore, we believe that our predictive 
model can improve the accuracy of prediction and ameliorate 
the applicability in clinic.

F I G U R E  4  Area under the curve 
(AUC) of MRI‐based radiomics model 
in (A) the primary cohort and (B) the 
validation cohort

F I G U R E  5  Calibration curve showing the predicted vs actual probability for pCR. Calibration curve of radiomics signature in (A) the 
primary cohort and (B) the validation cohort
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Interestingly, our study demonstrated that there was a 
marked difference about chemotherapy regimen between the 
pCR and non‐pCR groups in the primary (P = .006) but not 
validation (P = .548) cohorts. Meanwhile, there was no dif-
ference in multivariate logistic regression analysis between 
combined chemotherapy regimens and mono‐chemotherapy 
in primary cohort (P = .416). Therefore, this study believed 
that the advantage of combined chemotherapy regimen re-
quires further clinical studies to confirm, concerning that 
only a few studies indicated a higher pCR under the condition 
of another agent added to 5‐FU‐based nCRT.34 Conversely, 
pCR was associated with pre‐CEA level compared with 
non‐pCR groups in the validation (P < .001) but not primary 
(P = .608) cohorts. Another study suggested that pre‐nCRT 
CEA levels could be a predictor for prognosis of local tumor 
control but not for pCR.35 In fact, both of chemotherapy reg-
imen and pre‐nCRT CEA were meaningless in multivariate 
analysis.

This predictive model in our study can report the sen-
sitivity of neoadjuvant chemoradiation better, which was 
closely related to survival.33 Moreover, the predictive model 
can provide more reliable information on whether patients 
can achieve pCR, which can be a firm support for patients to 
perform “watch‐and‐wait” proposal. Retrospective data with 
the limited number of patients from single institution may af-
fect the reliability to some extent in our study. Consequently, 
more prospective randomized trials from various regions are 
exactly needed to get a better comprehension in promoting 
the individualized nCRT for LARC.

In conclusion, our study showed a predictive model with 
radiomic features was promising to predict pCR to neoad-
juvant chemoradiation in LARC patients. In addition, our 
method developing with information from the clinical ob-
tained T2‐weighted sequence may be pragmatic as a comple-
ment in clinical strategy making.
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