
REVIEW
Biomedicine www.proteomics-journal.com

The Role of Mass Spectrometry and Proteogenomics in the
Advancement of HLA Epitope Prediction
Amanda L. Creech, Ying S. Ting, Scott P. Goulding, John F.K. Sauld, Dominik Barthelme,
Michael S. Rooney, Terri A. Addona, and Jennifer G. Abelin*

A challenge in developing personalized cancer immunotherapies is the
prediction of putative cancer-specific antigens. Currently, predictive
algorithms are used to infer binding of peptides to human leukocyte antigen
(HLA) heterodimers to aid in the selection of putative epitope targets. One
drawback of current epitope prediction algorithms is that they are trained on
datasets containing biochemical HLA-peptide binding data that may not
completely capture the rules associated with endogenous processing and
presentation. The field of MS has made great improvements in
instrumentation speed and sensitivity, chromatographic resolution, and
proteogenomic database search strategies to facilitate the identification of
HLA-ligands from a variety of cell types and tumor tissues. As such, these
advances have enabled MS profiling of HLA-binding peptides to be a
tractable, orthogonal approach to lower throughput biochemical assays for
generating comprehensive datasets to train epitope prediction algorithms. In
this review, we will highlight the progress made in the field of HLA-ligand
profiling enabled by MS and its impact on current and future epitope
prediction strategies.

1. Introduction

Cancer immunotherapy has become an attractive alterna-
tive to less specific treatment options such as chemother-
apy and radiation.[1–7] Within this realm, there are several av-
enues that harness the capabilities of the immune system to
both identify and eliminate cancer cells. The broadest treat-
ments are antibodies that modulate the regulatory pathways of
cytotoxic T lymphocytes (CTLs) by inhibiting immune check-
point molecules such as programmed cell death protein 1, pro-
grammed cell death protein 1 ligand, and cytotoxic T-lymphocyte-
associated protein 4.[4] Another class of immunotherapies are
more personalized as they target endogenously processed and
presented antigens such as tumor associated antigens (TAAs)
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that are often overexpressed self-
antigens, and neoantigens, which
are peptide antigens containing
tumor-specific sequence variants (i.e.,
mutations).[1,2] Interestingly, improved
outcomes among patients treated with
checkpoint inhibitors have been linked
to tumors with a high mutational load
and increased numbers of predicted
neoantigens.[8–12] Additionally, T cell
responses against tumor neoantigens
have been observed after immune check-
point blockage with ipilimumab[13] and
adoptive transfer T cell therapy[14] in
the context of metastatic melanoma.
Therefore, the accurate prediction of
neoantigens has become a focus in the
development of personalized cancer
immunotherapeutics.
Personalized cancer vaccines are cur-

rently under development to further aug-
ment the adaptive immune response

against tumor-specific neoantigens.[1,2] Historically, neoanti-
gens were discovered by molecular cloning and laborious
in vitro immune screening using cDNA libraries[15]. Cur-
rently, the combination of next generation sequencing
and computational methods are used to identify putative
neoantigens from a patient’s tumor genome or transcriptome
(Figure 1A).[1,2,16–21] These candidate neoantigens can then be
manufactured into a vaccine and delivered to patients, aiming to
induce anti-tumor responses (Figure 1B). More details regarding
personalized neoantigen peptide-based vaccine modalities,
production, and their use in cancer immunotherapy can be
found in a review article recently published by Aldous et al.[22] In
preclinical models, studies have shown that synthetic peptide
vaccines against cancer neoantigens induce CD8+ T cell re-
sponses and protect against tumor outgrowth.[6,17] Moreover,
two recent clinical studies have demonstrated promising results
using personalized neoantigen vaccines in small cohorts of
melanoma patients.[1,2] After vaccination with neoantigens
delivered by either a peptide-based[1] or RNA-based[2] vehicle,
both CD8+ and CD4+ T cell responses were detected against
vaccinated neoantigens, and protection against metastatic
progression was observed. These successes further highlight the
importance of developing personalized neoantigen vaccines for
cancer immunotherapy.
The concept of producing personalized cancer vaccines ap-

pears straightforward, but the accurate prediction of tumor-
specific peptide antigens for every patient remains a major
obstacle. In humans, endogenous proteins are processed into
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Figure 1. Development and function of personalized neoantigen vaccines. A) Overview of the epitope selection process in the development of per-
sonalized cancer vaccines. Tumor-specific variants are first identified using whole exome or transcriptome sequencing from the patient’s tumor
biopsy. The sequence variant containing peptides are ranked by an epitope selection pipeline. The resulting putative neoantigen epitopes could be
further prioritized based on T cell response prediction or measurement. Predicted neoantigens containing high confident epitopes are selected for
vaccine production. B) Schematic depicting the function of personalized neoantigen vaccines. Predicted neoantigens are administered in combina-
tion with adjuvants and/or checkpoint inhibitors to increase the patient’s immune response. Upon vaccination, dendritic cells, and/or other anti-
gen presenting cells uptake the neoantigens delivered by a vehicle, such as DNA, RNA, or long peptide form (box 1). After the dendritic cells or
other antigen presenting cells process the neoantigens, they can present the resulting epitopes to näıve T cells, which are subsequently activated to
become cytotoxic (box 2). These neoantigen-specific cytotoxic T cells replicate and circulate in the peripheral vascular system (box 3). When these
T cells encounter tumor cells presenting the corresponding epitopes, they can identify and eliminate them by cytotoxicity and other immune functions
(box 4).

peptides by the proteasome, cytosolic and endosomal/lysosomal
proteases, and peptidases and presented by two classes of cell
surface proteins encoded by the major histocompatibility com-
plex (MHC). These cell surface proteins are referred to as human
leukocyte antigens (HLA class I and class II) in humans and the

group of peptides that bind them and elicit immune responses
are termed HLA epitopes. HLA epitopes are one key component
for the detection of danger signals by the immune system. Circu-
lating CD8+ T cells recognize class I MHC (HLA-A–C) epitopes
derived from endogenous processing pathways and displayed on
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almost all nucleated cells. CD4+ T cells recognize class II MHC
(HLA-DR, -DQ, and -DP) epitopes displayed on antigen present-
ing cells, such as dendritic cells and macrophages.
The genes coding for HLA proteins are highly polymor-

phic, with more than 12 000 class I and 4000 class II al-
lele variants identified across the human population.[23] From
maternal and paternal HLA haplotypes, an individual can in-
herit different alleles for each of the class I and class II HLA
loci. Class I HLA molecules are heterodimers made up of an
α-chain, encoded by class I HLA genes, and a β-2-microglobulin.
Class II HLA molecules are α- and β-chain heterodimers,
both encoded by the class II HLA genes. Because of the α-
and β-chain pairing combinations, the population of HLA het-
erodimers is highly complex. In addition, each HLA heterodimer
is estimated to bind thousands of peptides with allele-specific
binding preferences.[24–28] Understanding the binding prefer-
ences of every HLA heterodimer is key to successfully predict-
ing which neoantigens are likely to elicit tumor-specific T cell
responses.
Biochemical methods such as stability and binding assays that

leverage synthetic peptides bound to purified recombinant MHC
molecules, are most commonly used to characterize HLA allele-
specific peptide-binding motifs. However, these approaches are
low throughput, biased by peptide (target) selection, and un-
able to capture the potential rules that govern endogenous HLA-
ligand processing and presentation.[26–31] In contrast, LC coupled
to MS/MS has been used to directly identify HLA epitopes and
naturally processed ligands since the early 1990s.[25] LC–MS/MS
approaches are high throughput, unbiased by target selection,
and adaptive to experiments designed to characterize cellular
HLA-ligand processing and presentation mechanisms.[24,31–33]

Considering the high complexities of HLA polymorphisms and
the repertoire ofHLA-ligands, LC–MS/MShas been andwill con-
tinue to be a major force to advance the development of per-
sonalized neoantigen vaccines. In this review, we will highlight
(1) the current state of HLA-ligand profiling, (2) cancer TAA and
neoantigen discovery enabled by LC–MS/MS, (3) the implemen-
tation of HLA-ligand profiling in epitope and neoantigen predic-
tion strategies, and (4) current limitations and future applications
of MS-based HLA epitope prediction methods in the develop-
ment of personalized cancer immunotherapies.

1.1. Profiling of HLA-Ligands Using MS

Direct identification of endogenously processed and presented
HLA-ligands by LC–MS/MS was pioneered by Hunt and col-
leagues in the early 1990s.[25,34] Concurrently, Rammensee and
colleagues usedHPLC and Edman degradation to sequenceHLA
ligands[35]. By using monoclonal antibodies specific to HLA het-
erodimers, HLA-peptide complexes can be immunoprecipitated
from cellular lysate or culture media if HLA complexes are en-
gineered to lack transmembrane regions (soluble HLA). Peptide
ligands are typically dissociated from the HLA heterodimers by
treatment with acid. The eluted peptide sample is further de-
salted or processed through a filter with a molecular weight cut-
off so only HLA peptide ligands are introduced to the mass spec-
trometer. The exclusion of denaturedHLA heterodimers can also
be achieved by eluting only the HLA-bound peptides with a lower

percentage of organic solvent from a RP material. HLA-peptide
ligands can also be isolated from cell media via a mild-acid elu-
tion from the cell surface and desalted prior to LC–MS/MS anal-
ysis.
In early HLA-ligand profiling studies, only tens of endoge-

nously processed and presented ligands could be identified by
LC–MS/MS using immunoprecipitation techniques. Today, the
numbers of HLA-binding peptides identified from a single exper-
iment have increased by orders of magnitude. Studies now com-
monly report thousands of endogenously processed ligands iden-
tified directly from either cell lines or patient material.[24,32,33,36–39]

The acceleration of HLA-ligand identification can be attributed
to improvements in chromatography (e.g., high pressure LC sys-
tems with reproducible nanoliter flow rates and columns with
higher resolution), increased sensitivity and speed of mass spec-
trometry instrumentation, as well as the increased confidence
of peptide assignments resulting from high resolution MS/MS
data. Other techniques, such as combining various fragmenta-
tion methods, have also been shown to increase the identifica-
tion rate for specific populations of HLA-ligands, like those that
have a basic amino acid residue in their anchor positions that
interact with the peptide-binding groove.[37,40] HLA-ligand iden-
tification using MS will continue to improve as upstream sample
processing techniques are enhanced, instrumentation scan rates
and sensitivity advance, and data acquisition methods become
more sophisticated.
The endogenous processing of HLA-ligands is a complex pro-

cedure and involves a variety of enzymes that are not all well
characterized.[41] Thus, most studies identify HLA-ligands from
LC–MS/MS data using database searching tools with no defined
enzyme cleavage specificity (i.e., no-enzyme searches). Without
an enzyme specificity, the database search space is at least an or-
der ofmagnitude larger than that of a tryptic database search.[42,43]

However, modern database searching algorithms can leverage
high resolution data to improve their performance with no-
enzyme searches.[42–44] While details of endogenous processing
of ligands could be captured and potentially used to improve
the confidence of peptide identifications,[33,41] such information
is typically left out of the peptide identification process. There-
fore, it is critical to use a stringent false discovery rate (FDR) esti-
mation cutoff to control for false identifications and ensure high
quality data is reported.[45] As such, most HLA-ligands profiling
studies that utilize no-enzyme searches have reported identified
ligands using a FDR threshold of 1% or less.[24,32,33,36,37,46] This
FDR threshold does not prevent contaminant peptides (i.e., not
HLA-bound) from being reported in HLA-ligandome datasets.
One of the largest contributors to contaminant peptides in these
datasets are tryptic peptides that are retained on LC columns
after conditioning. However, this subset of contaminant pep-
tides has been shown to be an average of 4% in a large mono-
allelic dataset, and can be easily removed by using peptide mo-
tif clustering tools or by defining a tryptic peptide database
as contaminants.[47] The implementation of de novo sequenc-
ing strategies[43,48] and HLA-allele specific database digestion pa-
rameters have also been used to identify spectra that were not
identified using the no-enzyme search approach.[33] Moreover,
proteogenomic and targeted database strategies have been ap-
plied and reported to increase rates of HLA-ligand identification
from LC–MS/MS data.[36,39,44,49] However, caution should be used
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with these peptide identification methods to ensure that FDR is
accurately estimated and reported.[50] Future improvements to
proteogenomic, no enzyme, and de novo peptide identification
strategies will greatly boost confidence in HLA-ligands identified
using MS.

1.2. Discovery of Neoantigen and Post-translationally Modified
TAA Enabled by LC-MS/MS

LC–MS/MS profiling of endogenously processed and presented
HLA-ligands has successfully been applied to multiple cell lines
and patient-derived material. An early application of LC–MS/MS
to directly characterize immunogenic epitopes led to the discov-
ery of a melanoma-restricted tyrosinase epitope that was shown
to be recognized by CTLs from five melanoma patients.[34] Since
then, several research groups have used MS to both profile
class I and II HLA-ligands and even discover neoantigens, al-
though at very low numbers, presented by various types of can-
cer cells.[34,38,49,51–56] For example, Yadav and colleagues applied
whole exome sequencing to murine cell lines and used MS to
profile endogenously processed and presented ligands and de-
tected neoantigens.[19] In a murine sarcoma model, Gubin and
colleagues investigated cancer neoantigens that are targets of
T cells activated by immune checkpoint blockade, and confirmed
neoantigen presentation by identifying peptides presented on tu-
mor H-2Kb complexes.[6,17]

A few groups, including Bassani-Sternberg et al.[36] and
Kalaora et al.[49], have demonstrated that neoantigens, along with
a subset of well-known melanoma TAA’s, can be directly iden-
tified from patient tumor material using MS. Bassani-Sternberg
and colleagues profiled HLA-ligands from multiple melanoma
patients to generate a dataset of>95 000 endogenously processed
tumor ligands.[36] Using a proteogenomic strategy, the group was
able to directly detect 11 neoantigens using LC–MS/MS fromfive
of their patients where whole exome sequencing was available.[36]

Kalaora and colleagues applied whole exome sequencing and
HLA-peptide LC–MS/MS profiling to a primary cell line es-
tablished from a patient’s melanoma metastases. Using a
similar proteogenomic strategy, the group identified two patient-
specific neoantigens from the total population of 4956 HLA-
peptides identified by LC–MS/MS. One of the LC–MS/MS iden-
tified mutated peptides but not its wild-type counterpart, was
found to stimulate the patient’s tumor infiltrating lymphocytes.
Furthermore, Khodadoust and colleagues demonstrated the abil-
ity to directly interrogate the HLA-ligandome from a patient with
B cell non-Hodgkin lymphoma and discovered neoantigens de-
rived from immunoglobulin variable regions via LC–MS/MS [39].
It is important to note that in some of these examples multiple
grams of material were required for LC–MS/MS peptide identi-
fication of neoantigens, which currently limits this approach to
cancer types where tumor material is abundant. Another impor-
tant consideration is that tumor tissue is heterogenous as it con-
tains multiple cell types. In fact, melanoma tumors reported in
The Cancer Genome Atlas( http://cancergenome.nih.gov/) show
an average purity of 67%, and other tumor types likely have vary-
ing purities.[57] Therefore, HLA-ligands identified from tumor
material represent a mixed population of HLA-ligandomes that
may be difficult to assign as tumor specific.

In addition to recognizing neoantigens as immunotherapeutic
targets, it has been postulated that aberrant post-translationally
modified epitopes associated with cancer can be used to elicit
tumor-specific T cell responses.[54,55,58,59] Using MS, identifica-
tion of HLA ligands containing post-translational modifications
such as phosphorylation, methylation, and glycosylation, have
been reported.[54,55,58–62] Phosphorylation, which becomes dys-
regulated in cancer, has been reported in multiple HLA-ligand
datasets and is the most well studied in this context.[36,54,55,60,63]

For instance, Zarling and colleagues identified endogenously
processed and presented phosphorylated HLA class I ligands by
using immobilizedmetal affinity chromatography enrichment[64]

and were able to elicit in vitro CTL responses against a sub-
set of phosphorylated epitopes but not their unphosphorylated
counterparts.[55,58] Hunt, Cobbold, and colleagues have also re-
ported a subset of immunogenic class I-restricted phosphory-
lated HLA-epitopes from primary leukemia samples.[54] Addi-
tional clinical validation of HLA-ligand profiling by LC–MS/MS
and in vivo immunogenicity investigations are likely required
to fully understand the tumor specificity of post-translationally
modified epitopes and their value as potential immunotherapeu-
tic targets.

1.3. Implementation of HLA Ligand Profiling in Epitope and
Neoantigen Prediction

To develop effective personalized immunotherapies, it is imper-
ative that patient-specific neoantigens that can prime the adap-
tive immune response are accurately predicted and correctly pri-
oritized. Discovery of putative neoantigens typically begins with
whole exome sequencing of a matched set of patient tumor- and
normal-cell DNA.[1,2] A comparison of these two samples can lead
to the identification of tumor-specific somatic mutations. Fur-
ther analysis of the transcriptome using RNA sequencing (RNA-
Seq) can help to ascertain which DNA variants are expressed
and confirm variants whose identification is challenging with
DNA sequencing alone. There are several types of mutations
taken into consideration when identifying putative neoantigens.
Single nucleotide variants, which result in a single amino acid
change in the subsequent protein, represent a majority of the
mutations detected in tumor DNA that reportedly elicit T cell
responses.[65] However, this type of mutation represents only
one class for which mutation calling algorithms must ac-
count. Insertions/deletions (i.e., indels), fusion proteins, mRNA
splice variants, and frame shift mutations can also produce
unique, candidate neoantigens with predicted binding affini-
ties for HLA heterodimers. Peptides that are erroneously trans-
lated from the 5′ and 3′ untranslated regions of mRNA
predicted from RNA-Seq data have also been reported as sources
of neoantigens.[66–68]

Somatic cancer variants can be detected using whole exome
sequencing and translated into FASTA format to produce a
patient-specific proteome to be used for spectral proteogenomic
searches. During such workflows, tumor purity is an impor-
tant concern. Althoughwhole exome sequencing-basedmutation
calling can retain sensitivity at low purities (possibly as low as 5–
10% at standard 150× sequencing depth),[69] the purity require-
ments for LC–MS/MS detection are not well defined and likely

Proteomics 2018, 18, 1700259 1700259 (4 of 10) C© 2018 Neon Therapeutics. Proteomics Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

http://www.advancedsciencenews.com
http://www.proteomics-journal.com


www.advancedsciencenews.com www.proteomics-journal.com

much higher making instrument sensitivity a limiting factor for
neoantigen detection. In addition to variants identified at the ge-
netic and transcriptomic levels, recent studies have also shown
that the proteasome can produce peptide splice variants during
proteasome-mediated degradation of proteins that can be directly
identified using LC–MS/MS.[61,70–72] MS and prediction methods
for identifying these noncanonical HLA-peptides are emerging
but require further validation before being implemented in clin-
ical applications.[73]

For putative neoantigens to be prioritized, they must be able to
bind to a patient’s set of unique HLA heterodimers. Therefore, it
is imperative that theHLA-ligand binding preferences of each ex-
pressedHLA allele are known. A vast amount of theHLA-epitope
data generated to date resides in the Immune Epitope Database
(IEDB), a public database that is funded by the National Institute
of Allergy and Infectious Diseases.[28] IEDB has been an invalu-
able resource for the immunology community as it centralizes
data characterizing antibody and T cell epitopes in humans, non-
human primates, and other animal species that are involved in
research of infectious disease, allergy, autoimmunity, and trans-
plant rejection. Accordingly, many of the current neoantigen pre-
diction pipelines either utilize IEDB data to train algorithms,
such as machine learning-based approaches, that predict HLA-
peptide binding, or use advanced epitope prediction tools that al-
ready incorporate IEDB data.[74–76]

NetMHC and NetMHCpan are two examples of state-of-the-
art neural network-trained algorithms that performHLA epitope
prediction.[74–77] NetMHC covers HLA-A, -B, and -C alleles for
which there are allele-specific data available for training, while
NetMHCpan can predict HLA-peptide binding for HLA alleles
that may not have well annotated peptide-binding motifs by us-
ing data from closely related alleles. IEDB contains >300 000
ligands with approximately half of these representing naturally
processed ligands.[78] However, a large proportion of the reported
HLA-ligands were also identified using biochemical binding as-
says that leverage synthetic peptide libraries tested against re-
combinant HLA heterodimers. These ligands may not be ap-
propriate for neoantigen prediction because HLA-binding alone
does not capture the complex processing and presentation rules
that govern endogenously processed epitopes. Libraries of poten-
tial peptide ligands are also usually selected based on a hypothe-
sis or prior knowledge, which can introduce bias in the collective
knowledge deposited into IEDB. One example of peptide library
bias is evident in theHLA-ligand lengths selected for biochemical
HLA-binding screens. Historical data has shown that the most
HLA heterodimers prefer peptide ligands that are nine amino
acids in length. However, the generation of large ligand elution
datasets via MS has shown that HLA class I heterodimers have
varying preferences for ligand lengths.[33,77,79] Furthermore, this
MS-based insight has been incorporated into current epitope pre-
diction algorithms and increased their predictive value.[77] Thus,
LC–MS/MS profiling of naturally processed HLA-ligands has re-
ceived a great deal of attention.
Endogenously processed and presented HLA-ligands profiled

from cell lines and patient-derived material are commonly multi-
allelic, meaning that LC–MS/MS data generated from these sam-
ples contain a mixed population of ligands that can bind to one
of the multiple simultaneously expressed HLA alleles, as shown
in Figure 2 (top). Multi-allelic datasets require deconvolution to

ascertain which peptides bind to the different HLA heterodimers
displayed by an individual. Thus, ligands from multi-allelic
datasets have to be assigned to their corresponding HLA het-
erodimers using either (1) binding predictors trained with preex-
isting data[28] or (2) deconvolution algorithms that leverage over-
lap acrossHLA alleles represented in large ligand datasets.[74,80,81]

It is important to note that only LC–MS/MS datasets with avail-
ableHLA typing information can be confidently deconvoluted. In
fact, nearly 40% of the naturally processed ligands bound to HLA
class I complexes reported from multi-allelic studies in IEDB
lack HLA allele-specific assignments either due to the lack of
HLA typing information or inability to deconvolute, making it
challenging to use this subset of data for allele-specific epitope
prediction.[31] In addition, it is difficult to identify peptides bound
to rare class I HLA heterodimers and many class II HLA het-
erodimers because there is not enough annotated data for de-
convolution. The multi-allelic data generation approach also lim-
its the discovery of novel binding motifs as deconvolution relies
on preexisting knowledge. Though there are caveats to utilizing
multi-allelic datasets for allele-specific epitope predictions, they
are immensely valuable for determining patterns of ligand pre-
sentation that require co-expression of multiple alleles and for
validating epitope prediction algorithms.
An orthogonal approach to multi-allelic data generation and

subsequent deconvolution is the creation ofmono-allelic datasets
from which peptide populations presented by a single HLA al-
lele are identified (Figure 2, bottom). One method for generating
mono-allelic data utilizes cell lines that are deficient in HLA ex-
pression. These cells can be transfected or transduced with single
HLA alleles so that ligands can be profiled by LC–MS/MS to gen-
erate allele-specific ligand libraries.[32,33,82] For example, Wu and
colleagues generated mono-allelic LC–MS/MS data by individu-
ally transducing 721.221 B cells with 16 HLA alleles of interest[33]

while other research groups have independently utilized C1R
cells to profile naturally processed ligands presented by individ-
ual HLA alleles including HLA-C and HLA-G.[82] Peptides bound
to soluble HLA molecules can also be isolated from cell media
and profiled by LC–MS/MS to produce mono-allelic data.[79,83,84]

Amajor advantage ofmono-allelic datasets is that they require no
deconvolution and enable confident peptide-HLA allele assign-
ments without preexisting data. Mono-allelic approaches also
rapidly provide data for HLA alleles that have not been char-
acterized previously—a task that multi-allelic data can do only
if enough overlap is present amongst large datasets. Addition-
ally, novel peptide-binding motifs can easily be discovered using
mono-allelic systems as no previous knowledge is required for
confident HLA-binding assignments. Mono-allelic data can even
be leveraged to assign ligands from multi-allelic datasets when
deconvolution methods fail to do so.
Although the mono-allelic approach is advantageous for

rapidly learning HLA allele-specific peptide-binding motifs, both
mono-allelic and multi-allelic LC–MS/MS datasets will likely
be beneficial for learning the rules of HLA-ligand processing
and presentation, as co-expression of different combinations
of HLA alleles may impact the population of naturally pro-
cessed and presented epitopes.[24,33,84] Rules relating to cleav-
age patterns, subcellular localization, and source protein at-
tributes can also be better resolved and validated when both
data types are combined and then embedded into multivariate
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Figure 2. Multi-allelic and mono-allelic approaches in HLA ligand profiling. In a multi-allelic approach, the HLA ligands are co-immunoprecipitated with
HLA heterodimers directly from patient material or cell lines (top). Because these cells naturally expressed multiple HLA alleles, peptides identified
from such multi-allelic approaches must be deconvoluted to assign binding to a specific HLA heterodimer if the HLA types are known. In a mono-allelic
approach, the HLA-ligands are co-immunoprecipitated with HLA heterodimers from cell lines genetically modified for expression of only a single HLA
allele (bottom). Thus, peptides identified from mono-allelic approaches do not require deconvolution for HLA heterodimer binding assignments.

epitope prediction algorithms.[24,33,84] Overall, the combination
of mono- and multi-allelic datasets will be highly valuable for
advancing methods for the prediction of HLA epitopes and
neoantigens.

1.4. Current Challenges and Future Perspectives: The Use of
MS-Based Epitope Predictions in the Development of
Personalized Immunotherapies

With the rise of personalized cancer immunotherapies, much
work has been done to explore the endogenously processed lig-
ands presented by diverse HLA heterodimers and learn HLA-
specific binding preferences so that stable, and ideally immuno-
genic, epitopes can be predicted for individual patients. With
the recent advances in instrumentation, data acquisition meth-
ods, and database searching algorithms, MS has already made
enormous contributions towards this effort as evidenced by an
increase in the amount of MS data deposited in IEDB.[28,78] Im-
plementation of mono-allelic profiling workflows will likely be
crucial for generating data for rare and low expressedHLA alleles,
and to aid in deconvoluting multi-allelic datasets, whereas multi-
allelic datasets will be valuable for supporting the development
of neoantigen prediction algorithms if peptide HLA binding

assignments can bemade confidently. Because bothmono-allelic
and multi-allelic data are generated from endogenously pro-
cessed ligands, future epitope prediction algorithms can only be-
come more accurate as additional MS data are reported from di-
verse cell types representing less common HLA alleles.
In addition to data generation, MS data dissemination

and standardization will be another important contribution
to the field of HLA-ligand profiling. Data sharing amongst
research groups generating endogenous HLA-ligandome
and epitope immunogenicity datasets will play a critical role
in improving neoantigen prediction pipelines. The Human
Immuno-Peptidome Project (HIPP)[46,85] is already attempting
to connect clinicians with research groups producing HLA-
ligandome data, as sequencing HLA-ligands by LC–MS/MS
is a complimentary and orthogonal approach to whole ex-
ome sequencing and current prediction methods. This effort
coincides with the Tumor Neoantigen Selection Alliance
(https://www.parkerici.org/research_project/tumor-neoantigen-
selection-alliance/), which is evaluating the performance and
accuracy of current predictive algorithms developed by multiple
academic and industry laboratories by confirming the im-
munogenicity of predicted neoantigens with in vitro validation
studies.
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While the proteomics community has made great strides
to advance our knowledge of HLA-ligand binding and pre-
diction, several key areas of opportunity for improvement re-
main. Direct identification of neoantigens in tumor tissue, pa-
tient derived cell lines, and model systems by MS is the goal,
but remains challenging due to observations that neoantigens
represent a low percentage of the tumor’s HLA ligandome.[6,19,36]

Therefore, neoantigen discovery currently relies on whole exome
sequencing and predominantly on the predictive power of algo-
rithms that inferHLA-ligand binding. These studies do, however,
highlight the clinical potential of MS-based sequencing of nat-
urally processed HLA ligands, especially when combined with
other “-omic” technologies such as next generation sequencing,
and RNA-Seq. For example, multiple research groups have pro-
posed general pipelines combining technologies to craft person-
alized immunotherapies across multiple cancer types.[86–90] Such
proteogenomic methodologies incorporating MS sequencing to
detect and validate immunotherapeutic epitopes have recently
shown clinical promise.[91,92]

The large amount of patient material and the timeframe re-
quired for patient-specific multi-omic HLA-ligand and neoanti-
gen profiling currently prevents its routine implementation in
clinical settings. Tumor biopsy, HLA-typing, whole exome se-
quencing, and mutation calling can take 1–2 weeks. In parallel,
HLA-ligand isolation, MS data acquisition, and data analysis can
take anywhere from several days to weeks, while personalized
vaccine design and manufacturing can take multiple weeks once
neoantigen targets are identified. The combined timeframe for
these processes is multiple months, which is currently too long
for routine use in the clinic. However, if patients begin treatment
with an off the shelf therapy at the time of biopsy, the use of
personalized vaccines as a combination therapy becomes more
tenable.[1,2] Additionally, as sequencing costs continue to decline,
and various technologies employed in sample processing and
data acquisition used for HLA-ligand profiling advance, patient-
specific neoantigen identification using multi-omic approaches
will become suitable for clinical timescales.
Regardless of the approach used to identify putative neoanti-

gens, validation of epitope immunogenicity is crucial as neither
direct epitope detection by LC–MS/MS nor putative neoantigen
prediction pipelines can guarantee that a given epitope will elicit
a T cell response. Even if the predicted epitope binds to its re-
spective HLA heterodimer and is presented on the cell surface,
many factors can prohibit a T cell from viewing the epitope as
immunogenic. For example, the tumor microenvironment can
inhibit the induction of T cell responses.[11,13,14] Strønen and col-
leagues have worked to investigate why autologous T cells recog-
nize only a small subset of predicted neoantigens and observed
that healthy donor T cells responded to a subset of neoantigens
that did not elicit tumor infiltrating T cell responses. These data
demonstrate that responses to personalized therapies that lever-
age accurately predicted neoantigens is also dependent on the sta-
tus of each patient’s immune systems.[93] Future studies investi-
gating T cell responses to predicted neoantigens, or lack thereof,
are needed to understand how a patient’s adaptive immune re-
sponse can be optimized and used to improve epitope prediction
and prioritization.
For many predicted neoantigens applied to personalized im-

munotherapy, functional assays using a patient’s autologous

T cells are used to validate immunogenicity of both class I
and class II epitopes. Predictions for candidate neoantigens in
many recent studies[1,2,17,19,20,33,74,81] are predominantly made for
class I HLA epitopes (given the availability of experimental data
for class I prediction algorithms compared to class II), yet CD4+

T cell responses are often observed in both preclinical and clin-
ical personalized neoantigen vaccination studies.[1,2,20] These ob-
servations demonstrate that class II HLA epitope processing and
presentation may also play a critical role in cancer treatment. Al-
though HLA class II prediction algorithms exist, they are less ac-
curate because the open-ended peptide-binding groove on class
II HLA heterodimers allows for longer peptides (generally 15–25
amino acids) to bind, which increases the heterogeneity and com-
plexity of epitope presentation.[39,40,63] Further work to better un-
derstand the characteristics of class IIHLA peptide-binding cores
and the cellular processes involved in class II epitope processing
and presentation is therefore required.[94] The proteomics field is
currently limited by the complexity of class II HLA heterodimer
formation and the availability of immunoprecipitation grade an-
tibodies for class II HLA-peptide complex isolation. Once these
challenges are overcome, LC–MS/MS will likely play a large role
in characterizing the class II HLA-ligandome, which will facili-
tate improvements to class II epitope prediction methods.
Direct identification of HLA-ligands byMS frommono-[33] and

multi-allelic[32,36,39,81] systems has proven to be a faster and less
biased technology than canonical methods used to study HLA-
peptide binding, and have greatly contributed to our knowledge
of the HLA-ligandome and epitope processing. As sample han-
dling methods, instrumentation, data acquisition strategies, and
data searching algorithms tailored to the HLA-ligandome im-
prove, HLA-peptide sequencing will become more sensitive and
comprehensive. With these improvements, detection of neoanti-
gens directly from patient material and tumor-derived cell lines
will become more feasible on clinical timescales. Until such ad-
vancements are made, integratingMSHLA-ligand profiling with
other “-omic” technologies is critical to create pipelines for can-
cer vaccines targeting neoantigens, and enabling personalized
immunotherapies with largescale clinical applications. Improved
epitope prediction algorithms will continue to take advantage
of increased coverage of ligands that bind rare HLA class I
molecules and HLA class II molecules profiled by LC–MS/MS.
Additionally, efforts to share and standardize LC–MS/MS data
as outlined by HIPP and consortiums to benchmark epitope pre-
diction algorithms like Tumor Neoantigen Selection Alliance will
continue to push the field of personalized immunotherapy to im-
prove the accuracy of neoantigen predictions. This will increase
the number of candidate neoepitopes that are prioritized and, ide-
ally, the magnitude of neoantigen specific antitumor responses
in patients. With LC–MS/MS technology playing a central role in
improving epitope prediction and our understanding of epitope
processing and presentation, next generation personalized can-
cer immunotherapies have the potential to transform how cancer
is treated in the clinic.
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